
ALMOST COMPLEX MANIFOLDS – ASSIGNMENT 1 SOLUTIONS

1. Let J be a linear complex structure on a real vector space V . Show that tr(J) = 0 and
det(J) = 1.

Solution: One approach is to use the fact that for any choice of isomorphism φ : V → R2n, and any
endomorphism A : V → V , we have tr(A) = tr(φAφ−1) and det(A) = det(φAφ−1). By choosing a
complex basis for V , we get an isomorphism φ : V → R2n such that φJφ−1 = J2n. Then tr(J2n) = 0

and det(J2n) =

(
det

[
0 −1
1 0

])n

= 1n = 1.

Here’s another approach. If {b1, b2, . . . , b2n} is a basis for V , then for an endomorphism A : V → V
we have

tr(A)b1 ∧ b2 ∧ · · · ∧ b2n =

2n∑
k=1

b1 ∧ b2 ∧ · · · ∧ bk−1 ∧Abk ∧ bk+1 ∧ · · · ∧ b2n

det(A)b1 ∧ b2 ∧ · · · ∧ b2n = Ab1 ∧Ab2 ∧ · · · ∧Ab2n.

Let {v1, v2, . . . , vn} be a complex basis for V , then {v1, Jv1, v2, Jv2, . . . , vn, Jvn} is a real basis for V .

tr(J)v1 ∧ Jv1 ∧ v2 ∧ Jv2 ∧ · · · ∧ vn ∧ Jvn

=

n∑
k=1

v1 ∧ Jv1 ∧ v2 ∧ Jv2 ∧ · · · ∧ vk−1 ∧ Jvk−1 ∧ J(vk) ∧ Jvk ∧ vk+1 ∧ Jvk+1 ∧ · · · ∧ vn ∧ Jvn

+

n∑
k=1

v1 ∧ Jv1 ∧ v2 ∧ Jv2 ∧ · · · ∧ vk−1 ∧ Jvk−1 ∧ vk ∧ J(Jvk) ∧ vk+1 ∧ Jvk+1 ∧ · · · ∧ vn ∧ Jvn

=0 + 0

=0

so tr(J) = 0, and

det(J)v1 ∧ Jv1 ∧ v2 ∧ Jv2 ∧ · · · ∧ vn ∧ Jvn

= J(v1) ∧ J(Jv1) ∧ J(v2) ∧ J(Jv2) ∧ · · · ∧ J(vn) ∧ J(Jvn)

= Jv1 ∧ −v1 ∧ Jv2 ∧ −v2 ∧ · · · ∧ Jvn ∧ −vn

= v1 ∧ Jv1 ∧ v2 ∧ Jv2 ∧ · · · ∧ vn ∧ Jvn

so det(J) = 1.

2. Determine those n for which J2n and J̃2n induce the same orientation on R2n.

Solution: From lectures, we have J2n = α−1J̃2nα where α(e2k) = en+k and α(e2k−1) = ek. So J2n and

J̃2n induce the same orientation on R2n if and only if det(α) > 0.

Note that

α(e1) ∧ α(e2) ∧ α(e3) ∧ α(e4) ∧ α(e5) ∧ α(e6) ∧ · · · ∧ α(e2n−1) ∧ α(e2n)

= e1 ∧ en+1 ∧ e2 ∧ en+2 ∧ e3 ∧ en+3 ∧ · · · ∧ en ∧ e2n

= − e1 ∧ e2 ∧ en+1 ∧ en+2 ∧ e3 ∧ en+3 ∧ · · · ∧ en ∧ e2n

= − e1 ∧ e2 ∧ e3 ∧ en+1 ∧ en+2 ∧ en+3 ∧ · · · ∧ en ∧ e2n.
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In general, we swap ek with en+1 ∧ en+2 ∧ · · · ∧ en+k−1 which contributes a factor of (−1)k−1, so

α(e1) ∧ α(e2) ∧ α(e3) ∧ α(e4) ∧ α(e5) ∧ α(e6) ∧ · · · ∧ α(e2n−1) ∧ α(e2n)

= (−1)1(−1)2 · · · (−1)n−1e1 ∧ e2 ∧ e3 ∧ · · · ∧ e2n

=(−1)1+2+···+(n−1)e1 ∧ e2 ∧ e3 ∧ · · · ∧ e2n

=(−1)n(n−1)/2e1 ∧ e2 ∧ e3 ∧ · · · ∧ e2n.

So det(α) > 0 is equivalent to n(n − 1)/2 ∈ 2Z and hence n(n − 1) ∈ 4Z. Since n − 1 and n are
consecutive integers, one is even and the other is odd, so the product is divisible by 4 if and only if
one of the two numbers is divisible by 4. Therefore, det(α) > 0 if and only if n ≡ 0, 1 mod 4.

3. Let V be a real vector space and let g : V × V → R be a symmetric, non-degenerate,
bilinear map. We can view g as a not necessarily positive-definite inner product on V .
Suppose g has signature (r, s) and J is a linear complex structure on V compatible with
g. Show that r and s are even.

Solution: Let V + be a maximal subspace on which g is positive-definite, so r = dimV +. For v ∈ V +,
note that g(Jv, Jv) = g(v, v) ≥ 0. Since V + is maximal, we have Jv ∈ V + and hence J |V + : V + → V +

is a linear complex structure on V +, so r = dimV + is even. Arguing similarly with a maximal subspace
on which g is negative-definite, we see that s is also even (alternatively, use dimV = r + s).

4. Let V be an even-dimensional real vector space equipped with an inner product
g. Without choosing an isomorphism between V and R2n, show that V admits a linear
complex structure J which is compatible with g.

Solution: Since V is even-dimensional, it admits a linear complex structure, say J0. Fix an inner
product g0 which is compatible with J0, i.e. g0(J0v, J0w) = g0(v, w). Note that g and g0 determine
isomorphisms Φg : V → V ∗ and Φg0 : V → V ∗ given by v 7→ g(v, ·) and v 7→ g0(v, ·) respectively. Let
P = Φ−1

g0 Φg : V → V . Note that

g(v, w) = Φg(v)(w) = (Φg0Φ
−1
g0 Φg)(v)(w) = (Φg0P )(v)(w) = Φg0(Pv)(w) = g0(Pv,w).

Now note that g0(Pv,w) = g(v, w) = g(w, v) = g0(Pw, v) = g0(v, Pw) so P ∗ = P , i.e. P is symmetric
with respect to g0. Furthermore, we have g0(Pv, v) = g(v, v) > 0 for v non-zero, so P is positive-
definite with respect to g0. Therefore P has a unique positive-definite square root Q which is symmetric
with respect to g0. Note that Q is invertible, and since P = Q2, we have PQ−1 = Q.

Define J = Q−1J0Q. Note that J2 = Q−1J0QQ−1J0Q = Q−1J0J0Q = −Q−1Q = − idV , so J is a
linear complex structure on V . We also have

g(Jv, Jw) = g0(PJv, Jw)

= g0(PQ−1J0Qv,Q−1J0Qw)

= g0(QJ0Qv,Q−1J0Qw)

= g0(J0Qv,Q∗Q−1J0Qw)

= g0(J0Qv,QQ−1J0Qw)

= g0(J0Qv, J0Qw)

= g0(Qv,Qw)

= g0(Q
∗Qv,w)

= g0(QQv,w)

= g0(Pv,w)

= g(v, w),

so J is compatible with g.
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5. Let V be a finite-dimensional real vector space such that there is a complex subspace
W ⊆ VC with VC = W ⊕W . Show that there is a unique linear complex structure J on V
such that V 1,0 = W and V 0,1 = W .

Solution: Note that V ↪→ VC = W ⊕W , so we can write v = πW (v)+πW (v) where πW : VC → W and

πW : VC → W are the natural projections.

If J were a linear complex structure on V with V 1,0 = W and V 0,1 = W , then πW (v) = πV 1,0(v) =
1
2 (v − iJv) and πW (v) = πV 0,1(v) = 1

2 (v + iJv), so Jv = i(πW (v) − πW (v)). So given a splitting

VC = W ⊕W , for v ∈ V , set Jv = i(πW (v)− πW (v)) = iπW (v)− iπW (v).

If v ∈ V ⊂ VC then v = v, so πW (v) = πW (v) and πW (v) = πW (v), so

Jv = iπW (v)− iπW (v) = −iπW (v) + iπW (v) = −iπW (v) + iπW (v) = Jv,

and hence Jv ∈ V , so J : V → V .

Since Jv = iπW (v)− iπW (v), we have πW (Jv) = iπW (v) and πW (Jv) = −iπW (v), so

J(Jv) = iπW (Jv)− iπW (Jv) = i2πW (v) + i2πW (v) = −πW (v)− πW (v) = −v.

Therefore J is a linear complex structure on V . Let JC be the complex linear extension of J . Note
that

JC(iv) = iJ(v) = i(iπW (v)− iπW (v)) = i(πW (iv)− πW (iv)) = iπW (iv)− iπW (iv).

It follows that JC : VC → VC is given by the same formula as J , namely JCv = iπW (v)− iπW (v).

Note that

V 1,0 = {v ∈ VC | JCv = iv}
= {v ∈ VC | iπW (v)− iπW (v) = iπW (v) + iπW (v)}
= {v ∈ VC | πW (v) = 0}
= W

and V 0,1 = V 1,0 = W .

To see that J is unique, suppose J ′ is another linear complex structure on V with V 1,0 = W and
V 0,1 = W . Then JC|W = JC|V 1,0 = i idV 1,0 = i idW and JC|W = JC|V 0,1 = −i idV 0,1 = −i idW , and
likewise J ′

C|W = i idW and J ′
C|W = −i idW , so JC = J ′

C. Therefore J = JC|V = J ′
C|V = J ′.

6. Let ω be a linear symplectic form with a compatible linear complex structure J . Show
that the complex bilinear extension of ω is a (1, 1)-form.

Solution: Note that compatibility of J with ω is equivalent to J∗ω = ω. After extending complex
bilinearly, we have ω = ω2,0 + ω1,1 + ω0,2 where ωp,q denotes the (p, q)-part of ω. Using the fact that
J∗ωp,q = ip−qω, we have

J∗ω = ω

J∗ω2,0 + J∗ω1,1 + J∗ω2,0 = ω2,0 + ω1,1 + ω0,2

−ω2,0 + ω1,1 − ω0,2 = ω2,0 + ω1,1 + ω0,2.

Equating (p, q)-parts, we see that ω2,0 = 0 and ω0,2 = 0, so ω = ω1,1, i.e. ω is a (1, 1)-form.

7. We’ve seen that if E → B is any real vector bundle then E ⊕ E → B admits an almost
complex structure. Explain why the following jump in logic is erroneous: for any smooth
manifold M , the product manifold M ×M admits an almost complex structure. (Note, a
counterexample alone does not count as an explanation, but I encourage you to find one
anyway).
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Solution: At a point, (p, q) ∈ M ×M , we have Tp,q(M ×M) ∼= TpM ⊕ TqM , but the tangent bundle
of M ×M is not, in general, of the form E ⊕ E.

More precisely, we have T (M ×M) ∼= π∗
1TM ⊕π∗

2TM , but π∗
1TM ̸∼= π∗

2TM in general. To see this, fix
q ∈ M and consider the map σ : M → M×M given by σ(m) = (m, q), then σ∗π∗

1TM
∼= (π1◦σ)∗TM ∼=

id∗M TM ∼= TM while σ∗π∗
2TM

∼= (π2◦σ)∗TM ∼= c∗qTM
∼= εn where cq : M → M denotes the constant

map with value q and εn denotes the trivial real bundle of rank n. So if π∗
1TM

∼= π∗
2TM , then TM is

trivial; conversely, if TM is trivial, then π∗
1TM

∼= εn ∼= π∗
2TM .

So, unless M is parallelisable, the bundle T (M ×M) is not of the form E ⊕ E, so M ×M does not
necessarily admit an almost complex structure.

8. Let p : F → C and π : E → B be real vector bundles, and suppose that Φ : F → E is a
vector bundle isomorphism covering φ : C → B. Recall, we showed that given an almost
complex structure J on E, one obtains an almost complex structure J ′ on F .

(a) Show that F ∼= φ∗E.

(b) From the above isomorphism and the almost complex structure on E, we obtain
an almost complex structure J ′′ on F . Show that J ′′ = J ′.

Solution: (a) Recall that there is a commutative diagram

φ∗E E

C B

pr2

pr1 π

φ

where φ∗E = {(c, e) ∈ C × E | φ(c) = π(e)}. On the other hand, we have a commutative diagram

F E

C B

Φ

p π

φ

Define Ψ : F → φ∗E by Ψ(f) = (p(f),Φ(f)). Note that Ψ(f) ∈ φ∗E because φ(p(f)) = π(Φ(f))
by commutativity of the second diagram. Since p and Φ are continuous, so is Ψ, and since Φ is an
isomorphism on fibers, so too is Ψ. Therefore Ψ : F → φ∗E is an isomorphism of vector bundles.

(b) First note that J ′ : F → F is defined by J ′ := Φ−1JΦ. On the other hand, J induces an almost

complex structure Ĵ on φ∗E given by Ĵ(c, e) = (c, Je). Using the isomorphism Ψ : F → φ∗E, this

induces an almost complex structure J ′′ on F defined by J ′′ := Ψ−1ĴΨ. Unravelling the definitions,
this yields

J ′′f = (Ψ−1ĴΨ)(f)

= (Ψ−1Ĵ)(p(f),Φ(f))

= Ψ−1(p(f), JΦ(f))

= Ψ−1(p(f),ΦΦ−1JΦ(f))

= Ψ−1(p(f),Φ(J ′f))

= Ψ−1(p(J ′f),Φ(J ′f))

= Ψ−1(Ψ(J ′f))

= J ′f,

so J ′′ = J ′.


