THE i-SQUARES IN A GRASSMANNIAN VARIETY

WEN-TSÜN WU

1. In what follows, the ring of coefficients of the cohomology ring $H^{*}(M)$ of a space M will be exclusively the ring of integers $\bmod 2$.
For any $i \geq 0, W^{i}$ are the W-classes (characteristic classes of Stiefel-Whitney) of a s. f. s. (spherical fibre structure) with the convention $W^{0}=1$ (the unit class of the base), and $W^{i}=0$ for $i>m, m-1$ being the dimension of the fibre sphere. We will show the following formula:

$$
\begin{equation*}
\mathrm{Sq}^{r} W^{s}=\sum_{t} C_{s-r+t-1}^{t} W^{r-t} W^{s+t} \quad(s \geq r>0) \tag{1}
\end{equation*}
$$

where $C_{p}^{q}=$ binomial coefficient for $p \geq q>0,=0$ for $p<q>0$, and $=1$ for $p=-1$ and $q=0$ (all are reduced $\bmod 2$).
First note some consequences of the this formula: define, in the base, a system of classes U^{p} (any $p \geq 0$) by the following equations:

$$
\begin{equation*}
W^{i}=\sum_{p} \mathrm{Sq}^{i-p} U^{p}, \quad \text { any } p \geq 0 \tag{2}
\end{equation*}
$$

we call them canonical classes of the structure considered. If the s. f. s. is in particular the tangent structure associated to a differentiable manifold of dimension m, we see, in comparing equations (1) and (2) with the previous note ${ }^{1}$, that the name of canonical classes is justified; moreover, among all the s. f. s. (the fibres S^{m-1}) on the manifold M as base, the tangent structure of M possesses the following remarkable property:

$$
\begin{equation*}
U^{p}=0 \quad \text { for } \quad 2 p>m \tag{3}
\end{equation*}
$$

From (1) and (3) we deduce:
a. For an orientable structure we have $U^{2 k+1}=0$, any k, which generalises a theorem of H. Cartan ${ }^{1}$,
b. For the tangent structure on a differentiable manifold of dimension m, we have $W^{1} W^{m-2}=0$ if $m=4 k ; W^{1} W^{m-3}=0 ; W^{1} W^{m-1}=0$ if $m=4 k+1 ; W^{m}=W^{1} W^{m-1}$ if $m=4 k+2 ; W^{1} W^{m-1}=0$, $W^{m-1}=W^{1} W^{m-2}$ if $m=4 k+3$.
2. Let $G_{n, m}$ be the grassmannian of m linear elements in the Euclidean space \mathbb{R}^{n+m} of dimension $n+m$ passing through the origin in \mathbb{R}^{n+m}. We know ${ }^{2}$ that the ring $H^{*}\left(G_{n, m}\right)$ is generated by the classes W^{i} of the s. f. s. $\mathcal{G}_{n, m}$ (fibres S^{m-1}) with base $G_{n, m}$ canonically associated to $G_{n, m}$. Moreover, as pointed out to me by H. Cartan:

Lemma 1. Let $\varphi_{p}\left(W^{i}\right)$ be a polynomial not identically zero in W^{1}, \ldots, W^{m} such that for each term $W^{i_{1}} \ldots W^{i_{k}}$ of this polynomial we have $i_{1}+\cdots+i_{k}=p \leq n$. Then $\varphi_{p}\left(W^{i}\right)$ is a non-zero element of $H^{*}\left(G_{n, m}\right)$.

[^0]Suppose then that \mathbb{R}^{n+m} is the product of two Euclidean spaces $\mathbb{R}_{j}^{n_{j}+m}$ of dimension $n_{j}+m_{j}(j=1,2)$. Let $G_{n_{j}, m_{j}}(j=1,2)$ be the grassmannians defined respectively in $\mathbb{R}_{j}^{n_{j}+m_{j}}$. For $X_{j} \in G_{n_{j}, m_{j}}$ let $X \in G_{n, m}$ be the join of X_{1} and X_{2}, we then have a canonical map

$$
f: G_{n_{1}, m_{1}} \times G_{n_{2}, m_{2}} \rightarrow G_{n, m}
$$

defined by $f\left(X_{1} \times X_{2}\right)=X$. Denoting by $W_{j}^{i}(j=1,2)$ the respective W-classes of the structures $\mathcal{G}_{n_{j}, m_{j}}$, we have:

Lemma 2. The mod 2 homotopy type of f is determined by ${ }^{3}$:

$$
f^{*} W^{i}=\sum_{j} W_{1}^{j} \otimes W_{2}^{i-j} \quad(\text { for any } i \geq 0)
$$

As a consequence of Lemmas 1 and 2, retaining the notations, we have:

Lemma 3. For $p \leq n_{1}$ and $n_{2}, \varphi_{p}\left(W^{i}\right)$ is a non-zero element of $H^{*}\left(G_{n, m}\right)$ if and only if $\varphi_{p}\left(W^{i}\right)$ is a non-zero element of $H^{*}\left(G_{n_{1}, m_{1}} \times G_{n_{2}, m_{2}}\right)$.
3. Proof of (1). - We set

$$
\varphi_{r, s}\left(W^{i}\right)=\mathrm{Sq}^{r} W^{s}+\sum_{t} C_{s-r+t-1}^{t} W^{r-t} W^{s+t}
$$

The formula (1), or, equivalently, the formula $\varphi_{r, s}\left(W_{j}^{i}\right)=0$, being obvious for $m=1$, we will assume by induction that it is true for the structures which have sphere fibers of dimension $<m-1$, where $m>1$. Now let W^{i}, W_{j}^{i} respectively be the classes of the structures $\mathcal{G}_{n, m}$ and $\mathcal{G}_{n_{j}, m_{j}}(j=1,2)$ where $n=n_{1}+n_{2}, n_{j} \geq r+s, m_{1}=m-1, m_{2}=1$. From the formula $f^{*} \mathrm{Sq}^{i}=\mathrm{Sq}^{i} f^{*}$, a theorem of H . Cartan ${ }^{4}$, and lemma 2 of section 2, we deduce

$$
f^{*} \varphi_{r, s}\left(W^{i}\right)=\varphi_{r, s}\left(W_{1}^{2}\right) \otimes 1+\varphi_{r, s-1}\left(W_{1}^{i}\right) \otimes W_{2}^{1}+\varphi_{r-1, s-1}\left(W_{1}^{i}\right) \otimes\left(W_{2}^{1}\right)^{2} .
$$

By the induction hypothesis $f^{*} \varphi_{r, s}\left(W^{i}\right)=0$ consequently $\varphi_{r, s}\left(W^{i}\right)=0$ by lemma 3 . Since the structure $\mathcal{G}_{n, m}$ is universal for n large enough, we have $\varphi_{r, s}\left(W^{i}\right)=0$ for any s.f.s.. Formula (1) is thus proved by induction.

Let, in particular, W^{i} be the W-classes of the structures $\mathcal{G}_{n, m}$ on the base $G_{n, m}$. The ring $H^{*}\left(G_{n, m}\right)$ being generated by the classes W^{i}, we see that formula (1) completely determines the squares in $G_{n, m}$ by expressing them as polynomials in W^{i}.
(Excerpt from Comptes rendus des séances de l'Académie des Sciences,
t. 230, p. 918-920, meeting of 6 March 1950.)

[^1]
[^0]: ${ }^{1}$ Comptes rendus, 230, 1950, p. 508-511.
 ${ }^{2}$ S. CHERN, Annals of Math., 49, 1948, p. 362-372.

[^1]: ${ }^{3}$ We note that the theorem of Whitney on the product of two spherical fiber structures is a consequence of this lemma whose proof is given in my Thesis, Strasbourg, 1949.
 ${ }^{4}$ Comptes rendus, 230, 1950, p. 425-427.

