
THE YAMABE INVARIANT OF COMPLEX SURFACES

MICHAEL ALBANESE

Abstract. These are notes for a series of four online lectures delivered as part of the 6th Geometry-

Topology Summer School hosted by the Feza Gürsey Institute.

Overview

Throughout these lectures, we will be focussing on compact complex surfaces X, analysing them from
two different points of view.

First, we consider X as a smooth manifold, i.e. forget the complex structure. We can then ask questions
about the types of Riemannian metrics this manifold can admit. In particular, there is a real-valued
invariant called the Yamabe invariant of X, denoted Y (X), which arises from such considerations.

On the other hand, we can analyse X as a complex manifold. In particular, there is an associated
invariant called the Kodaira dimension of X, denoted κ(X), which takes values in {−∞, 0, 1, 2}.

Question: What is the relationship (if any) between these two quantities?

The reason for restricting our attention to complex dimension two will be made clear.

1. The Yamabe Invariant

Reference: Besse - Einstein Manifolds, chapter 4.

Let M be a closed smooth manifold of dimension n ≥ 2, and denote the set of Riemannian metrics on
M by Riem(M). The total scalar curvature functional Riem(M)→ R is given by

g 7→
∫
M

sgdµg.

Here sg denotes the scalar curvature of g, and dµg the Riemannian volume density.

This functional is also known as the Einstein-Hilbert functional. Hilbert showed that the Euler-
Lagrange equations of a constant multiple of this functional are precisely the Einstein field equations
(with cosmological constant zero) in general relativity. In more mathematical language, the critical
points of the total scalar curvature functional are Ricci-flat metrics.

If c > 0, then we have scg = c−1sg and dµcg = c
n
2 dµg, so

∫
M

scgdµg = c
n
2−1

∫
M

sgdµg.

On the other hand

Vol(M, cg) =

∫
M

dµcg = c
n
2

∫
M

dµg = c
n
2 Vol(M, g).

1
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To remove the dependence on constant rescaling, we rescale the total scalar curvature functional by
an appropriate power of the volume. Note that n

2 − 1 = n−2
2 = n

2
n−2
n so we consider the normalised

Einstein-Hilbert functional E : Riem(M)→ R given by

E(g) =

∫
M

sgdµg

Vol(M, g)
n−2
n

.

Equivalently, we could have restricted the total scalar functional to the set of Riemannian metrics on
M with volume 1.

Example: When n = 2, we have

E(g) =

∫
M

sgdµg =

∫
M

2Kgdµg = 4πχ(M)

by the Gauss-Bonnet Theorem; here Kg denotes the Gaussian curvature of g.

For n > 2, the functional E is not constant. Moreover, Hilbert showed that it’s critical points are
precisely Einstein metrics (Besse Theorem 4.21). Recall, an Einstein metric is a Riemannian metric
with Ricg = λg for some constant λ; in the unnormalised case, λ = 0. Taking the trace of both sides
shows that λ = 1

nsg. The tensor Ric− 1
nsgg is called the trace-free Ricci tensor and is denoted by

◦
Ric. If n > 2,

◦
Ric vanishes if and only if g is Einstein, while for n = 2, it always vanishes because

Ricg = Kgg = 1
2sgg. Recall, in the unnormalised case, the critical points were metrics with vanishing

Ricci curvature, while in the normalised case, the critical points are metrics with vanishing trace-free
Ricci curvature. (Einstein three dim?)

Note that while the value E(g) doesn’t change under constant rescaling, that is no longer true of
conformal rescaling. Recall, we say g̃ is conformal to g if there is a smooth positive function u : M →
(0,∞) with g̃ = ug. This gives rise to an equivalence relation of Riem(M) and the equivalence classes
are called conformal classes; we denote the conformal class of g by [g]. While the functional is not
constant when restricted to a conformal class, we know the following:

Proposition 1.1. If g̃ is conformal to g, then E(g̃) ≥ −‖sg‖n
2

= −
(∫

M

|sg|
n
2 dµg

) 2
n

. That is, E

restricted to [g] is bounded below.

Proof. If n = 2, we have E(g̃) =

∫
M

sg̃dµg = 4πχ(M) =

∫
M

sgdµg ≥ −
∫
M

|sg|dµg.

Now suppose n > 2. Let g̃ = u
4

n−2 g where u is a positive smooth function. Then sg̃ = u−
n+2
n−2Lgu

where Lg is the conformal Laplacian given by Lgu = 4n−1
n−2∆gu+ sgu; here ∆g denotes the Laplace-de

Rham operator (with non-negative spectrum) ∆d = d∗d+ dd∗. As dµg̃ = (u
4

n−2 )
n
2 dµg = u

2n
n−2 dµg, we

have

∫
M

sg̃dµg̃ =

∫
M

u−
n+2
n−2

(
4
n− 1

n− 2
∆gu+ sgu

)
u

2n
n−2 dµg

=

∫
M

4
n− 1

n− 2
u∆gu+ sgu

2dµg

=

∫
M

4
n− 1

n− 2
|du|2 + sgu

2dµg
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≥
∫
M

sgu
2dµg

≥ −
∫
M

|sgu2|dµg

= −‖sgu2‖1
≥ −‖sg‖n

2
‖u2‖ n

n−2

where the final inequality is Hölder’s inequality (with p = n
2 and q = n

n−2 ). Now note that

‖u2‖ n
n−2

=

(∫
M

u
2n

n−2 dµg

)n−2
n

=

(∫
M

dµg̃

)n−2
n

= Vol(M, g̃)
n−2
n

so E(g̃) ≥ −‖sg‖n
2

. �

With this information in hand, we define

Y (M, C) = inf
g∈C
E(g)

to be the Yamabe constant of the conformal class C. If g realises the infimum (i.e. Y (M, C) = E(g)),
we call g a Yamabe metric (or a Yamabe minimiser). The critical points of E are Einstein metrics,
but the critical points of the restricted functional E|C are the constant scalar curvature metrics in C
(Besse Proposition 4.25). In particular, if g is a Yamabe metric, then it has constant scalar curvature.

Recall that the Yamabe problem ventured to establish that every conformal class contains constant
scalar curvature metrics. This was achieved thanks to work of Yamabe, Trudinger, Aubin, and finally
Schoen. In fact, they showed that every conformal class admits Yamabe metrics, i.e. the infimum
above is always a minimum. If Y (M, C) ≤ 0, then every constant scalar curvature metric is a Yamabe
minimiser, but this is no longer true if Y (M, C) > 0. It is true however if C contains an Einstein metric
(Obata ’71).

Proposition 1.2. Y (M, C) is positive if and only if C contains a positive scalar curvature metric.

Proof. If Y (M, C) > 0, then there is a Yamabe metric g ∈ C with E(g) = Y (M, C) > 0. So C contains
a (constant) positive scalar curvature metric.

Suppose now that g is a positive scalar curvature metric and g̃ = u
4

n−2 g is a conformal metric. From
the proof above, we have

∫
M

sg̃dµg̃ =

∫
M

4
n− 1

n− 2
|du|2 + sgu

2dµg ≥ c‖u‖21,2

where c = min
{

4n−1
n−2 ,min

M
sg

}
> 0 and ‖u‖1,2 is the W 1,2(M) norm (‖w‖1,2 =

(∫
M
|dw|2 + w2dµg

) 1
2 ).

By the Sobolev embedding theorem, there is a continuous embedding W 1,2(M) → Lp(M) where
p = 2n

n−2 ( 1
p = 1

2 −
1
n ). So there is a constant c′ > 0 (actually, c′ > 1) such that ‖u‖p ≤ c′‖u‖1,2 and

hence

∫
M

sg̃dµg̃ ≥ c‖u‖21,2 ≥ C‖u‖2p = C

(∫
M

u
2n

n−2 dµg

)n−2
n

= C Vol(M, g̃)
n−2
n

where C = c
(c′)2 . So E(g̃) ≥ C and hence Y (M, C) ≥ C > 0. �
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Every closed manifold of dimension at least three admits a metric with negative scalar curvature (even
negative Ricci curvature), but the same is not true of positive scalar curvature metrics. Moreover, the
restrictions on manifold which admits a metric with zero scalar curvature are related to the existence
of a metric of positive scalar curvature. If M admits a psc metric, then it also admits a metric with
scalar curvature zero; if M does not admit a psc metric, then any scalar-flat metric is Ricci-flat.

The values of Y (M, C) are not arbitrary.

Theorem 1.3 (Aubin ’76). Y (M, C) ≤ Y (Sn, [ground]) with equality if and only if (M, C) is conformally
diffeomorphic to (Sn, [ground]), i.e. there is a diffeomorphism f : M → Sn with f∗ground ∈ C.

Example: Let g be a unit volume constant positive scalar curvature metric on Sn, with sg ≡ s, and let
g0 be a unit volume flat metric on Tm. Consider the family of metrics ht = g+tg0 on Sn×Tm for t > 0.
Note that sht

= sg + stg0 = s+ t−1sg0 = s and Vol(Sn × Tm, ht) = Vol(Sn, ground) Vol(Tm, tg0) = t
m
2 .

So

E(ht) =

∫
Sn×Tm

sht
dµht

Vol(Sn × Tm, ht)
n+m−2
n+m

=
sVol(Sn × Tm, ht)

Vol(Sn × Tm, ht)
n+m−2
n+m

= sVol(Sn × Tm, ht)
2

n+m

= s(t
m
2 )

2
m+n

= st
m

n+m .

For t large enough, we have E(ht) > Y (Sn+m, [ground]) and hence E(ht) 6= Y (Sn×Tm, [ht]). That is, ht
is a constant scalar curvature metric which is not a Yamabe minimiser; note that Y (Sn×Tm, [ht]) > 0
as sht

= s > 0.

With Aubin’s result at our disposal, we define the Yamabe invariant of M by

Y (M) = sup
C
Y (M, C) = sup

C
inf
g∈C
E(g).

This is a diffeomorphism invariant. Note that Y (M) > 0 if and only if M admits a positive scalar
curvature metric; it follows that Y (M) is not a homeomorphism invariant. We can therefore view
Y (M) as a real-valued refinement of the Z2-valued invariant P given by

P (M) =

{
1 M admits a positive scalar curvature metric

0 M does not admit a positive scalar curvature metric.

That is, if P (M1) 6= P (M2), then Y (M1) 6= Y (M2). However, there are pairs of manifolds M1, M2

with P (M1) = P (M2) and Y (M1) 6= Y (M2), i.e. the Yamabe invariant can distinguish manifolds that
the invariant P cannot.

If Y (M) ≤ 0, then it follows from aforementioned results that it is equal to the supremum of the values
of unit-volume constant scalar curvature metrics on M . This is no longer true if Y (M) > 0 as the
previous example demonstrates; it is true if we restrict to Yamabe metrics though.
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Example: By Aubin’s theorem, we have Y (Sn, C) ≤ Y (Sn, [ground]) for all conformal classes C, so
Y (M) = supY (Sn, C) = Y (Sn, [ground]). As ground is an Einstein metric, we have Y (Sn, [ground]) =
E(ground) by Obata’s theorem. Therefore

Y (Sn) = Y (Sn, [ground]) = E(ground) = n(n− 1) Vol(Sn, ground)
n
2 .

We say a Riemannian metric g realises the Yamabe invariant if g is a Yamabe metric and Y (M) = E(g),
i.e. Y (M) = Y (M, [g]). For example, ground realises Y (Sn).

Conjecture: If g realises Y (M), then g is an Einstein metric.

The only case where this conjecture is not yet verified is when
sg
n−1 is a positive eigenvalue of ∆g (Besse

Proposition 4.47).

If dimM = 2, we have Y (M) = 4πχ(M). Beyond that, the Yamabe invariant is notoriously difficult to
calculate, especially when it is positive. In particular, there are no formulae for the Yamabe invariant
of a covering space or a product. There is a lower bound for the Yamabe invariant of a connected sum
due to Kobayashi; in particular, if Y (M1), Y (M2) ≥ 0, then Y (M1#M2) ≥ 0.

One calculation, due to Schoen, shows that Y (Sn × S1) = Y (Sn+1). More generally, Kobayashi
showed that any mapping torus of Sn has the same Yamabe invariant of Sn+1. By Aubin’s theorem,
the Yamabe invariant of such manifolds are not realised by any metric.

A surprising fact about the Yamabe invariant is the following:

Theorem 1.4 (Petean ’00). Let M be a closed simply connected manifold with dimM ≥ 5. Then
Y (M) ≥ 0.

In this range of dimensions, only two values of the Yamabe invariant are known: 0 and Y (Sn). Note
that the theorem is also true in dimensions 2 and 3, but as we will see, it is not true in dimension 4.

Finally, there are only countably many smooth closed manifolds, so range of Y is countable (but it is
infinite).

2. Kodaira Dimension

The canonical bundle of a complex manifold X is the holomorphic line bundle KX =
∧n

T ∗X. If X
is compact and d is a positive integer, the dth plurigenus of X is defined to be Pd(X) := h0(X,Kd

X) =
dimH0(X,Kd

X) = dim Γ(X,Kd
X); where Kd

X denotes the tensor product of d copies of KX . Unlike
in the smooth case, the vector space of holomorphic sections of a holomorphic vector bundle over a
compact manifold is always finite-dimensional (no partitions of unity).
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If Pd(X) = 0 for all d > 0, we say that X has Kodaira dimension −∞ which we denote by κ(X) =
−∞.Otherwise, we define

κ(X) = lim sup
d→∞

logPd
log d

.

Although not obvious from the definition, the result is an integer between 0 and n. Note that κ(X) =
κ > 0 means that Pd(X) = O(dκ), i.e the sequence of numbers Pd(X) grows like a polynomial in d of
degree κ.

Here’s a more geometric interpretation. Let L be a holomorphic line bundle with dim Γ(X,L) > 0.
There is a partial map ϕL : X 99K P(Γ(X,L)∗) constructed as follows. It maps x to evx : Γ(X,L)→ C
where evx(s) = s(x) ∈ Lx ∼= C. There is no canonical isomorphism Lx → C, but given any two
isomorphisms ψ1, ψ2, there is α ∈ C∗ such that ψ2 = αψ1. Therefore evx is a well-defined element of
P(Γ(X,L)∗) provided evx is not the zero map. The base locus of L, denoted Bs(L), consists of those
x for which evx ≡ 0; the domain of ϕL is X \ Bs(L). Alternatively, we can view P(Γ(X,L)∗) as the
set of hyperplanes of Γ(X,L), and the hyperplane associated to x is the kernel of evx.

If κ(X) 6= −∞, then κ(X) is equal to the largest dimension of the image of X under the maps ϕKd
X

.

The Kodaira dimension satisfies κ(X × Y ) = κ(X) + κ(Y ); this is why we chose −∞ as a value.

Example: Let’s calculate the Kodaira dimension of Riemann surfaces.

The degree of a holomorphic line bundle L → C where C is a compact Riemann surface is deg(L) =∫
X
c1(L). If deg(L) < 0, then h0(X,L) = 0, i.e. L does not admit any holomorphic sections other

than the zero section.

If g = 0, then deg(Kd
X) = ddeg(KX) = d(−χ(X)) = −2d < 0, so Pd(X) = 0 for all d > 0 and hence

κ(X) = −∞.

If g = 1, we have KX
∼= OX so Γ(X,Kd

X) = Γ(X,OdX) = Γ(X,OX) = O(X) ∼= C for all d. Therefore
Pd(X) = 1 for all d > 0, so κ(X) = 0.

If g ≥ 2 and d > 1, then deg(K1−d
X ) = (1−d)(2g−2) < 0 so Γ(X,K1−d

X ) = {0}. By Riemann-Roch, we
have Pd(X) = h0(X,Kd

X) = deg(Kd
X)−g+1 = d(−χ(X))−g+1 = d(2g−2)−(g−1) = (2d−1)(g−1)

which grows linearly in d, so κ(X) = 1. On the other hand, P1(X) = h0(X,KX) = deg(KX)− g+ 1 +
h0(X,KX ⊗K−1

X ) = −χ(X)− g + 1 + h0(X,OX) = 2g − 2− g + 1 + 1 = g.

Summarising, we have

κ(X) −∞ 0 1

genus 0 1 ≥ 2

3. Complex Surfaces

Reference: Barth, Hulek, Peters, & Van de Ven - Compact Complex Surfaces

The Kodaira dimension leads to a classification of compact complex surfaces. First, there’s an impor-
tant construction on complex manifolds which first appears in complex dimension 2.

If Y is a complex submanifold of X of codimension k, then the blowup of X along Y is a complex
manifold BlY (X) equipped with a holomorphic map π : BlY (X) → X such that π|π−1(X\Y ) is a

biholomorphism, and E = π−1(Y ) is a complex submanifold of codimension 1; we call π the blowdown

map. Moreover, π|E : E → Y is a CPk−1-bundle over Y , namely the projectivisation of the normal
bundle of Y in X.
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If k = 1, then BlY (X) = X and π = idX . If Y = {x} is a point, then there is an orientation-

preserving diffeomorphism between Blx(X) and X#CPn where CPn indicates CPn equipped with its
non-standard orientation, i.e. not the orientation induced by the complex structure.

In complex dimension two, we can only blowup points. We say X is minimal if it cannot be obtained
by blowing up another surface. We say X is a minimal model for X ′ if X is minimal and X ′ can be
obtained from X by a series of blowups.

Finally, the Kodaira dimension is invariant under blowups, i.e. κ(Blx(X)) = κ(X).

Theorem 3.1 (Kodaira-Enriques Classification). Every connected compact complex surface has a
minimal model in exactly one of these families

κ(X) b1(X) even b1(X) odd

−∞ Rational, Ruled Class VII

0
Tori, K3,

Hyperelliptic, Enriques

Primary Kodaira,

Secondary Kodaira

1 Properly Elliptic Properly Elliptic

2 General Type

A rational surface is a projective surface birational to CP2 (i.e. can be obtained from CP2 by a series
of blowups and blowdowns). The only minimal rational surfaces are CP2 and the Hirzebruch surfaces
Σn = P(O(n)⊕O) for n = 0 or n ≥ 2 which are all CP1-bundles over CP1.

A ruled surface is a CP1-bundle over a Riemann surface C of positive genus. It is necessarily of the
form P(E)→ C where E → C is a rank 2 holomorphic vector bundle.

A class VII surface is a surface with Kodaira dimension −∞ and b1 odd. Examples include Hopf
surfaces and Inoue surfaces.

Tori are quotients of C2 by a lattice Λ (i.e. a free abelian subgroup of maximal rank, Λ ∼= Z4). A
hyperelliptic surface is a surface which is finitely covered by a product of two elliptic curves.

A K3 surface is a surface with b1 = 0 and trivial canonical bundle. An example of a K3 surface is the
Fermat quartic X = {[x0, x1, x2, x3] ∈ CP3 | x4

0 + x4
1 + x4

2 + x4
3 = 0}. An Enriques surface is a surface

X with b1(X) = 0 and a non-trivial canonical bundle whose square is trivial, i.e. K2
X is trivial, but

KX is not. Every Enriques surface is double covered by a K3 surface.

A primary Kodaira surface is a complex surface with b1 = 3 and is a holomorphic fiber bundle of
elliptic curves over an elliptic curve. For example, let L → C/Λ be a non-trivial holomorphic line
bundle, then (L \Z)/Z is a primary Kodaira surface; here Z denotes the image of the zero section and
Z acts by rescaling, ` 7→ 2`; b1(X) = 3 follows from the Gysin sequence. A secondary Kodaira surface
is a surface which is finitely covered by a primary Kodaira surface.

An elliptic surface is a surface X which admits a map p : X → C where C is a Riemann surface such
that almost all fibers are elliptic curves. An elliptic surface is called properly elliptic if it has Kodaira
dimension 1.

A surface is called general type if it has Kodaira dimension 2. For a generic homogeneous polynomial p
on C4 of degree d ≥ 5, the hypersurface X = {[x0, x1, x2, x3] ∈ CP3 | p(x0, x1, x2, x3) = 0} is a general
type surface.

Let X be a complex manifold and let J denote the associated almost complex structure. A Riemannian
metric g is called hermitian if g(JV, JW ) = g(V,W ) for all V and W . There is an associated non-
degenerate two-form ω given by ω(V,W ) = g(JV,W ). If ω is closed, g is called a Kähler metric.
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On a compact Kähler manifold, we have the Hodge decomposition

Hk
dR(X)⊗R C ∼=

⊕
p+q=k

Hp,q

∂̄
(X),

so bk(X) =
∑
p+q=k h

p,q(X). As Hq,p

∂̄
(X) ∼= Hp,q

∂̄
(X), we have hp,q(X) = hq,p(X) and hence the odd

Betti numbers of a compact Kähler manifold are even. In particular, if X is a compact Kähler surface,
then b1(X) and b3(X) are even; by Poincaré duality, we have b1(X) = b3(X).

Kodaira conjectured that if X is a connected compact complex surface with b1(X) even, then X admits
a Kähler metric. By checking the cases in the classification, a proof was eventually achieved with the
final cases of K3 surface done by Siu. A proof of Kodaira’s conjecture which does not rely on the
classification was later given by Buchdahl and Lamari independently.

Theorem 3.2. A connected compact complex surface X admits a Kähler metric if and only if b1(X)
is even.

In higher dimensions, there are connected compact complex manifolds have odd Betti numbers even,
but do not admit Kähler metrics, e.g. Calabi-Eckmann manifolds diffeomorphic to S2k+1 × S2k+1,
k ≥ 0.

4. LeBrun’s Theorem

Reference: LeBrun - Kodaira Dimension and the Yamabe Problem

Recall that for Riemann surfaces, we have calculated both their Kodaira dimensions and their Yamabe
invariants.

genus 0 1 ≥ 2

κ(X) −∞ 0 1

Y (X) > 0 0 < 0

Surprisingly, there is an analogue of this relationship in complex dimension two.

Theorem 4.1 (LeBrun ’99). Let X be a connected compact complex surface which admits a Kähler
metric (equivalently, with b1(X) even). Then the Yamabe invariant of X satisifies

κ(X) −∞ 0 1 2

Y (X) > 0 0 0 < 0

Moreover, if κ(X) = 2 and X has minimal model X0, then Y (X) = Y (X0) = −4π
√

2c1(X0)2 =

−4π
√

4χ(X0) + 6σ(X0).

The proof consists of several parts:

(1) If κ(X) = −∞, let X0 be a minimal model of X. Then by the Kodaira-Enriques classification,

X0 is diffeomorphic to CP2, S2×S2, CP2#CP2, or an S2-bundle over a surface of genus g > 0.
One can construct positive scalar curvature metrics on these manifolds, so they have positive

Yamabe invariant. Now note that X is diffeomorphic to X0#kCP2 for some k > 0. The
connected sum of manifolds which admit psc metrics also admits psc metrics in dimension at
least three by a surgery result of Gromov and Lawson. Therefore X admits a psc metric and
hence Y (X) > 0.



THE YAMABE INVARIANT OF COMPLEX SURFACES 9

(2) Kähler surfaces are symplectic, so they have a non-trivial Seiberg-Witten invariant by a result
of Taubes. If b+(X) > 1, then it follows from a Weitzenbock formula that X does not admit
psc metrics (note that b+(X) = 1 if κ(X) = −∞). If b+(X) = 1 and κ(X) ≥ 0, then X
also fails to admit psc metrics. This was shown by Friedman and Morgan via a non-trivial
application of Seiberg-Witten theory. So if κ(X) ≥ 0, we have Y (X) ≤ 0.

(3) Every surface with κ(X) = 0, 1 is deformation equivalent to, and hence diffeomorphic to, an
elliptic surface. LeBrun shows such manifolds collapse with bounded scalar curvature. It
follows that Y (X) ≥ 0, and hence Y (X) = 0.

(4) Using an alternative characterisation of the Yamabe invariant1 and a careful analysis of the
aforementioned Weitzenbock formula, LeBrun shows the final statement regarding the case
κ(X) = 2. In particular, Y (X) < 0 for such surfaces.

In the same paper, LeBrun shows that if Y (X) = 0 is realised by a metric g (necessarily Ricci-flat),
then X is minimal and κ(X) = 0. Such surfaces admit Ricci-flat Kähler metrics by Yau’s solution of
the Calabi conjecture.

In the Yamabe positive case, it’s much harder to compute Y (X). The only known example is Y (CP2) =

12
√

2π due to Gursky and LeBrun (after an earlier proof by LeBrun); note that Y (S4) = 8
√

6π. The
proof uses a perturbed version of the conformal Laplacian and gives rise to an upper bound on the
Yamabe invariant of any positive definite four-manifold. It follows from LeBrun’s theorem that if X is
a Kähler surface with κ(X) ≥ 0, then the Yamabe invariant is unchanged under blowup; in particular,
the Yamabe invariant of X is equal to the Yamabe invariant of a minimal model. It is not known if
this is still true for Kähler surfaces with κ(X) = −∞.

How can we generalise this theorem? There are two restrictions we could try to remove: dimension
two and the existence of a Kähler metric.

Example: Let m ≥ 3, and let X be a smooth degree m+ 3 hypersurface in CPm+1. Then

• κ(X) = m (a smooth degree d hypersurface of CPn has κ(X) = −∞ if d < n+ 1, κ(X) = 0 if
d = n+ 1, and κ(X) = m if d > n+ 1)

• dimCX = m, so dimRX = 2m ≥ 6,

• π1(X) = 0

• X is non-spin.

Using their surgery result, Gromov and Lawson proved that any closed, simply connected, non-spin
manifold of dimension at least 5 admits psc metrics, so Y (X) > 0. On the other hand, X has maximal
Kodaira dimension - this does not fit the pattern we see in complex dimensions one and two.

One reason why such problems arise in higher dimensions is that the Kodaira dimension is not a
diffeomorphism invariant. That is, there are complex manifolds X1 and X2 which are diffeomorphic but
κ(X1) 6= κ(X2). Many examples can be constructed using the s-cobordism theorem, see Răsdeaconu
’06. The diffeomorphism invariance of the Kodaira dimension for Kähler surfaces is a theorem proved
using Seiberg-Witten theory (even the plurigenera are diffeomorphism invariants).

Given that we cannot remove the dimension restriction, we instead focus on the Yamabe invariant of
non-Kähler surfaces.

1 inf
g∈Riem(M)

∫
M
|sg |

n
2 dµg =

{
0 if Y (M) ≥ 0

|Y (M)|
n
2 if Y (M) < 0

.
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5. The Yamabe Invariant of Non-Kähler Surfaces

References: Albanese - The Yamabe invariants of Inoue surfaces, Kodaira surfaces, and their blowups,
Albanese & LeBrun - Kodaira Dimension and the Yamabe Problem, II.

We will proceed by considering each value of the Kodaira dimension separately.

5.1. Class VII. Hopf constructed the first examples of compact complex manifolds which do not
admit Kähler metrics. Namely, X = (Cn \ {0})/Z where the Z-action is generated by z 7→ 2z. As X
is diffeomorphic to S1 × S2n−1, it does not admit a Kähler metric because b1(X) = 1 is odd. We call
a compact complex manifold a Hopf surface if its universal cover is Cn \ {0}. We say X is primary if
π1(X) ∼= Z and secondary otherwise. Every secondary Hopf manifold is finitely covered by a primary
Hopf manifold.

In complex dimension 2, every primary Hopf surface is diffeomorphic to S1×S3 and hence has positive
Yamabe invariant. This doesn’t automatically imply that secondary Hopf surfaces have positive Yam-
abe invariant though: if M ′ → M is a finite covering and M ′ admits a psc metric, then M does not
necessarily admit a psc metric2. The diffeomorphism types of secondary Hopf surfaces were classified
by Kato. Some are diffeomorphic to S1 × (S3/H) for a finite free group action H, and these have
positive Yamabe invariant. There are also some which are diffeomorphic to the mapping torus of S3/H
by a diffeomorphism of order two or three. In an upcoming paper, I show these also have positive
Yamabe invariant.

By the surgery result of Gromov and Lawson, the blowups of Hopf surfaces also have positive Yamabe
invariant. Moreover, there is upper bound on the Yamabe invariant in this case as they are definite
and hence the result of Gursky and LeBrun applies.

Gursky and LeBrun showed that Y ((S1×S3)#CP2) ≤ 12π
√

2; note, this is the same as Y (CP2) which
is calculated in the same paper. On the other hand, a result of Schoen shows that Y (S1 × S3) =

Y (S4) = 8
√

6π. In particular, the Yamabe invariant does change under blowups for class VII surfaces,
which is not the case for Kähler surfaces with κ(X) ≥ 0.

There is another construction of class VII surfaces due to Inoue. They are quotients of C × H by a
group of affine transformations. There are four families: S+

M , S−M , S+
N,p,q,r,t, and S−N,p,q,rt. The first

two are diffeomorphic to the mapping torus of T 3, and the final two are diffeomorphic to the mapping
torus of a non-trivial circle bundle over T 2; in both cases, the diffeomorphism is induced by a linear
map on R3.

Theorem 5.1 (A. ’21). Inoue surfaces and their blowups have Yamabe invariant zero.

Corollary 5.2. The Kähler hypothesis of LeBrun’s theorem is necessary.

Recall that LeBrun showed that elliptic surfaces collapse with bounded scalar curvature, and hence
have non-negative Yamabe invariant. Inoue surfaces do not contain any complex curves; in particular,
they are not elliptic. However, one can still show they collapse with bounded scalar curvature as they
have a T -structure.

A T -structure on a closed smooth manifold is a finite open covering {U1, . . . , UN} and a non-trivial
torus action on each Ui such that each intersection Ui1 ∩ · · · ∩ Uik is invariant under the torus actions
on Ui1 , . . . , Uik , and the torus actions commute.

Example: Let M be the mapping torus of a diffeomorphism Tn → Tn induced by a linear dif-
feomorphism f : Rn → Rn. If p : M → S1 is the projection, then let U1 = p−1(S1 \ {1}) and
U2 = p−1(S1 \ {−1}). Note that U1 and U2 are both diffeomorphic to (0, 1) × Tn so they admit

2An example attributed to Bérard Bergery: M ′ = S2 × S7 and M = (S2 × RP7)#Σ where Σ ∈ Θ9 has α(Σ) 6= 0.

Note that Θ9
∼= Z2 ⊕ Z2 ⊕ Z2, so Σ#Σ = S9.



THE YAMABE INVARIANT OF COMPLEX SURFACES 11

effective torus actions acting by translations. Moreover, the intersection U1∩U2 is invariant under the
torus actions, and as f is linear, they commute and hence M has a T -structure.

In particular, Inoue surfaces in the families S+
M and S−M have T -structures. Paternain and Petean

showed that the other two families also admit T -structures, so all Inoue surfaces have non-negative
Yamabe invariant. A theorem of Kobayashi implies that this remains true after blowing up: if
dimM1 = dimM2 ≥ 3 and Y (M1), Y (M2) ≥ 0, then Y (M1#M2) ≥ 0.

All that remains is to show that such surfaces do not admit psc metrics. We’ll come back to this.

Even though the non-Kähler analogue of LeBrun’s theorem is not true, we can still hope to determine
the sign of the Yamabe invariant for non-Kähler surfaces. What class VII surfaces remain?

Theorem 5.3 (Bogomolov, Li-Yau-Zheng, Teleman). If X is a class VII surface with b2(X) = 0, then
X is a Hopf surface or an Inoue surface.

A global spherical shell in a complex surface X is an open subset U biholomorphic to a neighbourhood
of S3 in C2 \ {0} such that X \U is connected. This notion was introduced by Kato. He showed that
if X admits a global spherical shell, then X is a degeneration of blownup primary Hopf surfaces. That
is, there is a holomorphic submersion π : X → D such that X0 := π−1(0) is biholomorphic to X, but
Xt is a primary Hopf surface blownup at b2(X) points for all t 6= 0. It follows that X is diffeomorphic

to (S1 × S3)#b2(X)CP2.

Conjecture 5.4 (Nakamura ’89). Let X be a class VII surface with b2(X) > 0. Then X has a global
spherical shell.

If the conjecture is true, then all such surfaces have positive Yamabe invariant.

5.2. κ(X) = 0. In complex dimension two, KX
∼= OX implies symplectic: let α be a nowhere-zero

holomorphic two-form, then ω = Re(α) = 1
2 (α + α) is a symplectic form. In higher dimensions,

triviality of the canonical bundle does not imply symplectic. For example, there are so-called non-
Kähler Calabi-Yau manifolds which are diffeomorphic to k(S3×S3), k ≥ 2, which have trivial canonical
bundle.

Primary Kodaira surfaces have trivial canonical bundle and are therefore symplectic and have b+(X) =
2h2,0(X) = 2h0(X,KX) = 2h0(X,OX) = 2 > 1. There is a notion of symplectic blowup, and the
diffeomorphism type coincides with the complex blowup. Therefore blowups of a primary Kodaira
surface (viewed as a complex manifold) are symplectic with b+ > 1, so they do not admit psc metrics
by Seiberg-Witten theory. As secondary Kodaira surfaces and their blowups are finitely covered by
primary Kodaira surfaces and their blowups, they cannot admit psc metrics either. Y (X) ≤ 0. On
the other hand, they are all elliptic surfaces so argument from LeBrun’s theorem shows Y (X) ≥ 0.

5.3. κ(X) = 1.

Theorem 5.5 (A. & LeBrun ’21). Non-Kähler properly elliptic surfaces and their blowups have Yamabe
invariant zero.

LeBrun previously showed that elliptic surfaces collapse with bounded scalar curvature, and hence have
non-negative Yamabe invariant. So all that remains is to establish that non-Kähler properly elliptic
surfaces do not admit psc metrics. In the Kähler case, we used the existence of a symplectic form to
utilise Seiberg-Witten theory. However, non-Kähler properly elliptic surfaces and their blowups are
never symplectic (Biquard ’98).
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Theorem 5.6. Let N be a compact oriented connected 3-manifold, and let X be a mapping torus
of N . Let P be any connected smooth compact oriented 4-manifold, and let M = X#P . Then
Y (N) ≤ 0⇒ Y (M) ≤ 0, i.e. if N does not admit a psc metric, then neither does M .

A closed orientable three-manifold admits a psc metric if and only if it contains no aspherical factors
in its prime decomposition. In particular, T 3 and non-trivial circle bundles over T 2 do not admit
psc metrics. The theorem therefore implies that Inoue surfaces and their blowups do not admit psc
metrics.

The proof of the theorem uses the Schoen-Yau minimal hypersurface method. Choose a metric g on M .
The Poincaré dual of the pullback of an orientation form on S1 can be represented by a hypersurface
Σ which is stable minimal with respect to g. The proof constructs a map Σ→ N of non-zero degree.
If N does not admit a psc metric, it follows that Σ doesn’t either. If g were psc, then g|Σ would be
conformal to a psc metric, so we see that g can’t be psc.

Let X be a non-Kähler elliptic surface. Unlike in the Kähler case, non-Kähler elliptic surfaces have
no singular fibers, only multiple fibers. By passing to a finite cover X ′, we obtain a principal elliptic
bundle over a curve C. This gives rise to two circle bundles over C. By passing to another cover X ′′,
we can take one of them to be trivial, and hence X ′′ = S1 ×N where N is a non-trivial circle bundle
over C. The Kodaira dimension of C is equal to the Kodaira dimension of X (and hence X ′′), so if
κ(X) ≥ 0, then N is aspherical and hence does not admit psc metrics. Therefore X ′′ does not admit

psc metrics, so neither does X. Taking P to be kCP2, we see the claim also holds for blowups of
non-Kähler elliptic surfaces with κ(X) ≥ 0.

All Kodaira surfaces are elliptic, so this gives another proof that such surfaces and their blowups do
not admit psc metrics.

Theorem 5.7. If the global spherical shell conjecture is true, then Inoue surfaces and their blowups
are the only counterexamples to the non-Kähler analogue of LeBrun’s Theorem.

What about realising the Yamabe invariant? Conjecturally, if it is realised, it must be realised by an
Einstein metric. Using the Kodaira-Enriques classification and the Hitchin-Thorpe inequality, it is not
too hard to show that non-Kähler surfaces do not admit Einstein metrics.
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