ALMOST COMPLEX MANIFOLDS - ASSIGNMENT 2

Due Friday March 1.

1. Let (M, J) be an almost complex manifold and set $N_{J}(X, Y)=[X, Y]+J[J X, Y]+J[X, J Y]-$ $[J X, J Y]$. Show the following:
(a) $N_{J}(X, Y)=-N_{J}(Y, X)$,
(b) $N_{J}(J X, Y)=-J N_{J}(X, Y)$, and
(c) $N_{J}(f X, Y)=f N_{J}(X, Y)$ for $f \in C^{\infty}(M)$.
2. Consider the almost complex structure J on \mathbb{R}^{4} given by

$$
J=\left[\begin{array}{cccc}
0 & 1 & f & -g \\
-1 & 0 & g & f \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

where $f, g \in C^{\infty}\left(\mathbb{R}^{4}\right)$.
(a) Compute the Nijenhuis tensor of J. That is, compute $N_{J}\left(\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right)$ for $j, k \in\{1,2,3,4\}$.
(b) For $a, b \in \mathbb{R}$, consider the function $h: \mathbb{C} \rightarrow \mathbb{C}$ given by $h_{a, b}(z)=f(x, y, a, b)+i g(x, y, a, b)$ where $z=x+i y$. Show that J is integrable if and only if $h_{a, b}$ is holomorphic for all $a, b \in \mathbb{R}$.
3. Let (Y, J) be an almost complex manifold with a properly embedded submanifold X such that $T_{x} X \subseteq T_{x} Y$ is a complex subspace for all $x \in X$. Show that J induces an almost complex structure J_{X} on X, and if J is integrable, so too is J_{X}.
4. Let (M, J) be an almost complex manifold.
(a) Show that $\bar{\mu}^{2}=0$.

Let $E^{p, q}(M)=H^{p, q}\left(\mathcal{E}^{\bullet \bullet \bullet}(M), \bar{\mu}\right):=\frac{\operatorname{ker}\left(\bar{\mu}: \mathcal{E}^{p, q}(M) \rightarrow \mathcal{E}^{p-1, q+2}(M)\right)}{\operatorname{im}\left(\bar{\mu}: \mathcal{E}^{p+1, q-2}(M) \rightarrow \mathcal{E}^{p, q}(M)\right)}$.
(b) Show that $\bar{\partial}: \mathcal{E}^{p, q}(M) \rightarrow \mathcal{E}^{p, q+1}(M)$ descends to a well-defined map $\bar{\partial}: E^{p, q}(M) \rightarrow E^{p, q+1}(M)$, $[\alpha] \mapsto[\bar{\partial} \alpha]$.
(c) Show that $\bar{\partial}: E^{p, q}(M) \rightarrow E^{p, q+1}(M)$ satisfies $\bar{\partial}^{2}=0$.
5. Let α be a (p, q)-form on an almost complex manifold (M, J). Find a fomula for $\mu(\alpha)$ in terms of the Nijenhuis tensor N_{J}. Use this to show (directly) that if $\mu: \mathcal{E}^{0,1}(M) \rightarrow \mathcal{E}^{2,0}(M)$ is zero, then J is integrable.
6. Let (M, J) be an almost complex manifold. Show that if $\bar{\partial}^{2}=0$, then J is integrable. (Hint: compute $\bar{\partial}^{2} f$ for a function f.)
7. Let E be a real rank $2 n$ bundle equipped with an orientation and a bundle metric. Let $P_{S O(2 n)}(E)$ denote the oriented orthonormal frame bundle of E, i.e. the induced principal $S O(2 n)$-bundle which gives a reduction of structure group of $P_{G L(2 n, \mathbb{R})}(E)$ to $S O(2 n)$. Show that $P_{S O(2 n)}(E)$ admits a reduction of structure group to $U(n)$ if and only if E admits an almost complex structure which induces the given orientation and is compatible with the given bundle metric.

Bonus problems (for fun):

8. Let M be an orientable 6 -manifold which admits an immersion into \mathbb{R}^{7}. Calculate the Nijenhuis tensor for the almost complex structure on M we defined in class.
9. Let (M, J) be an almost complex manifold. Consider the map $\mathcal{L}_{J}=d i_{J}-i_{J} d$ where $i_{J}: \mathcal{E}^{m}(M) \rightarrow$ $\mathcal{E}^{m}(M)$ is given by

$$
i_{J}(\alpha)\left(X_{1}, \ldots, X_{m}\right)=\sum_{k=1}^{m} \alpha\left(X_{1}, \ldots, X_{k-1}, J X_{k}, X_{k+1}, \ldots, X_{m}\right)
$$

Show that $\mathcal{L}_{J}^{2}=0$ if and only if $N_{J}=0$.

