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Abstract. There is a list of formulae for the first five Wu classes in terms of Stiefel-Whitney classes

on nLab. There was no reference given for the necessary computations, so I tried to do them myself.

In doing so, I realised I misunderstood what little I thought I knew about Steenrod squares and Wu
classes. In this note I explain what is needed to compute, and hopefully understand, the formulae

given on nLab.

For an element x ∈ H∗(X;Z2), we write |x| = k to indicate that x ∈ Hk(X;Z2). For x ∈ Hk(X;Z2)
and α ∈ Hk(X;Z2), we write 〈x, α〉k to denote the natural pairing.

Steenrod Squares

For any topological space X and integer m ≥ 0, there is a graded linear map Sqm : H∗(X;Z2) →
H∗(X;Z2) of degree m called the mth Steenrod square (or Steenrod operation), such that:

(1) for any topological space Y and continuous map f : Y → X, Sqm(f∗x) = f∗ Sqm(x),

(2) Sq0(x) = x,

(3) Sqm(x) = 0 for |x| < m, and Sqm(x) = x ∪ x for |x| = m, and

(4) Sqk(x ∪ y) =
∑

i+j=k

Sqi(x) ∪ Sqj(y).

The fourth condition is called Cartan’s formula. We also have the total Steenrod square Sq :=
Sq0 + Sq1 + Sq2 + . . . . Cartan’s formula can now be written as Sq(x ∪ y) = Sq(x) ∪ Sq(y) so Sq :
H∗(X;Z2)→ H∗(X;Z2) is an algebra homomorphism.

One can use Steenrod squares together with the Thom isomorphism to define Stiefel-Whitney classes.
See Chapter 8 of [1].

Wu Classes

Now suppose X is a closed, connected n-manifold. Restricting Sqm to Hn−m(X;Z2), we obtain a
linear map Sqm : Hn−m(X;Z2)→ Hn(X;Z2), and therefore an element of

Hom(Hn−m(X;Z2), Hn(X;Z2))

∼= Hom(Hn−m(X;Z2),Z2) (X is a closed, connected n-manifold)

∼= Hom(Hom(Hn−m(X;Z2),Z2),Z2) (Universal Coefficient Theorem)

∼= Hn−m(X;Z2) (Hn−m(X;Z2) is a finite-dimensional

vector space over Z2)

∼= Hm(X;Z2) (Poincaré Duality).

Let νm denote the element of Hm(X;Z2) corresponding to Sqm under these natural isomorphisms.
Unwinding the isomorphisms, we can determine exactly how Sqm and νm are related.
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• The first isomorphism sends x 7→ Sqm(x) to x 7→ 〈Sq(x), [X]〉n where [X] is the Z2 fundamental
homology class of X (i.e. the non-zero element of Hn(X;Z2)).

• The second isomorphism sends x 7→ 〈Sqm(x), [X]〉n to the map (α 7→ 〈x, α〉n−m) 7→ 〈Sqm(x), [X]〉n.

• The third isomorphism sends (α 7→ 〈x, α〉n−m) 7→ 〈Sqm(x), [X]〉n to α ∈ Hn−m(X;Z2) such
that 〈x, α〉n−m = 〈Sqm(x), [X]〉n.

• The final isomorphism sends α to νm ∈ Hm(X;Z2) such that α = [X] ∩ νm.

So we see that

〈Sqm(x), [X]〉n = 〈x, α〉n−m = 〈x, [X] ∩ νm〉n−m = 〈νm ∪ x, [X]〉n.

Therefore, Sqm(x) = νm ∪ x for all x ∈ Hn−m(X;Z2). We call νm the mth Wu class of X, and define
ν := 1 + ν1 + · · ·+ νn ∈ H∗(X;Z2) to be the total Wu class of X.

Note, if |x| = k < n
2 , in order to have Sqm(x) ∈ Hn(X;Z2), we need m = n − k > n

2 , but then

Sqm(x) = 0. As we also have Sqm(x) = νm ∪ x, we see that νm ∪ x = 0 for every x ∈ Hk(X;Z2).
It follows from Poincaré duality that νm = 0. So for m > n

2 , we have νm = 0 and therefore ν =
1 + ν1 + · · ·+ νbn2 c.

Wu’s Theorem

Now suppose X is a smooth, closed n-manifold. Wu’s theorem states that w, the total Stiefel-Whitney
class of the tangent bundle of X, is related to Steenrod squares and Wu classes by the equation
w = Sq(ν); see Theorem 11.14 of [1]. Comparing degrees, we see that

wk =
∑

i+j=k

Sqi(νj).

Note, Sqi(νj) is not simply νi ∪ νj unless i+ j = n. As Sqi(wj) = 0 for i > j we can simplify this to

wk =
∑

i+j=k
i≤j

Sqi(νj) =

bk/2c∑
i=0

Sqi(νk−i).

One of the most important applications of this relationship is that the expression Sq(ν) depends only
on the cohomology ring of X which is an invariant under homotopy equivalence. This is somewhat
surprising because the tangent bundle depends on the smooth structure. More precisely, we see that
if f : X → Y is a homotopy equivalence of smooth, closed n-manifolds, f∗w(TY ) = w(TX). In
particular, the total Stiefel-Whitney class of X, which is defined as the total Stiefel-Whitney class
of the tangent bundle, does not depend on the smooth structure on X. Furthermore, two homotopy
equivalent closed manifolds are cobordant as they have the same Stiefel-Whitney numbers.

The right hand side of the equation w = Sq(ν) does not rely on a smooth structure, so one could define
the total Stiefel-Whitney class of a closed topological manifold to be the expression Sq(ν), despite the
fact that there is no natural bundle involved.

Wu’s Formula

The theorem of Wu leads to a computation of the action of the Steenrod squares on the Stiefel-Whitney
classes, again due to Wu [3]. Namely, for 0 ≤ i ≤ j we have

Sqi(wj) =

i∑
t=0

(
j − i+ t− 1

t

)
wi−t ∪ wj+t
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where
(
p
q

)
= 0 if p < q, except when p = −1 and q = 0 in which case we use the convention

(−1
0

)
= 1.

Note, this convention is made in order to deal with the case i = j. One could also avoid such a
convention by using the formula for 0 ≤ i < j as we already know Sqj(wj) = wj ∪ wj . Either way, we
call the displayed equation Wu’s formula.

Wu Classes in terms of Stiefel-Whitney Classes

In this section the cup product symbol will be omitted and replaced by multiplicative notation.

Wu’s theorem allows us to compute the Stiefel-Whitney classes in terms of Wu classes and their
Steenrod squares. We can rearrange these relationships to express the Wu classes in terms of Stiefel-
Whitney classes. Below we determine the first five as these are the ones listed on the nLab page
[2].

1. As w1 = Sq0(ν1) = ν1, we see that ν1 = w1.

2. Now we have w2 = Sq0(ν2) + Sq1(ν1) = ν2 + ν21 so ν2 = w2 + ν21 = w2 + w2
1.

Unlike the first two cases, from this point on we will need to evaluate intermediate Steenrod squares
of Wu classes, so the computations become more cumbersome.

3. From Wu’s theorem, we have

w3 = Sq0(ν3) + Sq1(ν2) = ν3 + Sq1(ν2) = ν3 + Sq1(w2 + w2
1) = ν3 + Sq1(w2) + Sq1(w2

1).

By Wu’s formula, we have

Sq1(w2) =

(
2− 1 + 0− 1

0

)
w1w2 +

(
2− 1 + 1− 1

1

)
w0w3 =

(
0

0

)
w1w2 +

(
1

1

)
w3 = w1w2 + w3,

and by Cartan’s formula we have

Sq1(w2
1) = Sq0(w1) Sq1(w1) + Sq1(w1) Sq0(w1) = 0.

More generally, for any class x, Sq1(x2) = 0 again by Cartan’s formula.

Therefore, ν3 = w3 + Sq1(w2) + Sq1(w2
1) = w3 + w1w2 + w3 = w1w2.

4. This time Wu’s theorem gives us three terms,

w4 = Sq0(ν4) + Sq1(ν3) + Sq2(ν2)

= ν4 + Sq1(w1w2) + ν22

= ν4 + Sq1(w1w2) + (w2 + w2
1)2

= ν4 + Sq1(w1w2) + w2
2 + w4

1.

By Cartan’s formula we have

Sq1(w1w2) = Sq0(w1) Sq1(w2) + Sq1(w1) Sq0(w2)

= w1(w1w2 + w3) + w2
1w2

= w2
1w2 + w1w3 + w2

1w2

= w1w3.

Therefore, ν4 = w4 + Sq1(w1w2) + w2
2 + w4

1 = w4 + w1w3 + w2
2 + w4

1.
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5. Finally, Wu’s theorem gives

w5 = Sq0(ν5) + Sq1(ν4) + Sq2(ν3)

= ν5 + Sq1(w4 + w1w3 + w2
2 + w4

1) + Sq2(w1w2)

= ν5 + Sq1(w4) + Sq1(w1w3) + Sq1(w2
2) + Sq1(w4

1) + Sq2(w1w2)

= ν5 + Sq1(w4) + Sq1(w1w3) + Sq2(w1w2).

By Wu’s formula we have

Sq1(w4) =

(
4− 1 + 0− 1

0

)
w1w4 +

(
4− 1 + 1− 1

1

)
w0w5 =

(
2

0

)
w1w4 +

(
3

1

)
w5 = w1w4 + w5.

Now by Cartan’s formula, we have

Sq1(w1w3) = Sq0(w1) Sq1(w3) + Sq1(w1) Sq0(w3)

= w1 Sq1(w3) + w2
1w3.

Again by Wu’s formula,

Sq1(w3) =

(
3− 1 + 0− 1

0

)
w1w3 +

(
3− 1 + 1− 1

1

)
w0w4 =

(
1

0

)
w1w3 +

(
2

1

)
w4 = w1w3,

so Sq1(w1w3) = w1 Sq1(w3) + w2
1w3 = w2

1w3 + w2
1w3 = 0.

Returning to Cartan’s formula, we obtain

Sq2(w1w2) = Sq0(w1) Sq2(w2) + Sq1(w1) Sq1(w2) + Sq2(w1) Sq0(w2)

= w1w
2
2 + w2

1(w1w2 + w3) + 0w2

= w1w
2
2 + w3

1w2 + w2
1w3.

Therefore,

ν5 = w5 + Sq1(w4) + Sq1(w1w3) + Sq2(w1w2)

= w5 + w1w4 + w5 + w1w
2
2 + w3

1w2 + w2
1w3

= w1w4 + w1w
2
2 + w2

1w3 + w3
1w2.

In summary, we have

ν1 = w1

ν2 = w2 + w2
1

ν3 = w1w2

ν4 = w4 + w1w3 + w2
2 + w4

1

ν5 = w1w4 + w1w
2
2 + w2

1w3 + w3
1w2

which agree with the identites listed on nLab.

Some Applications

Let X be an smooth, closed, orientable, three-manifold. As X is orientable, w1 = 0, and as X is three-
dimensional and 2 > b 32c, we see that ν2 = 0. By the above computation we have ν2 = w2+w2

1 = w2, so
w2 = 0 and therefore X is spin. This fact is used in the proof of the following theorem: every smooth,
closed, orientable three-manifold is parallelisable. Similarly, by looking at the fourth Wu class, one
can show that a smooth, closed, spin four-manifold has even Euler characteristic. Furthermore, it is
null-cobordant.
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On a smooth, closed n-manifold, the fact that νn = 0 imposes a restriction on its Stiefel-Whitney
numbers. For example, when n = 2, we see that w2 + w2

1 = 0 so the two Stiefel-Whitney numbers
are equal. Hence, two closed surfaces are cobordant if and only if their Euler characteristics have the
same parity. Therefore, ΩO

2
∼= Z2 where ΩO

n denotes the group of cobordism classes of smooth, closed
n-manifolds and the isomorphism is given by evaluating the Euler characteristic of a representative
mod 2. For example, we see that the Klein bottle, RP2#RP2, is null-cobordant and therefore serves as
an example of a manifold with non-trivial Stiefel-Whitney classes, but trivial Stiefel-Whitney numbers.
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