ALMOST COMPLEX MANIFOLDS – ASSIGNMENT 3

Due March 24.

1. Show that the twistor fibration of S^4 , namely $S^2 \to \mathbb{CP}^3 \xrightarrow{p} S^4$, does not admit a section, and deduce that S^4 does not admit an almost complex structure.

2. Note that SO(2n)/U(n) is a closed smooth manifold of dimension n(n-1). For small values of n we have

$$SO(2)/U(1) = * = \mathbb{CP}^0$$

$$SO(4)/U(2) = S^2 = \mathbb{CP}^1$$

$$SO(6)/U(3) = \mathbb{CP}^3.$$

When n = 4, we have n(n-1) = 12. If the pattern were to continue, then we would be able to identify SO(8)/U(4) with \mathbb{CP}^6 . Show that SO(8)/U(4) and \mathbb{CP}^6 are not homotopy equivalent.

3. Recall, a space X is called *m*-connected if $\pi_i(X) = 0$ for $i \leq m$.

- (a) Show that O(n)/O(n-k) is (n-k-1)-connected.
- (b) Show that U(n)/U(n-k) is (2n-2k)-connected and $\pi_{2n-2k+1}(U(n)/U(n-k)) \cong \mathbb{Z}$.

4. Let M be a closed simply connected four-manifold and let $p \in M$.

- (a) Show that $M \setminus \{p\}$ admits an almost complex structure.
- (b) Show that $M \times S^2$ admits an almost complex structure.

5. Let $E \to X$ be a rank *m* orientable vector bundle over a *d*-dimensional CW complex. If m > d, show that $E \cong E_0 \oplus \varepsilon^{m-d}$ where rank $(E_0) = d$. Give an example to show that E_0 is not unique (up to isomorphism).

6. Let M be a 2n-dimensional almost complex manifold. Show that there are two potential obstructions to TM admitting a complex line subbundle.

7. Show that a smooth manifold M admits an almost complex structure if and only if it admits a non-degenerate 2-form.

Bonus Problems (for fun):

8. Any continuous map can be extended to a fibration. More precisely, we have the following:

Theorem. Given any continuous map $f : A \to B$, there is a fibration $p : E \to B$ and a homotopy equivalence $i : A \to E$ such that $f = p \circ i$.

Use this to show that if X is a connected CW complex with $\pi_1(X) \cong \mathbb{Z}$ and $\pi_n(X) = 0$ for $n \ge 2$, then X is homotopy equivalent to S^1 .

9. A surface bundle is a fiber bundle whose fiber is a surface. Consider $M_{k,\ell} = k\mathbb{CP}^2 \# \ell\mathbb{CP}^2$. Show that if $M_{k,\ell}$ is the total space of a surface bundle, then $k = \ell = 1$.