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Abstract. There is a trick for computing the first few homotopy groups of a wedge sum of spheres

which uses cellular approximation. But how do you compute the remaining homotopy groups? The

answer is given by Hilton’s Theorem. After introducing the trick, I explain Hilton’s theorem and
how to implement it to calculate the homotopy groups of a wedge sum of spheres in terms of the

homotopy groups of spheres.

Consider the space Sm1 ∨ · · · ∨ Smk . As A∨B and B ∨A are homotopy equivalent, we can (and will)
assume m1 ≤ · · · ≤ mk.

If m1 = 0, then π0(Sm1 ∨ · · · ∨ Smk) = π0(Sm2 ∨ · · · ∨ Smk) ⊕ π0(Sm2 ∨ · · · ∨ Smk) and for n > 0,
πn(Sm1 ∨ · · · ∨ Smk) = πn(Sm2 ∨ · · · ∨ Smk). From now on we will assume that m1 > 0 (and hence
mi > 0 for all i).

Cellular Approximation

If X is an p-dimensional CW complex and Y is a CW complex, then by cellular approximation
[X,Y ] = [X,Y (p+1)] where Y (p+1) denotes the (p+1)-skeleton of Y . If X and Y are also pointed, then
the same is true of the pointed homotopy classes; in particular, πp(Y ) = πk(Y (p+1)).

Returning to the problem at hand, note that Sm1 ∨ · · · ∨ Smk is a subcomplex of Sm1 × · · · × Smk

– the latter is obtained from the former by attaching cells of dimension at least m1 + m2. However,
Sm1 ∨ · · · ∨ Smk need not be the (m1 +m2 − 1)-skeleton of Sm1 × · · · × Smk as it may contain cells of
dimension greater than m1 +m2− 1 (e.g. the 4-skeleton of S2×S3×S5 is S2 ∨S3, not S2 ∨S3 ∨S5).
However, Sm1 ∨ · · · ∨ Smk and Sm1 × · · · × Smk have the same (m1 + m2 − 1)-skeleton, namely
Sm1 ∨ · · · ∨Sma where a is such that ma ≤ m1 +m2− 1 < ma+1. Therefore, for any n < m1 +m2− 1
we have

πn(Sm1 ∨ · · · ∨ Smk) = πn(Sm1 ∨ · · · ∨ Sma)

= πn(Sm1 × · · · × Smk)

= πn(Sm1)⊕ · · · ⊕ πn(Smk).

As m1 + m2 − 1 < ma+1 ≤ · · · ≤ mk, πn(Sma+1) = · · · = πn(Smk) = 0 so we can also express the
above result as

πn(Sm1 ∨ · · · ∨ Smk) = πn(Sm1)⊕ · · · ⊕ πn(Sma).

Hilton’s Theorem

Before introducing Hilton’s Theorem, we need to make one further reduction.

If m1 = · · · = mb = 1 and mb+1, . . . ,mk > 1, the Seifert-van Kampen Theorem shows that π1(Sm1 ∨
· · · ∨ Smk) ∼= Fb, the free group on b generators. The higher homotopy groups are isomorphic to the
higher homotopy groups of the universal cover which is homotopy equivalent to the wedge sum of
countably many copies of Smb+1 ∨ · · · ∨ Smk . With this in mind, we will assume from now on that
m1 > 1 (and hence mi > 1 for all i) and set mi = ri + 1; note ri ≥ 1.

In order to state Hilton’s Theorem, we need to introduce what he calls basic products.
1
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Let αj be the positive generator of πmj
(Smj ) (i.e. the homotopy class of the identity map)1. We call

α1, . . . , αk basic products of weight one, and we order them as follows: α1 < · · · < αk.

Now assume the basic products of weight less than w have been defined and ordered. Basic products
of weight w are Whitehead products [a, b] where a, b are basic products of weights u and v respectively,
u+v = w, a < b (in the ordering), and if b = [c, d] where c and d are basic products, then c ≤ a. Order
the weight w elements arbitrarily among themselves and greater than all lower weight basic products.
It follows that u ≤ v.

Example: Suppose k = 3. Then there are three weight one basic products, namely α1, α2, α3, which
are ordered as follows: α1 < α2 < α3.

The weight two basic products are [α1, α2], [α1, α3], [α2, α3]. We choose to extend the order as follows:
α1 < α2 < α3 < [α1, α2] < [α1, α3] < [α2, α3].

The weight three basic products are [α1, [α1, α2]], [α1, [α1, α2]], [α2, [α1, α2]], [α2, [α1, α3]], [α2, [α2, α3]],
[α3, [α1, α2]], [α3, [α1, α3]], [α3, [α2, α3]]. One possible ordering is

α1 < α2 < α3 < [α1, α2] < [α1, α3] < [α2, α3] < [α1, [α1, α2]] < [α1, [α1, α2]] < [α2, [α1, α2]]

< [α2, [α1, α3]] < [α2, [α2, α3]] < [α3, [α1, α2]] < [α3, [α1, α3]] < [α3, [α2, α3]].

Note, the ordering on the weight two basic products played no role in determining the basic products
of weight three. However, they do now play a role in determining the basic products of weight four.
For example, [[α1, α2], [α1, α3]] is a basic product of weight four but [[α1, α3], [α1, α2]] is not; this is
because we chose an order in which [α1, α2] < [α1, α3]. Had we chosen to extend the order to basic
products of weight two in such a way that [α1, α3] < [α1, α2], then [[α1, α3], [α1, α2]] would be a basic
product of weight four but [[α1, α2], [α1, α3]] would not be. In general, the ordering of the elements of
weight k only affects the basic products of weight 2k and above.

Any basic product p of weight w is a string of symbols αj1 , . . . , αjw suitably bracketed. Let wj be the

number of occurences of αj in the string representing p. The height of p is defined to be q =
∑k
i=1 riwi.

Let {ps} be the sequence of basic products written in increasing order, and denote the height of ps by
qs. Then Hilton’s Theorem [1] states that there is an isomorphism

πn(Sm1 ∨ · · · ∨ Smk) ∼=
∞⊕
i=1

πn(Sqi+1).

There were choices involved in the definition of basic products (namely the orderings of the weight w
basic products for w ≥ 2). It turns out that had we made different choices, the only difference is that
the direct summands are reordered. More precisely, by a theorem of Witt [2], the number of basic
products involving wj copies of αj , which necessarily have weight w = w1 + · · ·+ wk, is given by

A(w1, . . . , wk) =
1

w

∑
d|wj

µ(d)(w/d)!

(w1/d)! . . . (wk/d)!

where µ denotes the Möbius function defined on the positive integers by

µ(d) =


1 d is square-free with an even number of prime factors

−1 d is square-free with an odd number of prime factors

0 d has a squared prime factor.

It follows that for any q, the number of direct summands of the form πn(Sq+1) is independent of
the choices made. For the purposes of calculation, it is useful to note that A(wσ(1), . . . , wσ(k)) =
A(w1, . . . , wk) for all σ ∈ Sk.

1Note that Hilton uses the notation ιj instead of αj .
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We can calculate πn(Sm1 ∨· · ·∨Smk) as follows: for each q, find the sum of all A(w1, . . . , wk) for which∑k
i=1 riwi = q; call it cq+1 (this is the number of direct summands of the form πn(Sq+1)). Therefore

we have

πn(Sm1 ∨ · · · ∨ Smk) ∼=
∞⊕
q=1

πn(Sq+1)⊕cq+1 =

∞⊕
q=2

πn(Sq)cq .

Furthermore, πn(Sq) = 0 for q > n, so we only need to consider q ≤ n and hence

πn(Sm1 ∨ · · · ∨ Smk) ∼=
n⊕
q=2

πn(Sq)cq .

If n < m1 + m2 − 1, this agrees with the expression we found earlier. To see this, note that for
2 ≤ q < m1 + m2 − 1, any solution of the equation (m1 − 1)w1 + · · · + (mk − 1)wk = q − 1 must be
of the form wi = 1 for some i with mi = q and zero for all other mj . This solution corresponds to a
unique basic product of weight one, namely αi. So we see that cq is equal to the number of spheres in
the wedge product of dimension q and hence recover the previous result.

Example: Suppose we want to calculate the homotopy groups of S3 ∨S4 ∨S5 = S2+1 ∨S3+1 ∨S4+1.
For n < 3 + 4− 1 = 6 we have πn(S3 ∨ S4 ∨ S5) = πn(S3)⊕ πn(S4)⊕ πn(S5).

For n = 6 we want to find the solutions of the equation 2w1 + 3w2 + 4w3 = 5. The only solution is
(1, 1, 0) and the only basic product involving α1 once and α2 once is [α1, α2], so c6 = A(1, 1, 0) = 1
and therefore

π6(S3 ∨ S4 ∨ S5) ∼= π6(S3)⊕ π6(S4)⊕ π6(S5)⊕ π6(S6).

For n = 7 the equation of interest is 2w1 + 3w2 + 4w3 = 6. The solutions are (3, 0, 0), (0, 2, 0), and
(1, 0, 1). There are no basic products involving α1 three times but no α2 and α3. Let’s check with
the formula

A(3, 0, 0) =
1

3

∑
d|wi

µ(d)(3/d)!

(3/d)!0!0!
=

1

3

∑
d|wi

µ(d) =
1

3
(µ(1) + µ(3)) =

1

3
(1− 1) = 0

Likewise, there are no basic products with α2 twice, but no α1 or α3 (note, [α2, α2] is not a basic
product), so A(0, 2, 0) = 0. Finally, there is only one basic product with (w1, w2, w3) = (1, 0, 1),
namely [α1, α3]. Therefore, c7 = A(3, 0, 0) +A(0, 2, 0) +A(1, 0, 1) = 1, so

π7(S3 ∨ S4 ∨ S5) ∼= π7(S3)⊕ π7(S4)⊕ π7(S5)⊕ π7(S6)⊕ π7(S7).
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Here is a table of the relevant information for the next few values of n:

n solutions of 2w1 + 3w2 + 4w3 = n− 1 A cn
8 (2, 1, 0) A(2, 1, 0) = 1

(0, 1, 1) A(0, 1, 1) = 1 1 + 1 = 2
9 (4, 0 ,0) A(4, 0, 0) = 0

(2, 0, 1) A(2, 0, 1) = 1
(1, 2, 0) A(1, 2, 0) = 1
(0, 0, 2) A(0, 0, 2) = 0 0 + 1 + 1 + 0 = 2

10 (3, 1, 0) A(3, 1, 0) = 1
(1, 1, 1) A(1, 1, 1) = 2
(0, 3, 0) A(0, 3, 0) = 0 1 + 2 + 0 = 3

11 (5, 0, 0) A(5, 0, 0) = 0
(3, 0, 1) A(3, 0, 1) = 1
(2, 2, 0) A(2, 2, 0) = 1
(1, 0, 2) A(1, 0, 2) = 1
(0, 2, 1) A(0, 2, 1) = 1 0 + 1 + 1 + 1 + 1 = 4

12 (4, 1, 0) A(4, 1, 0) = 1
(2, 1, 1) A(2, 1, 1) = 3
(1, 2, 0) A(1, 2, 0) = 1
(0, 1, 2) A(0, 1, 2) = 1 1 + 3 + 1 + 1 = 6

So, using our knowledge of the homotopy groups of spheres, we see for example that

π12(S3 ∨ S4 ∨ S5)

∼= π12(S3)⊕ π12(S4)⊕ π12(S5)⊕ π12(S6)⊕ π12(S7)⊕ π12(S8)2 ⊕ π12(S9)2 ⊕ π12(S10)3

⊕ π12(S11)4 ⊕ π12(S12)6

∼= Z2
2 ⊕ Z2 ⊕ Z30 ⊕ Z2 ⊕ 0⊕ 02 ⊕ Z2

24 ⊕ Z3
2 ⊕ Z4

2 ⊕ Z6

∼= Z6 ⊕ Z30 ⊕ Z2
24 ⊕ Z11

2

∼= Z6 ⊕ (Z5 ⊕ Z3 ⊕ Z2)⊕ (Z8 ⊕ Z3)2 ⊕ Z11
2

∼= Z6 ⊕ Z2
8 ⊕ Z5 ⊕ Z3

3 ⊕ Z12
2

In this example, every sphere of dimension greater than m1 +m2 − 1 occurs at least once. This is not
always the case. For example, consider S3 ∨ S5. As the expression 2w1 + 4w2 is never odd, cq = 0
for q even, i.e. only homotopy groups of odd-dimensional spheres appear as direct summands. More
generally, if the greatest common divisor of r1, . . . , rk is r, then cq = 0 if r - q. Even if the relevant
equation has solutions for a given q, there may not be any corresponding basic products. For example,
S3 ∨ S4. The equation 2w1 + 3w2 = 4 has a unique solution, namely (2, 0), but there are no basic
products with two α1 and no α2, so πn(S5) does not appear as a direct summand of πn(S3 ∨ S4).

Here is some pseudocode for calculating the values of cq

• Enter n.

• Enter m1, . . . ,mk.

• Reorder mi in increasing order to get m′i

• Set ri = m′i − 1.

• For q = 2, . . . ,min(r1 + r2, n), set cq to be the number of elements of [ri] equal to q − 1.

• For q = r1 + r2 + 1, . . . , n

– Calculate non-negative integer solutions of [ri]
Tw = q − 1

– For each solution w, calculate (using Witt’s Theorem) A(w).
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– Set cq = sum of A(w)

• Output [cq]
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