## ALMOST COMPLEX MANIFOLDS - ASSIGNMENT 1 SOLUTIONS

1. Let $J$ be a linear complex structure on a real vector space $V$. Show that $\operatorname{tr}(J)=0$ and $\operatorname{det}(J)=1$.

Solution: One approach is to use the fact that for any choice of isomorphism $\varphi: V \rightarrow \mathbb{R}^{2 n}$, and any endomorphism $A: V \rightarrow V$, we have $\operatorname{tr}(A)=\operatorname{tr}\left(\varphi A \varphi^{-1}\right)$ and $\operatorname{det}(A)=\operatorname{det}\left(\varphi A \varphi^{-1}\right)$. By choosing a complex basis for $V$, we get an isomorphism $\varphi: V \rightarrow \mathbb{R}^{2 n}$ such that $\varphi J \varphi^{-1}=J_{2 n}$. Then $\operatorname{tr}\left(J_{2 n}\right)=0$ and $\operatorname{det}\left(J_{2 n}\right)=\left(\operatorname{det}\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\right)^{n}=1^{n}=1$.
Here's another approach. If $\left\{b_{1}, b_{2}, \ldots, b_{2 n}\right\}$ is a basis for $V$, then for an endomorphism $A: V \rightarrow V$ we have

$$
\begin{aligned}
\operatorname{tr}(A) b_{1} \wedge b_{2} \wedge \cdots \wedge b_{2 n} & =\sum_{k=1}^{2 n} b_{1} \wedge b_{2} \wedge \cdots \wedge b_{k-1} \wedge A b_{k} \wedge b_{k+1} \wedge \cdots \wedge b_{2 n} \\
\operatorname{det}(A) b_{1} \wedge b_{2} \wedge \cdots \wedge b_{2 n} & =A b_{1} \wedge A b_{2} \wedge \cdots \wedge A b_{2 n}
\end{aligned}
$$

Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a complex basis for $V$, then $\left\{v_{1}, J v_{1}, v_{2}, J v_{2}, \ldots, v_{n}, J v_{n}\right\}$ is a real basis for $V$.

$$
\begin{aligned}
& \operatorname{tr}(J) v_{1} \wedge J v_{1} \wedge v_{2} \wedge J v_{2} \wedge \cdots \wedge v_{n} \wedge J v_{n} \\
= & \sum_{k=1}^{n} v_{1} \wedge J v_{1} \wedge v_{2} \wedge J v_{2} \wedge \cdots \wedge v_{k-1} \wedge J v_{k-1} \wedge J\left(v_{k}\right) \wedge J v_{k} \wedge v_{k+1} \wedge J v_{k+1} \wedge \cdots \wedge v_{n} \wedge J v_{n} \\
+ & \sum_{k=1}^{n} v_{1} \wedge J v_{1} \wedge v_{2} \wedge J v_{2} \wedge \cdots \wedge v_{k-1} \wedge J v_{k-1} \wedge v_{k} \wedge J\left(J v_{k}\right) \wedge v_{k+1} \wedge J v_{k+1} \wedge \cdots \wedge v_{n} \wedge J v_{n} \\
= & 0+0 \\
= & 0
\end{aligned}
$$

so $\operatorname{tr}(J)=0$, and

$$
\begin{aligned}
& \operatorname{det}(J) v_{1} \wedge J v_{1} \wedge v_{2} \wedge J v_{2} \wedge \cdots \wedge v_{n} \wedge J v_{n} \\
= & J\left(v_{1}\right) \wedge J\left(J v_{1}\right) \wedge J\left(v_{2}\right) \wedge J\left(J v_{2}\right) \wedge \cdots \wedge J\left(v_{n}\right) \wedge J\left(J v_{n}\right) \\
= & J v_{1} \wedge-v_{1} \wedge J v_{2} \wedge-v_{2} \wedge \cdots \wedge J v_{n} \wedge-v_{n} \\
= & v_{1} \wedge J v_{1} \wedge v_{2} \wedge J v_{2} \wedge \cdots \wedge v_{n} \wedge J v_{n}
\end{aligned}
$$

so $\operatorname{det}(J)=1$.
2. Determine those $n$ for which $J_{2 n}$ and $\widetilde{J}_{2 n}$ induce the same orientation on $\mathbb{R}^{2 n}$.

Solution: From lectures, we have $J_{2 n}=\alpha^{-1} \widetilde{J}_{2 n} \alpha$ where $\alpha\left(e_{2 k}\right)=e_{n+k}$ and $\alpha\left(e_{2 k-1}\right)=e_{k}$. So $J_{2 n}$ and $\widetilde{J}_{2 n}$ induce the same orientation on $\mathbb{R}^{2 n}$ if and only if $\operatorname{det}(\alpha)>0$.

Note that

$$
\begin{aligned}
& \alpha\left(e_{1}\right) \wedge \alpha\left(e_{2}\right) \wedge \alpha\left(e_{3}\right) \wedge \alpha\left(e_{4}\right) \wedge \alpha\left(e_{5}\right) \wedge \alpha\left(e_{6}\right) \wedge \cdots \wedge \alpha\left(e_{2 n-1}\right) \wedge \alpha\left(e_{2 n}\right) \\
= & e_{1} \wedge e_{n+1} \wedge e_{2} \wedge e_{n+2} \wedge e_{3} \wedge e_{n+3} \wedge \cdots \wedge e_{n} \wedge e_{2 n} \\
= & -e_{1} \wedge e_{2} \wedge e_{n+1} \wedge e_{n+2} \wedge e_{3} \wedge e_{n+3} \wedge \cdots \wedge e_{n} \wedge e_{2 n} \\
= & -e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{n+1} \wedge e_{n+2} \wedge e_{n+3} \wedge \cdots \wedge e_{n} \wedge e_{2 n} .
\end{aligned}
$$

In general, we swap $e_{k}$ with $e_{n+1} \wedge e_{n+2} \wedge \cdots \wedge e_{n+k-1}$ which contributes a factor of $(-1)^{k-1}$, so

$$
\begin{aligned}
& \alpha\left(e_{1}\right) \wedge \alpha\left(e_{2}\right) \wedge \alpha\left(e_{3}\right) \wedge \alpha\left(e_{4}\right) \wedge \alpha\left(e_{5}\right) \wedge \alpha\left(e_{6}\right) \wedge \cdots \wedge \alpha\left(e_{2 n-1}\right) \wedge \alpha\left(e_{2 n}\right) \\
= & (-1)^{1}(-1)^{2} \cdots(-1)^{n-1} e_{1} \wedge e_{2} \wedge e_{3} \wedge \cdots \wedge e_{2 n} \\
= & (-1)^{1+2+\cdots+(n-1)} e_{1} \wedge e_{2} \wedge e_{3} \wedge \cdots \wedge e_{2 n} \\
= & (-1)^{n(n-1) / 2} e_{1} \wedge e_{2} \wedge e_{3} \wedge \cdots \wedge e_{2 n}
\end{aligned}
$$

So $\operatorname{det}(\alpha)>0$ is equivalent to $n(n-1) / 2 \in 2 \mathbb{Z}$ and hence $n(n-1) \in 4 \mathbb{Z}$. Since $n-1$ and $n$ are consecutive integers, one is even and the other is odd, so the product is divisible by 4 if and only if one of the two numbers is divisible by 4 . Therefore, $\operatorname{det}(\alpha)>0$ if and only if $n \equiv 0,1 \bmod 4$.
3. Let $V$ be a real vector space and let $g: V \times V \rightarrow \mathbb{R}$ be a symmetric, non-degenerate, bilinear map. We can view $g$ as a not necessarily positive-definite inner product on $V$. Suppose $g$ has signature $(r, s)$ and $J$ is a linear complex structure on $V$ compatible with $g$. Show that $r$ and $s$ are even.

Solution: Let $V^{+}$be a maximal subspace on which $g$ is positive-definite, so $r=\operatorname{dim} V^{+}$. For $v \in V^{+}$, note that $g(J v, J v)=g(v, v) \geq 0$. Since $V^{+}$is maximal, we have $J v \in V^{+}$and hence $\left.J\right|_{V^{+}}: V^{+} \rightarrow V^{+}$ is a linear complex structure on $V^{+}$, so $r=\operatorname{dim} V^{+}$is even. Arguing similarly with a maximal subspace on which $g$ is negative-definite, we see that $s$ is also even (alternatively, use $\operatorname{dim} V=r+s$ ).
4. Let $V$ be an even-dimensional real vector space equipped with an inner product $g$. Without choosing an isomorphism between $V$ and $\mathbb{R}^{2 n}$, show that $V$ admits a linear complex structure $J$ which is compatible with $g$.

Solution: Since $V$ is even-dimensional, it admits a linear complex structure, say $J_{0}$. Fix an inner product $g_{0}$ which is compatible with $J_{0}$, i.e. $g_{0}\left(J_{0} v, J_{0} w\right)=g_{0}(v, w)$. Note that $g$ and $g_{0}$ determine isomorphisms $\Phi_{g}: V \rightarrow V^{*}$ and $\Phi_{g_{0}}: V \rightarrow V^{*}$ given by $v \mapsto g(v, \cdot)$ and $v \mapsto g_{0}(v, \cdot)$ respectively. Let $P=\Phi_{g_{0}}^{-1} \Phi_{g}: V \rightarrow V$. Note that

$$
g(v, w)=\Phi_{g}(v)(w)=\left(\Phi_{g_{0}} \Phi_{g_{0}}^{-1} \Phi_{g}\right)(v)(w)=\left(\Phi_{g_{0}} P\right)(v)(w)=\Phi_{g_{0}}(P v)(w)=g_{0}(P v, w)
$$

Now note that $g_{0}(P v, w)=g(v, w)=g(w, v)=g_{0}(P w, v)=g_{0}(v, P w)$ so $P^{*}=P$, i.e. $P$ is symmetric with respect to $g_{0}$. Furthermore, we have $g_{0}(P v, v)=g(v, v)>0$ for $v$ non-zero, so $P$ is positivedefinite with respect to $g_{0}$. Therefore $P$ has a unique positive-definite square root $Q$ which is symmetric with respect to $g_{0}$. Note that $Q$ is invertible, and since $P=Q^{2}$, we have $P Q^{-1}=Q$.

Define $J=Q^{-1} J_{0} Q$. Note that $J^{2}=Q^{-1} J_{0} Q Q^{-1} J_{0} Q=Q^{-1} J_{0} J_{0} Q=-Q^{-1} Q=-\operatorname{id}_{V}$, so $J$ is a linear complex structure on $V$. We also have

$$
\begin{aligned}
g(J v, J w) & =g_{0}(P J v, J w) \\
& =g_{0}\left(P Q^{-1} J_{0} Q v, Q^{-1} J_{0} Q w\right) \\
& =g_{0}\left(Q J_{0} Q v, Q^{-1} J_{0} Q w\right) \\
& =g_{0}\left(J_{0} Q v, Q^{*} Q^{-1} J_{0} Q w\right) \\
& =g_{0}\left(J_{0} Q v, Q Q^{-1} J_{0} Q w\right) \\
& =g_{0}\left(J_{0} Q v, J_{0} Q w\right) \\
& =g_{0}(Q v, Q w) \\
& =g_{0}\left(Q^{*} Q v, w\right) \\
& =g_{0}(Q Q v, w) \\
& =g_{0}(P v, w) \\
& =g(v, w)
\end{aligned}
$$

so $J$ is compatible with $g$.
5. Let $V$ be a finite-dimensional real vector space such that there is a complex subspace $W \subseteq V_{\mathbb{C}}$ with $V_{\mathbb{C}}=W \oplus \bar{W}$. Show that there is a unique linear complex structure $J$ on $V$ such that $V^{1,0}=W$ and $V^{0,1}=\bar{W}$.

Solution: Note that $V \hookrightarrow V_{\mathbb{C}}=W \oplus \bar{W}$, so we can write $v=\pi_{W}(v)+\pi_{\bar{W}}(v)$ where $\pi_{W}: V_{\mathbb{C}} \rightarrow W$ and $\pi_{\bar{W}}: V_{\mathbb{C}} \rightarrow \bar{W}$ are the natural projections.

If $J$ were a linear complex structure on $V$ with $V^{1,0}=W$ and $V^{0,1}=\bar{W}$, then $\pi_{W}(v)=\pi_{V^{1,0}}(v)=$ $\frac{1}{2}(v-i J v)$ and $\pi_{\bar{W}}(v)=\pi_{V^{0,1}}(v)=\frac{1}{2}(v+i J v)$, so $J v=i\left(\pi_{W}(v)-\pi_{\bar{W}}(v)\right)$. So given a splitting $V_{\mathbb{C}}=W \oplus \bar{W}$, for $v \in V$, set $J v=i\left(\pi_{W}(v)-\pi_{\bar{W}}(v)\right)=i \pi_{W}(v)-i \pi_{\bar{W}}(v)$.

If $v \in V \subset V_{\mathbb{C}}$ then $\bar{v}=v$, so $\overline{\pi_{W}(v)}=\pi_{\bar{W}}(v)$ and $\overline{\pi_{\bar{W}}(v)}=\pi_{W}(v)$, so

$$
\overline{J v}=\overline{i \pi_{W}(v)-i \pi_{\bar{W}}(v)}=-i \overline{\pi_{W}(v)}+i \overline{\pi_{\bar{W}}(v)}=-i \pi_{\bar{W}}(v)+i \pi_{W}(v)=J v
$$

and hence $J v \in V$, so $J: V \rightarrow V$.
Since $J v=i \pi_{W}(v)-i \pi_{\bar{W}}(v)$, we have $\pi_{W}(J v)=i \pi_{W}(v)$ and $\pi_{\bar{W}}(J v)=-i \pi_{\bar{W}}(v)$, so

$$
J(J v)=i \pi_{W}(J v)-i \pi_{\bar{W}}(J v)=i^{2} \pi_{W}(v)+i^{2} \pi_{\bar{W}}(v)=-\pi_{W}(v)-\pi_{\bar{W}}(v)=-v
$$

Therefore $J$ is a linear complex structure on $V$. Let $J_{\mathbb{C}}$ be the complex linear extension of $J$. Note that

$$
J_{\mathbb{C}}(i v)=i J(v)=i\left(i \pi_{W}(v)-i \pi_{\bar{W}}(v)\right)=i\left(\pi_{W}(i v)-\pi_{\bar{W}}(i v)\right)=i \pi_{W}(i v)-i \pi_{\bar{W}}(i v)
$$

It follows that $J_{\mathbb{C}}: V_{\mathbb{C}} \rightarrow V_{\mathbb{C}}$ is given by the same formula as $J$, namely $J_{\mathbb{C}} v=i \pi_{W}(v)-i \pi_{\bar{W}}(v)$.
Note that

$$
\begin{aligned}
V^{1,0} & =\left\{v \in V_{\mathbb{C}} \mid J_{\mathbb{C}} v=i v\right\} \\
& =\left\{v \in V_{\mathbb{C}} \mid i \pi_{W}(v)-i \pi_{\bar{W}}(v)=i \pi_{W}(v)+i \pi_{\bar{W}}(v)\right\} \\
& =\left\{v \in V_{\mathbb{C}} \mid \pi_{\bar{W}}(v)=0\right\} \\
& =W
\end{aligned}
$$

and $V^{0,1}=\overline{V^{1,0}}=\bar{W}$.
To see that $J$ is unique, suppose $J^{\prime}$ is another linear complex structure on $V$ with $V^{1,0}=W$ and $V^{0,1}=\bar{W}$. Then $\left.J_{\mathbb{C}}\right|_{W}=\left.J_{\mathbb{C}}\right|_{V^{1,0}}=i \mathrm{id}_{V^{1,0}}=i \mathrm{id}_{W}$ and $\left.J_{\mathbb{C}}\right|_{\bar{W}}=\left.J_{\mathbb{C}}\right|_{V^{0,1}}=-i \mathrm{id}_{V^{0,1}}=-i \mathrm{id}_{\bar{W}}$, and likewise $\left.J_{\mathbb{C}}^{\prime}\right|_{W}=i \mathrm{id}_{W}$ and $\left.J_{\mathbb{C}}^{\prime}\right|_{\bar{W}}=-i \mathrm{id}_{\bar{W}}$, so $J_{\mathbb{C}}=J_{\mathbb{C}}^{\prime}$. Therefore $J=\left.J_{\mathbb{C}}\right|_{V}=\left.J_{\mathbb{C}}^{\prime}\right|_{V}=J^{\prime}$.
6. Let $\omega$ be a linear symplectic form with a compatible linear complex structure $J$. Show that the complex bilinear extension of $\omega$ is a (1,1)-form.

Solution: Note that compatibility of $J$ with $\omega$ is equivalent to $J^{*} \omega=\omega$. After extending complex bilinearly, we have $\omega=\omega^{2,0}+\omega^{1,1}+\omega^{0,2}$ where $\omega^{p, q}$ denotes the $(p, q)$-part of $\omega$. Using the fact that $J^{*} \omega^{p, q}=i^{p-q} \omega$, we have

$$
\begin{aligned}
J^{*} \omega & =\omega \\
J^{*} \omega^{2,0}+J^{*} \omega^{1,1}+J^{*} \omega^{2,0} & =\omega^{2,0}+\omega^{1,1}+\omega^{0,2} \\
-\omega^{2,0}+\omega^{1,1}-\omega^{0,2} & =\omega^{2,0}+\omega^{1,1}+\omega^{0,2}
\end{aligned}
$$

Equating $(p, q)$-parts, we see that $\omega^{2,0}=0$ and $\omega^{0,2}=0$, so $\omega=\omega^{1,1}$, i.e. $\omega$ is a $(1,1)$-form.
7. We've seen that if $E \rightarrow B$ is any real vector bundle then $E \oplus E \rightarrow B$ admits an almost complex structure. Explain why the following jump in logic is erroneous: for any smooth manifold $M$, the product manifold $M \times M$ admits an almost complex structure. (Note, a counterexample alone does not count as an explanation, but I encourage you to find one anyway).

Solution: At a point, $(p, q) \in M \times M$, we have $T_{p, q}(M \times M) \cong T_{p} M \oplus T_{q} M$, but the tangent bundle of $M \times M$ is not, in general, of the form $E \oplus E$.
More precisely, we have $T(M \times M) \cong \pi_{1}^{*} T M \oplus \pi_{2}^{*} T M$, but $\pi_{1}^{*} T M \nsupseteq \pi_{2}^{*} T M$ in general. To see this, fix $q \in M$ and consider the map $\sigma: M \rightarrow M \times M$ given by $\sigma(m)=(m, q)$, then $\sigma^{*} \pi_{1}^{*} T M \cong\left(\pi_{1} \circ \sigma\right)^{*} T M \cong$ $\operatorname{id}_{M}^{*} T M \cong T M$ while $\sigma^{*} \pi_{2}^{*} T M \cong\left(\pi_{2} \circ \sigma\right)^{*} T M \cong c_{q}^{*} T M \cong \varepsilon^{n}$ where $c_{q}: M \rightarrow M$ denotes the constant map with value $q$ and $\varepsilon^{n}$ denotes the trivial real bundle of rank $n$. So if $\pi_{1}^{*} T M \cong \pi_{2}^{*} T M$, then $T M$ is trivial; conversely, if $T M$ is trivial, then $\pi_{1}^{*} T M \cong \varepsilon^{n} \cong \pi_{2}^{*} T M$.

So, unless $M$ is parallelisable, the bundle $T(M \times M)$ is not of the form $E \oplus E$, so $M \times M$ does not necessarily admit an almost complex structure.
8. Let $p: F \rightarrow C$ and $\pi: E \rightarrow B$ be real vector bundles, and suppose that $\Phi: F \rightarrow E$ is a vector bundle isomorphism covering $\varphi: C \rightarrow B$. Recall, we showed that given an almost complex structure $J$ on $E$, one obtains an almost complex structure $J^{\prime}$ on $F$.
(a) Show that $F \cong \varphi^{*} E$.
(b) From the above isomorphism and the almost complex structure on $E$, we obtain an almost complex structure $J^{\prime \prime}$ on $F$. Show that $J^{\prime \prime}=J^{\prime}$.

Solution: (a) Recall that there is a commutative diagram

where $\varphi^{*} E=\{(c, e) \in C \times E \mid \varphi(c)=\pi(e)\}$. On the other hand, we have a commutative diagram


Define $\Psi: F \rightarrow \varphi^{*} E$ by $\Psi(f)=(p(f), \Phi(f))$. Note that $\Psi(f) \in \varphi^{*} E$ because $\varphi(p(f))=\pi(\Phi(f))$ by commutativity of the second diagram. Since $p$ and $\Phi$ are continuous, so is $\Psi$, and since $\Phi$ is an isomorphism on fibers, so too is $\Psi$. Therefore $\Psi: F \rightarrow \varphi^{*} E$ is an isomorphism of vector bundles.
(b) First note that $J^{\prime}: F \rightarrow F$ is defined by $J^{\prime}:=\Phi^{-1} J \Phi$. On the other hand, $J$ induces an almost complex structure $\widehat{J}$ on $\varphi^{*} E$ given by $\widehat{J}(c, e)=(c, J e)$. Using the isomorphism $\Psi: F \rightarrow \varphi^{*} E$, this induces an almost complex structure $J^{\prime \prime}$ on $F$ defined by $J^{\prime \prime}:=\Psi^{-1} \widehat{J} \Psi$. Unravelling the definitions, this yields

$$
\begin{aligned}
J^{\prime \prime} f & =\left(\Psi^{-1} \widehat{J} \Psi\right)(f) \\
& =\left(\Psi^{-1} \widehat{J}\right)(p(f), \Phi(f)) \\
& =\Psi^{-1}(p(f), J \Phi(f)) \\
& =\Psi^{-1}\left(p(f), \Phi \Phi^{-1} J \Phi(f)\right) \\
& =\Psi^{-1}\left(p(f), \Phi\left(J^{\prime} f\right)\right) \\
& =\Psi^{-1}\left(p\left(J^{\prime} f\right), \Phi\left(J^{\prime} f\right)\right) \\
& =\Psi^{-1}\left(\Psi\left(J^{\prime} f\right)\right) \\
& =J^{\prime} f
\end{aligned}
$$

so $J^{\prime \prime}=J^{\prime}$.

