ALMOST COMPLEX MANIFOLDS – ASSIGNMENT 1 SOLUTIONS

1. Let J be a linear complex structure on a real vector space V. Show that tr(J) = 0 and det(J) = 1.

Solution: One approach is to use the fact that for any choice of isomorphism $\varphi: V \to \mathbb{R}^{2n}$, and any endomorphism $A: V \to V$, we have $\operatorname{tr}(A) = \operatorname{tr}(\varphi A \varphi^{-1})$ and $\det(A) = \det(\varphi A \varphi^{-1})$. By choosing a complex basis for V, we get an isomorphism $\varphi: V \to \mathbb{R}^{2n}$ such that $\varphi J \varphi^{-1} = J_{2n}$. Then $\operatorname{tr}(J_{2n}) = 0$ and $\det(J_{2n}) = \left(\det \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\right)^n = 1^n = 1.$

Here's another approach. If $\{b_1, b_2, \ldots, b_{2n}\}$ is a basis for V, then for an endomorphism $A: V \to V$ we have

$$\operatorname{tr}(A)b_1 \wedge b_2 \wedge \dots \wedge b_{2n} = \sum_{k=1}^{2n} b_1 \wedge b_2 \wedge \dots \wedge b_{k-1} \wedge Ab_k \wedge b_{k+1} \wedge \dots \wedge b_{2n}$$
$$\operatorname{det}(A)b_1 \wedge b_2 \wedge \dots \wedge b_{2n} = Ab_1 \wedge Ab_2 \wedge \dots \wedge Ab_{2n}.$$

Let $\{v_1, v_2, \ldots, v_n\}$ be a complex basis for V, then $\{v_1, Jv_1, v_2, Jv_2, \ldots, v_n, Jv_n\}$ is a real basis for V.

$$\operatorname{tr}(J)v_1 \wedge Jv_1 \wedge v_2 \wedge Jv_2 \wedge \dots \wedge v_n \wedge Jv_n$$

$$= \sum_{k=1}^n v_1 \wedge Jv_1 \wedge v_2 \wedge Jv_2 \wedge \dots \wedge v_{k-1} \wedge Jv_{k-1} \wedge J(v_k) \wedge Jv_k \wedge v_{k+1} \wedge Jv_{k+1} \wedge \dots \wedge v_n \wedge Jv_n$$

$$+ \sum_{k=1}^n v_1 \wedge Jv_1 \wedge v_2 \wedge Jv_2 \wedge \dots \wedge v_{k-1} \wedge Jv_{k-1} \wedge v_k \wedge J(Jv_k) \wedge v_{k+1} \wedge Jv_{k+1} \wedge \dots \wedge v_n \wedge Jv_n$$

$$= 0 + 0$$

$$= 0$$

so tr(J) = 0, and

$$\det(J)v_1 \wedge Jv_1 \wedge v_2 \wedge Jv_2 \wedge \dots \wedge v_n \wedge Jv_n$$

= $J(v_1) \wedge J(Jv_1) \wedge J(v_2) \wedge J(Jv_2) \wedge \dots \wedge J(v_n) \wedge J(Jv_n)$
= $Jv_1 \wedge -v_1 \wedge Jv_2 \wedge -v_2 \wedge \dots \wedge Jv_n \wedge -v_n$
= $v_1 \wedge Jv_1 \wedge v_2 \wedge Jv_2 \wedge \dots \wedge v_n \wedge Jv_n$

so det(J) = 1.

2. Determine those n for which J_{2n} and \tilde{J}_{2n} induce the same orientation on \mathbb{R}^{2n} .

Solution: From lectures, we have $J_{2n} = \alpha^{-1} \widetilde{J}_{2n} \alpha$ where $\alpha(e_{2k}) = e_{n+k}$ and $\alpha(e_{2k-1}) = e_k$. So J_{2n} and \widetilde{J}_{2n} induce the same orientation on \mathbb{R}^{2n} if and only if $\det(\alpha) > 0$.

Note that

$$\begin{aligned} \alpha(e_1) \wedge \alpha(e_2) \wedge \alpha(e_3) \wedge \alpha(e_4) \wedge \alpha(e_5) \wedge \alpha(e_6) \wedge \dots \wedge \alpha(e_{2n-1}) \wedge \alpha(e_{2n}) \\ = e_1 \wedge e_{n+1} \wedge e_2 \wedge e_{n+2} \wedge e_3 \wedge e_{n+3} \wedge \dots \wedge e_n \wedge e_{2n} \\ = -e_1 \wedge e_2 \wedge e_{n+1} \wedge e_{n+2} \wedge e_3 \wedge e_{n+3} \wedge \dots \wedge e_n \wedge e_{2n} \\ = -e_1 \wedge e_2 \wedge e_3 \wedge e_{n+1} \wedge e_{n+2} \wedge e_{n+3} \wedge \dots \wedge e_n \wedge e_{2n}. \end{aligned}$$

In general, we swap e_k with $e_{n+1} \wedge e_{n+2} \wedge \cdots \wedge e_{n+k-1}$ which contributes a factor of $(-1)^{k-1}$, so

$$\begin{aligned} \alpha(e_1) \wedge \alpha(e_2) \wedge \alpha(e_3) \wedge \alpha(e_4) \wedge \alpha(e_5) \wedge \alpha(e_6) \wedge \dots \wedge \alpha(e_{2n-1}) \wedge \alpha(e_{2n}) \\ = (-1)^1 (-1)^2 \cdots (-1)^{n-1} e_1 \wedge e_2 \wedge e_3 \wedge \dots \wedge e_{2n} \\ = (-1)^{1+2+\dots+(n-1)} e_1 \wedge e_2 \wedge e_3 \wedge \dots \wedge e_{2n} \\ = (-1)^{n(n-1)/2} e_1 \wedge e_2 \wedge e_3 \wedge \dots \wedge e_{2n}. \end{aligned}$$

So det $(\alpha) > 0$ is equivalent to $n(n-1)/2 \in 2\mathbb{Z}$ and hence $n(n-1) \in 4\mathbb{Z}$. Since n-1 and n are consecutive integers, one is even and the other is odd, so the product is divisible by 4 if and only if one of the two numbers is divisible by 4. Therefore, det $(\alpha) > 0$ if and only if $n \equiv 0, 1 \mod 4$.

3. Let V be a real vector space and let $g: V \times V \to \mathbb{R}$ be a symmetric, non-degenerate, bilinear map. We can view g as a not necessarily positive-definite inner product on V. Suppose g has signature (r, s) and J is a linear complex structure on V compatible with g. Show that r and s are even.

Solution: Let V^+ be a maximal subspace on which g is positive-definite, so $r = \dim V^+$. For $v \in V^+$, note that $g(Jv, Jv) = g(v, v) \ge 0$. Since V^+ is maximal, we have $Jv \in V^+$ and hence $J|_{V^+} : V^+ \to V^+$ is a linear complex structure on V^+ , so $r = \dim V^+$ is even. Arguing similarly with a maximal subspace on which g is negative-definite, we see that s is also even (alternatively, use dim V = r + s).

4. Let V be an even-dimensional real vector space equipped with an inner product g. Without choosing an isomorphism between V and \mathbb{R}^{2n} , show that V admits a linear complex structure J which is compatible with g.

Solution: Since V is even-dimensional, it admits a linear complex structure, say J_0 . Fix an inner product g_0 which is compatible with J_0 , i.e. $g_0(J_0v, J_0w) = g_0(v, w)$. Note that g and g_0 determine isomorphisms $\Phi_g: V \to V^*$ and $\Phi_{g_0}: V \to V^*$ given by $v \mapsto g(v, \cdot)$ and $v \mapsto g_0(v, \cdot)$ respectively. Let $P = \Phi_{g_0}^{-1} \Phi_g: V \to V$. Note that

$$g(v,w) = \Phi_g(v)(w) = (\Phi_{g_0}\Phi_{g_0}^{-1}\Phi_g)(v)(w) = (\Phi_{g_0}P)(v)(w) = \Phi_{g_0}(Pv)(w) = g_0(Pv,w)$$

Now note that $g_0(Pv, w) = g(v, w) = g(w, v) = g_0(Pw, v) = g_0(v, Pw)$ so $P^* = P$, i.e. P is symmetric with respect to g_0 . Furthermore, we have $g_0(Pv, v) = g(v, v) > 0$ for v non-zero, so P is positive-definite with respect to g_0 . Therefore P has a unique positive-definite square root Q which is symmetric with respect to g_0 . Note that Q is invertible, and since $P = Q^2$, we have $PQ^{-1} = Q$.

Define $J = Q^{-1}J_0Q$. Note that $J^2 = Q^{-1}J_0QQ^{-1}J_0Q = Q^{-1}J_0J_0Q = -Q^{-1}Q = -\operatorname{id}_V$, so J is a linear complex structure on V. We also have

$$g(Jv, Jw) = g_0(PJv, Jw)$$

= $g_0(PQ^{-1}J_0Qv, Q^{-1}J_0Qw)$
= $g_0(QJ_0Qv, Q^{-1}J_0Qw)$
= $g_0(J_0Qv, QQ^{-1}J_0Qw)$
= $g_0(J_0Qv, QQ^{-1}J_0Qw)$
= $g_0(Qv, Qw)$
= $g_0(Qv, Qw)$
= $g_0(Q^*Qv, w)$
= $g_0(QQv, w)$
= $g_0(Pv, w)$
= $g_0(Pv, w)$
= $g(v, w)$,

so J is compatible with g.

5. Let V be a finite-dimensional real vector space such that there is a complex subspace $W \subseteq V_{\mathbb{C}}$ with $V_{\mathbb{C}} = W \oplus \overline{W}$. Show that there is a unique linear complex structure J on V such that $V^{1,0} = W$ and $V^{0,1} = \overline{W}$.

Solution: Note that $V \hookrightarrow V_{\mathbb{C}} = W \oplus \overline{W}$, so we can write $v = \pi_W(v) + \pi_{\overline{W}}(v)$ where $\pi_W : V_{\mathbb{C}} \to W$ and $\pi_{\overline{W}} : V_{\mathbb{C}} \to \overline{W}$ are the natural projections.

If J were a linear complex structure on V with $V^{1,0} = W$ and $V^{0,1} = \overline{W}$, then $\pi_W(v) = \pi_{V^{1,0}}(v) = \frac{1}{2}(v - iJv)$ and $\pi_{\overline{W}}(v) = \pi_{V^{0,1}}(v) = \frac{1}{2}(v + iJv)$, so $Jv = i(\pi_W(v) - \pi_{\overline{W}}(v))$. So given a splitting $V_{\mathbb{C}} = W \oplus \overline{W}$, for $v \in V$, set $Jv = i(\pi_W(v) - \pi_{\overline{W}}(v)) = i\pi_W(v) - i\pi_{\overline{W}}(v)$.

If $v \in V \subset V_{\mathbb{C}}$ then $\overline{v} = v$, so $\overline{\pi_W(v)} = \pi_{\overline{W}}(v)$ and $\overline{\pi_{\overline{W}}(v)} = \pi_W(v)$, so

$$\overline{Jv} = \overline{i\pi_W(v) - i\pi_{\overline{W}}(v)} = -i\pi_W(v) + i\overline{\pi_W(v)} = -i\pi_{\overline{W}}(v) + i\pi_W(v) = Jv,$$

and hence $Jv \in V$, so $J: V \to V$.

Since $Jv = i\pi_W(v) - i\pi_{\overline{W}}(v)$, we have $\pi_W(Jv) = i\pi_W(v)$ and $\pi_{\overline{W}}(Jv) = -i\pi_{\overline{W}}(v)$, so

$$J(Jv) = i\pi_W(Jv) - i\pi_{\overline{W}}(Jv) = i^2\pi_W(v) + i^2\pi_{\overline{W}}(v) = -\pi_W(v) - \pi_{\overline{W}}(v) = -v$$

Therefore J is a linear complex structure on V. Let $J_{\mathbb{C}}$ be the complex linear extension of J. Note that

$$J_{\mathbb{C}}(iv) = iJ(v) = i(i\pi_W(v) - i\pi_{\overline{W}}(v)) = i(\pi_W(iv) - \pi_{\overline{W}}(iv)) = i\pi_W(iv) - i\pi_{\overline{W}}(iv).$$

It follows that $J_{\mathbb{C}}: V_{\mathbb{C}} \to V_{\mathbb{C}}$ is given by the same formula as J, namely $J_{\mathbb{C}}v = i\pi_W(v) - i\pi_{\overline{W}}(v)$. Note that

Note that

$$V^{1,0} = \{ v \in V_{\mathbb{C}} \mid J_{\mathbb{C}}v = iv \}$$

= $\{ v \in V_{\mathbb{C}} \mid i\pi_W(v) - i\pi_{\overline{W}}(v) = i\pi_W(v) + i\pi_{\overline{W}}(v) \}$
= $\{ v \in V_{\mathbb{C}} \mid \pi_{\overline{W}}(v) = 0 \}$
= W

and $V^{0,1} = \overline{V^{1,0}} = \overline{W}$.

To see that J is unique, suppose J' is another linear complex structure on V with $V^{1,0} = W$ and $V^{0,1} = \overline{W}$. Then $J_{\mathbb{C}}|_{W} = J_{\mathbb{C}}|_{V^{1,0}} = i \operatorname{id}_{V^{1,0}} = i \operatorname{id}_{W}$ and $J_{\mathbb{C}}|_{\overline{W}} = J_{\mathbb{C}}|_{V^{0,1}} = -i \operatorname{id}_{V^{0,1}} = -i \operatorname{id}_{\overline{W}}$, and likewise $J'_{\mathbb{C}}|_{W} = i \operatorname{id}_{W}$ and $J'_{\mathbb{C}}|_{\overline{W}} = -i \operatorname{id}_{\overline{W}}$, so $J_{\mathbb{C}} = J'_{\mathbb{C}}$. Therefore $J = J_{\mathbb{C}}|_{V} = J'_{\mathbb{C}}|_{V} = J'$.

6. Let ω be a linear symplectic form with a compatible linear complex structure J. Show that the complex bilinear extension of ω is a (1,1)-form.

Solution: Note that compatibility of J with ω is equivalent to $J^*\omega = \omega$. After extending complex bilinearly, we have $\omega = \omega^{2,0} + \omega^{1,1} + \omega^{0,2}$ where $\omega^{p,q}$ denotes the (p,q)-part of ω . Using the fact that $J^*\omega^{p,q} = i^{p-q}\omega$, we have

$$J^*\omega = \omega$$

$$J^*\omega^{2,0} + J^*\omega^{1,1} + J^*\omega^{2,0} = \omega^{2,0} + \omega^{1,1} + \omega^{0,2}$$

$$-\omega^{2,0} + \omega^{1,1} - \omega^{0,2} = \omega^{2,0} + \omega^{1,1} + \omega^{0,2}.$$

Equating (p,q)-parts, we see that $\omega^{2,0} = 0$ and $\omega^{0,2} = 0$, so $\omega = \omega^{1,1}$, i.e. ω is a (1,1)-form.

7. We've seen that if $E \to B$ is any real vector bundle then $E \oplus E \to B$ admits an almost complex structure. Explain why the following jump in logic is erroneous: for any smooth manifold M, the product manifold $M \times M$ admits an almost complex structure. (Note, a counterexample alone does not count as an explanation, but I encourage you to find one anyway).

Solution: At a point, $(p,q) \in M \times M$, we have $T_{p,q}(M \times M) \cong T_pM \oplus T_qM$, but the tangent bundle of $M \times M$ is not, in general, of the form $E \oplus E$.

More precisely, we have $T(M \times M) \cong \pi_1^*TM \oplus \pi_2^*TM$, but $\pi_1^*TM \not\cong \pi_2^*TM$ in general. To see this, fix $q \in M$ and consider the map $\sigma : M \to M \times M$ given by $\sigma(m) = (m,q)$, then $\sigma^*\pi_1^*TM \cong (\pi_1 \circ \sigma)^*TM \cong \operatorname{id}_M^*TM \cong TM$ while $\sigma^*\pi_2^*TM \cong (\pi_2 \circ \sigma)^*TM \cong c_q^*TM \cong \varepsilon^n$ where $c_q : M \to M$ denotes the constant map with value q and ε^n denotes the trivial real bundle of rank n. So if $\pi_1^*TM \cong \pi_2^*TM$, then TM is trivial; conversely, if TM is trivial, then $\pi_1^*TM \cong \varepsilon^n \cong \pi_2^*TM$.

So, unless M is parallelisable, the bundle $T(M \times M)$ is not of the form $E \oplus E$, so $M \times M$ does not necessarily admit an almost complex structure.

8. Let $p: F \to C$ and $\pi: E \to B$ be real vector bundles, and suppose that $\Phi: F \to E$ is a vector bundle isomorphism covering $\varphi: C \to B$. Recall, we showed that given an almost complex structure J on E, one obtains an almost complex structure J' on F.

- (a) Show that $F \cong \varphi^* E$.
- (b) From the above isomorphism and the almost complex structure on E, we obtain an almost complex structure J'' on F. Show that J'' = J'.

Solution: (a) Recall that there is a commutative diagram

$$\begin{array}{ccc} \varphi^* E & \xrightarrow{\operatorname{pr}_2} & E \\ & & & \downarrow^{\pi} \\ & & & \downarrow^{\pi} \\ C & \xrightarrow{\varphi} & B \end{array}$$

where $\varphi^* E = \{(c, e) \in C \times E \mid \varphi(c) = \pi(e)\}$. On the other hand, we have a commutative diagram

$$\begin{array}{ccc} F & \stackrel{\Phi}{\longrightarrow} & E \\ \stackrel{p}{\downarrow} & & \downarrow^{\pi} \\ C & \stackrel{\varphi}{\longrightarrow} & B \end{array}$$

Define $\Psi : F \to \varphi^* E$ by $\Psi(f) = (p(f), \Phi(f))$. Note that $\Psi(f) \in \varphi^* E$ because $\varphi(p(f)) = \pi(\Phi(f))$ by commutativity of the second diagram. Since p and Φ are continuous, so is Ψ , and since Φ is an isomorphism on fibers, so too is Ψ . Therefore $\Psi : F \to \varphi^* E$ is an isomorphism of vector bundles.

(b) First note that $J': F \to F$ is defined by $J':=\Phi^{-1}J\Phi$. On the other hand, J induces an almost complex structure \hat{J} on φ^*E given by $\hat{J}(c,e) = (c,Je)$. Using the isomorphism $\Psi: F \to \varphi^*E$, this induces an almost complex structure J'' on F defined by $J'':=\Psi^{-1}\hat{J}\Psi$. Unravelling the definitions, this yields

$$\begin{split} J''f &= (\Psi^{-1}\widehat{J}\Psi)(f) \\ &= (\Psi^{-1}\widehat{J})(p(f), \Phi(f)) \\ &= \Psi^{-1}(p(f), J\Phi(f)) \\ &= \Psi^{-1}(p(f), \Phi\Phi^{-1}J\Phi(f)) \\ &= \Psi^{-1}(p(f), \Phi(J'f)) \\ &= \Psi^{-1}(p(J'f), \Phi(J'f)) \\ &= \Psi^{-1}(\Psi(J'f)) \\ &= J'f, \end{split}$$

so J'' = J'.