THE *i*-SQUARES IN A GRASSMANNIAN VARIETY

WEN-TSÜN WU

1. In what follows, the ring of coefficients of the cohomology ring $H^*(M)$ of a space M will be exclusively the ring of integers mod 2.

For any $i \ge 0$, W^i are the W-classes (characteristic classes of Stiefel-Whitney) of a s. f. s. (spherical fibre structure) with the convention $W^0 = 1$ (the unit class of the base), and $W^i = 0$ for i > m, m-1 being the dimension of the fibre sphere. We will show the following formula:

(1)
$$\operatorname{Sq}^{r} W^{s} = \sum_{t} C_{s-r+t-1}^{t} W^{r-t} W^{s+t} \qquad (s \ge r > 0),$$

where $C_p^q =$ binomial coefficient for $p \ge q > 0$, = 0 for p < q > 0, and = 1 for p = -1 and q = 0 (all are reduced mod 2).

First note some consequences of the this formula: define, in the base, a system of classes U^p (any $p \ge 0$) by the following equations:

(2)
$$W^{i} = \sum_{p} \operatorname{Sq}^{i-p} U^{p}, \quad \text{any } p \ge 0;$$

we call them *canonical classes* of the structure considered. If the s. f. s. is in particular the tangent structure associated to a differentiable manifold of dimension m, we see, in comparing equations (1) and (2) with the previous note¹, that the name of canonical classes is justified; moreover, among all the s. f. s. (the fibres S^{m-1}) on the manifold M as base, the tangent structure of M possesses the following remarkable property:

(3)
$$U^p = 0 \quad \text{for} \quad 2p > m,$$

From (1) and (3) we deduce:

a. For an orientable structure we have $U^{2k+1} = 0$, any k, which generalises a theorem of H. Cartan¹,

b. For the tangent structure on a differentiable manifold of dimension m, we have $W^1 W^{m-2} = 0$ if m = 4k; $W^1 W^{m-3} = 0$; $W^1 W^{m-1} = 0$ if m = 4k + 1; $W^m = W^1 W^{m-1}$ if m = 4k + 2; $W^1 W^{m-1} = 0$, $W^{m-1} = W^1 W^{m-2}$ if m = 4k + 3.

2. Let $G_{n,m}$ be the grassmannian of m linear elements in the Euclidean space \mathbb{R}^{n+m} of dimension n+m passing through the origin in \mathbb{R}^{n+m} . We know² that the ring $H^*(G_{n,m})$ is generated by the classes W^i of the s. f. s. $\mathcal{G}_{n,m}$ (fibres S^{m-1}) with base $G_{n,m}$ canonically associated to $G_{n,m}$. Moreover, as pointed out to me by H. Cartan:

Lemma 1. Let $\varphi_p(W^i)$ be a polynomial not identically zero in W^1, \ldots, W^m such that for each term $W^{i_1} \ldots W^{i_k}$ of this polynomial we have $i_1 + \cdots + i_k = p \leq n$. Then $\varphi_p(W^i)$ is a non-zero element of $H^*(G_{n,m})$.

¹Comptes rendus, **230**, 1950, p. 508-511.

²S. CHERN, Annals of Math., 49, 1948, p. 362-372.

Suppose then that \mathbb{R}^{n+m} is the product of two Euclidean spaces $\mathbb{R}_{j}^{n_{j}+m}$ of dimension $n_{j}+m_{j}$ (j = 1, 2). Let $G_{n_{j},m_{j}}$ (j = 1, 2) be the grassmannians defined respectively in $\mathbb{R}_{j}^{n_{j}+m_{j}}$. For $X_{j} \in G_{n_{j},m_{j}}$ let $X \in G_{n,m}$ be the join of X_{1} and X_{2} , we then have a canonical map

$$f: G_{n_1,m_1} \times G_{n_2,m_2} \to G_{n,m}$$

defined by $f(X_1 \times X_2) = X$. Denoting by W_j^i (j = 1, 2) the respective W-classes of the structures \mathcal{G}_{n_j,m_j} , we have:

Lemma 2. The mod 2 homotopy type of f is determined by^3 :

$$f^*W^i = \sum_j W_1^j \otimes W_2^{i-j} \qquad (for \ any \ i \ge 0).$$

As a consequence of Lemmas 1 and 2, retaining the notations, we have:

Lemma 3. For $p \leq n_1$ and n_2 , $\varphi_p(W^i)$ is a non-zero element of $H^*(G_{n,m})$ if and only if $\varphi_p(W^i)$ is a non-zero element of $H^*(G_{n_1,m_1} \times G_{n_2,m_2})$.

3. Proof of (1). - We set

$$\varphi_{r,s}(W^i) = \operatorname{Sq}^r W^s + \sum_t C^t_{s-r+t-1} W^{r-t} W^{s+t}.$$

The formula (1), or, equivalently, the formula $\varphi_{r,s}(W_j^i) = 0$, being obvious for m = 1, we will assume by induction that it is true for the structures which have sphere fibers of dimension < m - 1, where m > 1. Now let W^i , W_j^i respectively be the classes of the structures $\mathcal{G}_{n,m}$ and \mathcal{G}_{n_j,m_j} (j = 1, 2) where $n = n_1 + n_2, n_j \ge r + s, m_1 = m - 1, m_2 = 1$. From the formula $f^* \operatorname{Sq}^i = \operatorname{Sq}^i f^*$, a theorem of H. Cartan⁴, and lemma 2 of section 2, we deduce

$$f^*\varphi_{r,s}(W^i) = \varphi_{r,s}(W_1^2) \otimes 1 + \varphi_{r,s-1}(W_1^i) \otimes W_2^1 + \varphi_{r-1,s-1}(W_1^i) \otimes (W_2^1)^2.$$

By the induction hypothesis $f^*\varphi_{r,s}(W^i) = 0$ consequently $\varphi_{r,s}(W^i) = 0$ by lemma 3. Since the structure $\mathcal{G}_{n,m}$ is universal for *n* large enough, we have $\varphi_{r,s}(W^i) = 0$ for any s.f.s.. Formula (1) is thus proved by induction.

Let, in particular, W^i be the W-classes of the structures $\mathcal{G}_{n,m}$ on the base $G_{n,m}$. The ring $H^*(G_{n,m})$ being generated by the classes W^i , we see that formula (1) completely determines the squares in $G_{n,m}$ by expressing them as polynomials in W^i .

(Excerpt from Comptes rendus des séances de l'Académie des Sciences, t. 230, p. 918-920, meeting of 6 March 1950.)

 $^{^{3}}$ We note that the theorem of Whitney on the product of two spherical fiber structures is a consequence of this lemma whose proof is given in my Thesis, Strasbourg, 1949.

⁴Comptes rendus, **230**, 1950, p. 425-427.