ALMOST COMPLEX MANIFOLDS - ASSIGNMENT 1

Due Friday February 9.

1. Let J be a linear complex structure on a real vector space V. Show that $\operatorname{tr}(J)=0$ and $\operatorname{det}(J)=1$.
2. Determine those n for which $J_{2 n}$ and $\widetilde{J}_{2 n}$ induce the same orientation on $\mathbb{R}^{2 n}$.
3. Let V be a real vector space and let $g: V \times V \rightarrow \mathbb{R}$ be a symmetric, non-degenerate, bilinear map. We can view g as a not necessarily positive-definite inner product on V. Suppose g has signature (r, s) and J is a linear complex structure on V compatible with g. Show that r and s are even.
4. Let V be an even-dimensional real vector space equipped with an inner product g. Without choosing an isomorphism between V and $\mathbb{R}^{2 n}$, show that V admits a linear complex structure J which is compatible with g.
5. Let V be a finite-dimensional real vector space such that there is a complex subspace $W \subseteq V_{\mathbb{C}}$ with $V_{\mathbb{C}}=W \oplus \bar{W}$. Show that there is a unique linear complex structure J on V such that $V^{1,0}=W$ and $V^{0,1}=\bar{W}$.
6. Let ω be a linear symplectic form with a compatible linear complex structure J. Show that the complex bilinear extension of ω is a $(1,1)$-form.
7. We've seen that if $E \rightarrow B$ is any real vector bundle then $E \oplus E \rightarrow B$ admits an almost complex structure. Explain why the following jump in logic is erroneous: for any smooth manifold M, the product manifold $M \times M$ admits an almost complex structure. (Note, a counterexample alone does not count as an explanation, but I encourage you to find one anyway).
8. Let $p: F \rightarrow C$ and $\pi: E \rightarrow B$ be real vector bundles, and suppose that $\Phi: F \rightarrow E$ is a vector bundle isomorphism covering $\varphi: C \rightarrow B$. Recall, we showed that given an almost complex structure J on E, one obtains an almost complex structure J^{\prime} on F.
(a) Show that $F \cong \varphi^{*} E$.
(b) From the above isomorphism and the almost complex structure on E, we obtain an almost complex structure $J^{\prime \prime}$ on F. Show that $J^{\prime \prime}=J^{\prime}$.

Bonus Problems (for fun):

9. Let V be a real vector space which admits two anticommuting linear complex structures. Show that V inherits the structure of a module over the quaternions.
10. Let V be a complex vector space. Establish the 2-out-of-3 property for $U(V, h)$ in direct analogy with the 2-out-of-3 property for the unitary group as in lectures (in this case, h will be a hermitian form on a module over the quaternions). Define all the necessary structures, groups, and compatibility relations, and determine the necessary intersections.
