THE NORMAL BUNDLE OF A SPHERE BUNDLE IS TRIVIAL

MICHAEL ALBANESE

ABSTRACT. Given a Riemannian metric on a smooth vector bundle $E \to M$, one can form its sphere bundle S(E). The purpose of this note is to show that the normal bundle of the inclusion of total spaces $S(E) \to E$ is trivial.

Let $\pi : E \to M$ be a smooth rank k vector bundle and let g be a Riemannian metric on E. The sphere bundle of E with respect to g is $p : S(E) \to M$ where $S(E) = \{e \in E \mid g(e, e) = 1\}$ and $p = \pi|_{S(E)}$. As the name suggests, $p : S(E) \to M$ is a smooth fiber bundle with fiber S^{k-1} .

Let $i: S(E) \to E$ be the inclusion of total spaces. If Z denotes the image of the zero section of $\pi: E \to M$, note that i factors as $\beta \circ \alpha$ where $\alpha: S(E) \to E \setminus Z$ and $\beta: E \setminus Z \to E$ are the natural inclusions. Moreover, there is a diffeomorphism $\phi: E \setminus Z \to S(E) \times (0, \infty)$ given by $e \mapsto (\frac{e}{\|e\|}, \|e\|)$, where $\|e\| = \sqrt{g(e, e)}$. These maps combine into the following commutative diagram

where $1: S(E) \to (0, \infty)$ denotes the constant function with value 1, and π_1, π_2 are the natural projections. With this in mind, note that

$$i^{*}TE \cong (\beta \circ \alpha)^{*}TE$$

$$\cong \alpha^{*}\beta^{*}TE$$

$$\cong \alpha^{*}T(E \setminus Z)$$

$$\cong \alpha^{*}\phi^{*}(T(S(E) \times (0, \infty)))$$

$$\cong (\phi \circ \alpha)^{*}(\pi_{1}^{*}T(S(E)) \oplus \pi_{2}^{*}T(0, \infty)))$$

$$\cong (\mathrm{id}_{S(E)}, 1)^{*}(\pi_{1}^{*}T(S(E)) \oplus \varepsilon^{1})$$

$$\cong (\mathrm{id}_{S(E)}, 1)^{*}\pi_{1}^{*}T(S(E)) \oplus (\mathrm{id}_{S(E)}, 1)^{*}\pi_{2}^{*}\varepsilon^{1}$$

$$\cong (\pi_{1} \circ (\mathrm{id}_{S(E)}, 1))^{*}T(S(E)) \oplus (\pi_{2} \circ (\mathrm{id}_{S(E)}, 1))^{*}\varepsilon^{1}$$

$$\cong \mathrm{id}_{S(E)}^{*}T(S(E)) \oplus 1^{*}\varepsilon^{1}$$

$$\cong T(S(E)) \oplus \varepsilon^{1}.$$

Now let ν be the normal line bundle of the inclusion $i: S(E) \to E$. On S(E) we have a short exact sequence of vector bundles

$$0 \to T(S(E)) \to i^*TE \to \nu \to 0.$$

MICHAEL ALBANESE

As the first Stiefel-Whitney class is additive in short exact sequences, we have $w_1(i^*TE) = w_1(T(S(E))) + w_1(\nu)$. On the other hand, by the above isomorphism, $w_1(i^*TE) = w_1(T(S(E)) \oplus \varepsilon^1) = w_1(T(S(E)))$. Therefore $w_1(\nu) = 0$ and hence ν is trivial.