
ALMOST COMPLEX MANIFOLDS – ASSIGNMENT 2 SOLUTIONS

1. Let (M,J) be an almost complex manifold and set NJ(X,Y ) = [X,Y ]+J [JX, Y ]+J [X, JY ]−
[JX, JY ]. Show the following:

(a) NJ(X,Y ) = −NJ(Y,X),

(b) NJ(JX, Y ) = −JNJ(X,Y ), and

(c) NJ(fX, Y ) = fNJ(X,Y ) for f ∈ C∞(M).

Solution: (a)

NJ(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

= −[Y,X]− J [Y, JX]− J [JY,X] + [JY, JX]

= −[Y,X]− J [JY,X]− J [Y, JX] + [JY, JX]

= −([Y,X] + J [JY,X] + J [Y, JX]− [JY, JX])

= −NJ(Y,X).

(b)

NJ(JX, Y ) = [JX, Y ] + J [J(JX), Y ] + J [JX, JY ]− [J(JX), JY ]

= [JX, Y ]− J [X,Y ] + J [JX, JY ] + [X, JY ]

= −J(J [JX, Y ] + [X,Y ]− [JX, JY ] + J [X, JY ])

= −J([X,Y ] + J [JX, Y ] + J [X,JY ]− [JX, JY ])

= −JNJ(X,Y ).

(c)

NJ(fX, Y ) = [fX, Y ] + J [J(fX), Y ] + J [fX, JY ]− [J(fX), JY ]

= [fX, Y ] + J [fJX, Y ] + J [fX, JY ]− [fJX, JY ]

= f [X,Y ]− Y (f)X + J(f [JX, Y ]− Y (f)JX) + J(f [X, JY ]− (JY )(f)X)

− f [JX, JY ] + (JY )(f)JX

= f [X,Y ]− Y (f)X + fJ [JX, Y ] + Y (f)X + fJ [X,JY ]− (JY )(f)JX

− f [JX, JY ] + (JY )(f)JX

= f [X,Y ] + fJ [JX, Y ] + fJ [X, JY ]− f [JX, JY ]

= fNJ(X,Y ).

2. Consider the almost complex structure J on R4 given by

J =


0 1 f −g
−1 0 g f
0 0 0 −1
0 0 1 0


where f, g ∈ C∞(R4).
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(a) Compute the Nijenhuis tensor of J . That is, compute NJ

(
∂

∂xj
,
∂

∂xk

)
for j, k ∈

{1, 2, 3, 4}.

(b) For a, b ∈ R, consider the function h : C → C given by ha,b(z) = f(x, y, a, b)+ig(x, y, a, b)
where z = x+ iy. Show that J is integrable if and only if ha,b is holomorphic for all
a, b ∈ R.

Solution: (a) Denote
∂

∂xj
by ∂j .

By skew-symmetry, namely 1(a), we only have to calculate NJ(∂j , ∂k) for 1 ≤ j < k ≤ 4. In addition,
by 1(b) we have NJ(∂1, ∂k) = NJ(J∂2, ∂k) = −JNJ(∂2, ∂k), so we only need to calculate NJ(∂j , ∂k)
for 2 ≤ j < k ≤ 4, i.e. (j, k) ∈ {(2, 3), (2, 4), (3, 4)}. Using the fact that [∂j , ∂k] = 0 and [hX, Y ] =
h[X,Y ]−Y (h)X (and hence [X,hY ] = h[X,Y ] +X(h)Y and [h1X,h2Y ] = h1h2[X,Y ] + h1X(h2)Y −
h2Y (h1)X), we have

NJ(∂2, ∂3) = [∂2, ∂3] + J [J∂2, ∂3] + J [∂2, J∂3]− [J∂2, J∂3]

= J [∂1, ∂3] + J [∂2, f∂1 + g∂2 + ∂4]− [∂1, f∂1 + g∂2 + ∂4]

= J [∂2, f∂1] + J [∂2, g∂2] + J [∂2, ∂4]− [∂1, f∂1]− [∂1, g∂2]− [∂1, ∂4]

= J(f [∂2, ∂1] + ∂2(f)∂1) + J(g[∂2, ∂2] + ∂2(g)∂2)− f [∂1, ∂1]− ∂1(f)∂1 − g[∂1, ∂2]− ∂1(g)∂2

= ∂2(f)J∂1 + ∂2(g)J∂2 − ∂1(f)∂1 − ∂1(g)∂2

= −∂2(f)∂2 + ∂2(g)∂1 − ∂1(f)∂1 − ∂1(g)∂2

= [∂2(g)− ∂1(f)]∂1 − [∂1(g) + ∂2(f)]∂2

NJ(∂2, ∂4) = [∂2, ∂4] + J [J∂2, ∂4] + J [∂2, J∂4]− [J∂2, J∂4]

= J [∂1, ∂4] + J [∂2,−g∂1 + f∂2 − ∂3]− [∂1,−g∂1 + f∂2 − ∂3]

= −J [∂2, g∂1] + J [∂2, f∂2]− J [∂2, ∂3] + [∂1, g∂1]− [∂1, f∂2] + [∂1, ∂3]

= −J(g[∂2, ∂1] + ∂2(g)∂1) + J(f [∂2, ∂2] + ∂2(f)∂2) + g[∂1, ∂1] + ∂1(g)∂1 − f [∂1, ∂2]− ∂1(f)∂2

= −∂2(g)J∂1 + ∂2(f)J∂2 + ∂1(g)∂1 − ∂1(f)∂2

= ∂2(g)∂2 + ∂2(f)∂1 + ∂1(g)∂1 − ∂1(f)∂2

= [∂1(g) + ∂2(f)]∂1 + [∂2(g)− ∂1(f)]∂2

NJ(∂3, ∂4) = [∂3, ∂4] + J [J∂3, ∂4] + J [∂3, J∂4]− [J∂3, J∂4]

= J [f∂1 + g∂2 + ∂4, ∂4] + J [∂3,−g∂1 + f∂2 − ∂3]− [f∂1 + g∂2 + ∂4,−g∂1 + f∂2 − ∂3]

= J [f∂1, ∂4] + J [g∂2, ∂4] + J [∂4, ∂4]− J [∂3, g∂1] + J [∂3, f∂2]− J [∂3, ∂3] + [f∂1, g∂1]

− [f∂1, f∂2] + [f∂1, ∂3] + [g∂2, g∂1]− [g∂2, f∂2] + [g∂2, ∂3] + [∂4, g∂1]− [∂4, f∂2] + [∂4, ∂3]

= J(f [∂1, ∂4]− ∂4(f)∂1) + J(g[∂2, ∂4]− ∂4(g)∂2)− J(g[∂3, ∂1] + ∂3(g)∂1) + J(f [∂3, ∂2]

+ ∂3(f)∂2) + fg[∂1, ∂1] + f∂1(g)∂1 − g∂1(f)∂1 − (f2[∂1, ∂2] + f∂1(f)∂2 − f∂2(f)∂1)

+ f [∂1, ∂3]− ∂3(f)∂1 + g2[∂2, ∂1] + g∂2(g)∂1 − g∂1(g)∂2 − (gf [∂2, ∂2] + g∂2(f)∂2 − f∂2(g)∂2)

+ g[∂2, ∂3]− ∂3(g)∂2 + g[∂4, ∂1] + ∂4(g)∂1 − (f [∂4, ∂2] + ∂4(f)∂2)

= −∂4(f)J∂1 − ∂4(g)J∂2 − ∂3(g)J∂1 + ∂3(f)J∂2 + f∂1(g)∂1 − g∂1(f)∂1 − f∂1(f)∂2 + f∂2(f)∂1

− ∂3(f)∂1 + g∂2(g)∂1 − g∂1(g)∂2 − g∂2(f)∂2 + f∂2(g)∂2 − ∂3(g)∂2 + ∂4(g)∂1 − ∂4(f)∂2

= ∂4(f)∂2 − ∂4(g)∂1 + ∂3(g)∂2 + ∂3(f)∂1 + f∂1(g)∂1 − g∂1(f)∂1 − f∂1(f)∂2 + f∂2(f)∂1

− ∂3(f)∂1 + g∂2(g)∂1 − g∂1(g)∂2 − g∂2(f)∂2 + f∂2(g)∂2 − ∂3(g)∂2 + ∂4(g)∂1 − ∂4(f)∂2

= f∂1(g)∂1 − g∂1(f)∂1 − f∂1(f)∂2 + f∂2(f)∂1 + g∂2(g)∂1 − g∂1(g)∂2 − g∂2(f)∂2 + f∂2(g)∂2
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= [f∂1(g)− g∂1(f) + f∂2(f) + g∂2(g)]∂1 + [−f∂1(f)− g∂1(g)− g∂2(f) + f∂2(g)]∂2

= [f(∂1(g) + ∂2(f)) + g(−∂1(f) + ∂2(g))]∂1 + [f(−∂1(f) + ∂2(g)) + g(−∂1(g)− ∂2(f))]∂2

Setting A = ∂1(g) + ∂2(f) and B = ∂1(f)− ∂2(g), we have

[NJ(∂j , ∂k)] =


0 0 A B
0 0 −B A

−A B 0 fA− gB
−B −A −fA+ gB 0

 ∂1 +


0 0 −B A
0 0 −A −B
B A 0 −fB − gA
−A B fB + gA 0

 ∂2.
(b) By the Newlander-Nirenberg theorem, J is integrable if and only if NJ = 0. By our computation
of NJ in (a), we see that NJ = 0 if and only if A = B = 0.

Note that

∂f

∂x
(x, y, a, b) =

∂

∂x
(f(x, y, a, b))

∂g

∂x
(x, y, a, b) =

∂

∂x
(g(x, y, a, b))

∂f

∂y
(x, y, a, b) =

∂

∂y
(f(x, y, a, b))

∂g

∂y
(x, y, a, b) =

∂

∂y
(g(x, y, a, b)).

It follows that A(x, y, a, b) = 0 and B(x, y, a, b) = 0 are precisely the Cauchy-Riemann equations for
the real and imaginary parts of ha,b. Therefore ha,b is holomorphic for all a, b ∈ R if and only if
A = B = 0 which is equivalent to integrability of J .

3. Let (Y, J) be an almost complex manifold with a properly embedded submanifold X
such that TxX ⊆ TxY is a complex subspace for all x ∈ X. Show that J induces an almost
complex structure JX on X, and if J is integrable, so too is JX .

Solution: Let i : X → Y be the inclusion. Then i∗(TxX) ⊆ Ti(x)Y = TxY is a complex subspace.
Therefore, if v ∈ TxX, then i∗v ∈ i∗(TxX) and J(i∗v) ∈ i∗(TxX). Since i is an embedding, i∗
is injective, so there is a unique w ∈ TxX such that J(i∗v) = i∗w. We define JXv = w, so that
J(i∗v) = i∗(JXv). Note that i∗(J

2
Xv) = J(i∗(JXv)) = J2(i∗v) = −i∗v = i∗(−v), so by the injectivity

of i∗, we have J2
X = − idTX , and hence JX is an almost complex structure on X.

Let U , V be vector fields on X. Since X is properly embedded in Y , we can extend U , V to vector

fields Ũ , Ṽ on Y . Note that for x ∈ X, we have i∗Ux = Ui(x) = Ux = Ũx, so U and Ũ are i-related,

and similarly for V and Ṽ . We also have i∗(JXUx) = J(i∗Ux) = JŨx, so JXU and JŨ are i-related,

as are JXV and JṼ . So, for any x ∈ X, we have

i∗NJX
(U, V )x = i∗[U, V ]x + i∗JX [JXU, V ]x + i∗JX [U, JXV ]x − i∗[JXU, JXV ]x

= i∗[U, V ]x + Ji∗[JXU, V ]x + Ji∗[U, JXV ]x − i∗[JXU, JXV ]x

= [Ũ , Ṽ ]x + J [JŨ , Ṽ ]x + J [Ũ , JṼ ]x − [JŨ , JṼ ]x

= NJ(Ũ , Ṽ )x

= 0.

Since i∗ is injective, we see that NJX
(U, V )x = 0. Since U , V , and x were arbitrary, NJX

= 0 and
hence JX is integrable.

4. Let (M,J) be an almost complex manifold.

(a) Show that µ̄2 = 0.

Let Ep,q(M) = Hp,q(E•,•(M), µ̄) :=
ker(µ̄ : Ep,q(M) → Ep−1,q+2(M))

im(µ̄ : Ep+1,q−2(M) → Ep,q(M))
.
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(b) Show that ∂̄ : Ep,q(M) → Ep,q+1(M) descends to a well-defined map ∂̄ : Ep,q(M) →
Ep,q+1(M), [α] 7→ [∂̄α].

(c) Show that ∂̄ : Ep,q(M) → Ep,q+1(M) satisfies ∂̄2 = 0.

Solution: (a) Since d = µ + ∂ + ∂̄ + µ̄, the operator d2 is a sum of 16 terms. We can separate them
into 7 operators

µ2 : Ep,q(M) → Ep+4,q−2(M)

µ∂ + ∂µ : Ep,q(M) → Ep+3,q−1(M)

∂2 + µ∂̄ + ∂̄µ : Ep,q(M) → Ep+2,q(M)

µµ̄+ µ̄µ+ ∂∂̄ + ∂̄∂ : Ep,q(M) → Ep+1,q+1(M)

∂̄2 + µ̄∂ + ∂µ̄ : Ep,q(M) → Ep,q+2(M)

µ̄∂̄ + ∂̄µ̄ : Ep,q(M) → Ep−1,q+3(M)

µ̄2 : Ep,q(M) → Ep−2,q+4(M).

Since d2 = 0, each of these operators is the zero map as well. In particular, we have µ̄2 = 0.

(b) By the argument in part (a), we have µ̄∂̄ + ∂̄µ̄ = 0. Let α ∈ Ep,q(M) with µ̄α = 0. Note that
∂̄α ∈ Ep,q+1(M) satisfies µ̄∂̄α = −∂̄µ̄α = 0, so [∂̄α] ∈ Ep,q+1(M) is defined.

Suppose now that β ∈ Ep,q(M) with µ̄β = 0 and [α] = [β]. Then there is γ ∈ Ep+1,q−2(M) with
α = β + µ̄γ, so ∂̄α = ∂̄β + ∂̄µ̄γ = ∂̄β − µ̄∂̄γ. Therefore [∂̄α] = [∂̄β − µ̄∂̄γ] = [∂̄β], so ∂̄ : Ep,q(M) →
Ep,q+1(M) is well-defined.

(c) From the argument in part (a), we have ∂̄2 + µ̄∂ + ∂µ̄ = 0, so for α ∈ Ep,q(M) with µ̄α = 0 we
have ∂̄2α = −µ̄∂α− ∂µ̄α = −µ̄∂α, so ∂̄2[α] = ∂̄[∂̄α] = [∂̄2α] = [−µ̄∂α] = [0] = 0.

5. Let α be a (p, q)-form on an almost complex manifold (M,J). Find a fomula for µ(α) in
terms of the Nijenhuis tensor NJ . Use this to show (directly) that if µ : E0,1(M) → E2,0(M)
is zero, then J is integrable.

Solution: Note that µ(α) is the (p + 2, q − 1) component of dα, so for X1, . . . , Xp+1 ∈ Γ(M,T 1,0M)
and Y1, . . . , Yq ∈ Γ(M,T 0,1M), then

µ(α)(X1, . . . , Xp+2, Y1, . . . , Yq−1)

= (dα)(X1, . . . , Xp+2, Y1, . . . , Yq−1)

=

p+2∑
k=1

(−1)k−1Xk(α(X1, . . . , X̂k, . . . , Xp+2, Y1, . . . , Yq−1)

+

q−1∑
k=1

(−1)(p+2+k)−1Yk(α(X1, . . . , Xp+2, Y1, . . . , Ŷk, . . . , Yq−1)

+
∑

1≤j<k≤p+2

(−1)j+kα([Xj , Xk], X1, . . . , X̂j , . . . , X̂k, . . . , Xp+2, Y1, . . . , Yq−1)

+
∑

1≤j≤p+2
1≤k≤q−1

(−1)(p+2+j)+kα([Xj , Yk], X1, . . . , X̂j , . . . , Xp+2, Y1, . . . , Ŷk, . . . , Yq−1)

+
∑

1≤j<k≤q−1

(−1)(p+2+j)+(p+2+k)α([Yj , Yk], X1, . . . , Xp+2, Y1, . . . , Ŷj , . . . , Ŷk, . . . , Yq−1).
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Since α is a (p, q)-form, the summands in the first, second, fourth, and fifth sums vanish. Now note
that

α([Xj , Xk], X1, . . . , X̂j , . . . , X̂k, . . . , Xp+2, Y1, . . . , Yq−1)

=α([Xj , Xk]
1,0 + [Xj , Xk]

0,1, X1, . . . , X̂j , . . . , X̂k, . . . , Xp+2, Y1, . . . , Yq−1)

=α([Xj , Xk]
1,0, X1, . . . , X̂j , . . . , X̂k, . . . , Xp+2, Y1, . . . , Yq−1)

+ α([Xj , Xk]
0,1, X1, . . . , X̂j , . . . , X̂k, . . . , Xp+2, Y1, . . . , Yq−1).

Again, because α is a (p, q)-form, the first term vanishes. Writing Xj = UJ−iJUj and Xk = Uk−iJUk,
we see that [Xj , Xk]

0,1 = [Uj − iJUj , Uk − iJUk]
0,1 = NJ(Uj , Uk) + iJNJ(Uj , Uk) = 2NJ(Uj , Uk)

0,1.
Therefore,

µ(α)(X1, . . . , Xp+2, Y1, . . . , Yq−1)

=
∑

1≤j<k≤p+2

(−1)j+kα(2NJ(Uj , Uk)
0,1, X1, . . . , X̂j , . . . , X̂k, . . . , Xp+2, Y1, . . . , Yq−1).

When α ∈ E0,1(M), we have

µ(α)(X1, X2) = −α(2NJ(U1, U2)
0,1) = −2α(NJ(U1, U2)

0,1) = −2α(NJ(U1, U2)).

Let g be a bundle metric on T 0,1M and consider α ∈ E0,1(M) given by α(X) = g(X0,1, NJ(U1, U2)
0,1).

Note that

µ(α)(X1, X2) = −2α(NJ(U1, U2)) = −2g(NJ(U1, U2)
0,1, NJ(U1, U2)

0,1) = −2∥NJ(U1, U2)
0,1∥2.

Therefore, if µ : E0,1(M) → E0,2(M) is the zero map, then NJ(U1, U2)
0,1 = 0. Since NJ(U1, U2) is

real, we also have NJ(U1, U2)
1,0 = NJ(∂1, ∂2)0,1 = 0 and hence NJ(U1, U2) = 0.

6. Let (M,J) be an almost complex manifold. Show that if ∂̄2 = 0, then J is integrable.
(Hint: compute ∂̄2f for a function f .)

Solution: Let Y1, Y2 ∈ Γ(M,T 0,1M). Note that ∂̄2f = ∂̄(∂̄f) is the (0, 2) component of d(∂̄f), so

(∂̄2f)(Y1, Y2) = ∂̄(∂̄f)(Y1, Y2)

= d(∂̄f)(Y1, Y2)

= Y1(∂̄f)(Y2)− Y2(∂̄f)(Y1)− (∂̄f)([Y1, Y2])

Since ∂̄f is a (0, 1)-form, we have (∂̄f)([Y1, Y2]) = (∂̄f)([Y1, Y2]
1,0 + [Y1, Y2]

0,1) = (∂̄f)([Y1, Y2]
0,1).

Moreover, since ∂f is the (0, 1) component of df , we have

(∂̄2f)(Y1, Y2) = Y1(∂̄f)(Y2)− Y2(∂̄f)(Y1)− (∂̄f)([Y1, Y2]
0,1)

= Y1(df)(Y2)− Y2(df)(Y1)− (df)([Y1, Y2]
0,1)

= Y1Y2f − Y2Y1f − [Y1, Y2]
0,1f

= [Y1, Y2]f − [Y1, Y2]
0,1f

= [Y1, Y2]
1,0f.

So if ∂̄2 = 0, then [Y1, Y2]
1,0f = 0 for all f ∈ C∞(M), so [Y1, Y2]

0,1 = 0. Since Y1 and Y2 are arbitrary,
we see that Γ(M,T 0,1M) is closed under Lie bracket, and hence J is integrable.

7. Let E be a real rank 2n bundle equipped with an orientation and a bundle metric. Let
PSO(2n)(E) denote the oriented orthonormal frame bundle of E, i.e. the induced principal
SO(2n)-bundle which gives a reduction of structure group of PGL(2n,R)(E) to SO(2n). Show
that PSO(2n)(E) admits a reduction of structure group to U(n) if and only if E admits an
almost complex structure which induces the given orientation and is compatible with the
given bundle metric.
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Solution: Suppose E admits an almost complex structure J which induces the given orientation and is
compatible with the given bundle metric. Since J is compatible with the given bundle metric, it gives
rise to a hermitian bundle metric on the complex vector bundle (E, J). Then the unitary frame bundle
PU(n)(E) ⊂ PSO(2n)(E) is a principal U(n)-bundle, so PSO(2n)(E) admits a reduction of structure
group to U(n).

Conversely, let PU(n) ↪→ PSO(2n)(E) be a reduction of structure group. If v ∈ Ex and f ∈ PU(n) is

a frame for Ex, we set Jv = fJ2nf
−1(v). To see this is well-defined, note that if f ′ ∈ PU(n), then

f ′ = f ◦A for some A ∈ U(n) so

f ′ ◦ J2n ◦ (f ′)−1 = (f ◦A) ◦ J2n ◦ (f ◦A)−1 = f ◦ (A ◦ J2n ◦A−1) ◦ f−1 = f ◦ J2n ◦ f−1.

Clearly J2 = − idE . If V is a non-empty open set over which E is trivial (as a complex vector bundle),
then PU(n)(E|V ) = PU(n)(E)|V is trivial, so one can find a continuous section σ : V → PU(n)(E|V ).
Then J |V = σ ◦ J2n ◦ ψ where ψ(v) = σ(v)−1. Since σ is continuous, so too is ψ, and hence J is a
continuous section of End(E).

To see that J induces the given orientation, note that if {e1, . . . , e2n} is the standard basis for R2n,
and vj := f(ej), then {v1, . . . , v2n} is an oriented basis for Ex (since f preserves orientation). As v2j =
f(e2j) = f(J2ne2j−1) = f(J2nf

−1(v2j−1)) = Jv2j−1, we see that {v1, Jv1, v3, Jv3, . . . , v2n−1, Jv2n−1}
is an oriented basis for Ex, and hence J induces the correct orientation.

Finally, denote the bundle metric on E by g and let gEucl denote the standard inner product on R2n.
Then we have

g(Ju1, Ju2) = g(f(J2nf
−1u1), f(J2nf

−1u2))

= gEucl(J2nf
−1u1, J2nf

−1u2)

= gEucl(f
−1u1, f

−1u2)

= g(u1, u2),

so J is compatible with g.


