HOMOTOPY GROUPS OF A WEDGE SUM OF SPHERES

MICHAEL ALBANESE

Abstract

There is a trick for computing the first few homotopy groups of a wedge sum of spheres which uses cellular approximation. But how do you compute the remaining homotopy groups? The answer is given by Hilton's Theorem. After introducing the trick, I explain Hilton's theorem and how to implement it to calculate the homotopy groups of a wedge sum of spheres in terms of the homotopy groups of spheres.

Consider the space $S^{m_{1}} \vee \cdots \vee S^{m_{k}}$. As $A \vee B$ and $B \vee A$ are homotopy equivalent, we can (and will) assume $m_{1} \leq \cdots \leq m_{k}$.

If $m_{1}=0$, then $\pi_{0}\left(S^{m_{1}} \vee \cdots \vee S^{m_{k}}\right)=\pi_{0}\left(S^{m_{2}} \vee \cdots \vee S^{m_{k}}\right) \oplus \pi_{0}\left(S^{m_{2}} \vee \cdots \vee S^{m_{k}}\right)$ and for $n>0$, $\pi_{n}\left(S^{m_{1}} \vee \cdots \vee S^{m_{k}}\right)=\pi_{n}\left(S^{m_{2}} \vee \cdots \vee S^{m_{k}}\right)$. From now on we will assume that $m_{1}>0$ (and hence $m_{i}>0$ for all $\left.i\right)$.

Cellular Approximation

If X is an p-dimensional CW complex and Y is a CW complex, then by cellular approximation $[X, Y]=\left[X, Y^{(p+1)}\right]$ where $Y^{(p+1)}$ denotes the $(p+1)$-skeleton of Y. If X and Y are also pointed, then the same is true of the pointed homotopy classes; in particular, $\pi_{p}(Y)=\pi_{k}\left(Y^{(p+1)}\right)$.

Returning to the problem at hand, note that $S^{m_{1}} \vee \cdots \vee S^{m_{k}}$ is a subcomplex of $S^{m_{1}} \times \cdots \times S^{m_{k}}$ - the latter is obtained from the former by attaching cells of dimension at least $m_{1}+m_{2}$. However, $S^{m_{1}} \vee \cdots \vee S^{m_{k}}$ need not be the $\left(m_{1}+m_{2}-1\right)$-skeleton of $S^{m_{1}} \times \cdots \times S^{m_{k}}$ as it may contain cells of dimension greater than $m_{1}+m_{2}-1$ (e.g. the 4-skeleton of $S^{2} \times S^{3} \times S^{5}$ is $S^{2} \vee S^{3}$, not $S^{2} \vee S^{3} \vee S^{5}$). However, $S^{m_{1}} \vee \cdots \vee S^{m_{k}}$ and $S^{m_{1}} \times \cdots \times S^{m_{k}}$ have the same $\left(m_{1}+m_{2}-1\right)$-skeleton, namely $S^{m_{1}} \vee \cdots \vee S^{m_{a}}$ where a is such that $m_{a} \leq m_{1}+m_{2}-1<m_{a+1}$. Therefore, for any $n<m_{1}+m_{2}-1$ we have

$$
\begin{aligned}
\pi_{n}\left(S^{m_{1}} \vee \cdots \vee S^{m_{k}}\right) & =\pi_{n}\left(S^{m_{1}} \vee \cdots \vee S^{m_{a}}\right) \\
& =\pi_{n}\left(S^{m_{1}} \times \cdots \times S^{m_{k}}\right) \\
& =\pi_{n}\left(S^{m_{1}}\right) \oplus \cdots \oplus \pi_{n}\left(S^{m_{k}}\right)
\end{aligned}
$$

As $m_{1}+m_{2}-1<m_{a+1} \leq \cdots \leq m_{k}, \pi_{n}\left(S^{m_{a+1}}\right)=\cdots=\pi_{n}\left(S^{m_{k}}\right)=0$ so we can also express the above result as

$$
\pi_{n}\left(S^{m_{1}} \vee \cdots \vee S^{m_{k}}\right)=\pi_{n}\left(S^{m_{1}}\right) \oplus \cdots \oplus \pi_{n}\left(S^{m_{a}}\right)
$$

Hilton's Theorem

Before introducing Hilton's Theorem, we need to make one further reduction.
If $m_{1}=\cdots=m_{b}=1$ and $m_{b+1}, \ldots, m_{k}>1$, the Seifert-van Kampen Theorem shows that $\pi_{1}\left(S^{m_{1}} \vee\right.$ $\left.\cdots \vee S^{m_{k}}\right) \cong F_{b}$, the free group on b generators. The higher homotopy groups are isomorphic to the higher homotopy groups of the universal cover which is homotopy equivalent to the wedge sum of countably many copies of $S^{m_{b+1}} \vee \cdots \vee S^{m_{k}}$. With this in mind, we will assume from now on that $m_{1}>1$ (and hence $m_{i}>1$ for all i) and set $m_{i}=r_{i}+1 ;$ note $r_{i} \geq 1$.

In order to state Hilton's Theorem, we need to introduce what he calls basic products.

Let α_{j} be the positive generator of $\pi_{m_{j}}\left(S^{m_{j}}\right)$ (i.e. the homotopy class of the identity map) ${ }^{1}$. We call $\alpha_{1}, \ldots, \alpha_{k}$ basic products of weight one, and we order them as follows: $\alpha_{1}<\cdots<\alpha_{k}$.

Now assume the basic products of weight less than w have been defined and ordered. Basic products of weight w are Whitehead products $[a, b]$ where a, b are basic products of weights u and v respectively, $u+v=w, a<b$ (in the ordering), and if $b=[c, d]$ where c and d are basic products, then $c \leq a$. Order the weight w elements arbitrarily among themselves and greater than all lower weight basic products. It follows that $u \leq v$.

Example: Suppose $k=3$. Then there are three weight one basic products, namely $\alpha_{1}, \alpha_{2}, \alpha_{3}$, which are ordered as follows: $\alpha_{1}<\alpha_{2}<\alpha_{3}$.

The weight two basic products are $\left[\alpha_{1}, \alpha_{2}\right],\left[\alpha_{1}, \alpha_{3}\right],\left[\alpha_{2}, \alpha_{3}\right]$. We choose to extend the order as follows: $\alpha_{1}<\alpha_{2}<\alpha_{3}<\left[\alpha_{1}, \alpha_{2}\right]<\left[\alpha_{1}, \alpha_{3}\right]<\left[\alpha_{2}, \alpha_{3}\right]$.

The weight three basic products are [$\left.\alpha_{1},\left[\alpha_{1}, \alpha_{2}\right]\right]$, $\left[\alpha_{1},\left[\alpha_{1}, \alpha_{2}\right]\right]$, $\left[\alpha_{2},\left[\alpha_{1}, \alpha_{2}\right]\right],\left[\alpha_{2},\left[\alpha_{1}, \alpha_{3}\right]\right],\left[\alpha_{2},\left[\alpha_{2}, \alpha_{3}\right]\right]$, $\left[\alpha_{3},\left[\alpha_{1}, \alpha_{2}\right]\right],\left[\alpha_{3},\left[\alpha_{1}, \alpha_{3}\right]\right],\left[\alpha_{3},\left[\alpha_{2}, \alpha_{3}\right]\right]$. One possible ordering is

$$
\begin{gathered}
\alpha_{1}<\alpha_{2}<\alpha_{3}<\left[\alpha_{1}, \alpha_{2}\right]<\left[\alpha_{1}, \alpha_{3}\right]<\left[\alpha_{2}, \alpha_{3}\right]<\left[\alpha_{1},\left[\alpha_{1}, \alpha_{2}\right]\right]<\left[\alpha_{1},\left[\alpha_{1}, \alpha_{2}\right]\right]<\left[\alpha_{2},\left[\alpha_{1}, \alpha_{2}\right]\right] \\
<\left[\alpha_{2},\left[\alpha_{1}, \alpha_{3}\right]\right]<\left[\alpha_{2},\left[\alpha_{2}, \alpha_{3}\right]\right]<\left[\alpha_{3},\left[\alpha_{1}, \alpha_{2}\right]\right]<\left[\alpha_{3},\left[\alpha_{1}, \alpha_{3}\right]\right]<\left[\alpha_{3},\left[\alpha_{2}, \alpha_{3}\right]\right] .
\end{gathered}
$$

Note, the ordering on the weight two basic products played no role in determining the basic products of weight three. However, they do now play a role in determining the basic products of weight four. For example, $\left[\left[\alpha_{1}, \alpha_{2}\right],\left[\alpha_{1}, \alpha_{3}\right]\right]$ is a basic product of weight four but $\left[\left[\alpha_{1}, \alpha_{3}\right],\left[\alpha_{1}, \alpha_{2}\right]\right]$ is not; this is because we chose an order in which $\left[\alpha_{1}, \alpha_{2}\right]<\left[\alpha_{1}, \alpha_{3}\right]$. Had we chosen to extend the order to basic products of weight two in such a way that $\left[\alpha_{1}, \alpha_{3}\right]<\left[\alpha_{1}, \alpha_{2}\right]$, then $\left[\left[\alpha_{1}, \alpha_{3}\right],\left[\alpha_{1}, \alpha_{2}\right]\right]$ would be a basic product of weight four but $\left[\left[\alpha_{1}, \alpha_{2}\right],\left[\alpha_{1}, \alpha_{3}\right]\right]$ would not be. In general, the ordering of the elements of weight k only affects the basic products of weight $2 k$ and above.

Any basic product p of weight w is a string of symbols $\alpha_{j_{1}}, \ldots, \alpha_{j_{w}}$ suitably bracketed. Let w_{j} be the number of occurences of α_{j} in the string representing p. The height of p is defined to be $q=\sum_{i=1}^{k} r_{i} w_{i}$.

Let $\left\{p_{s}\right\}$ be the sequence of basic products written in increasing order, and denote the height of p_{s} by q_{s}. Then Hilton's Theorem [1] states that there is an isomorphism

$$
\pi_{n}\left(S^{m_{1}} \vee \cdots \vee S^{m_{k}}\right) \cong \bigoplus_{i=1}^{\infty} \pi_{n}\left(S^{q_{i}+1}\right)
$$

There were choices involved in the definition of basic products (namely the orderings of the weight w basic products for $w \geq 2$). It turns out that had we made different choices, the only difference is that the direct summands are reordered. More precisely, by a theorem of Witt [2], the number of basic products involving w_{j} copies of α_{j}, which necessarily have weight $w=w_{1}+\cdots+w_{k}$, is given by

$$
A\left(w_{1}, \ldots, w_{k}\right)=\frac{1}{w} \sum_{d \mid w_{j}} \frac{\mu(d)(w / d)!}{\left(w_{1} / d\right)!\ldots\left(w_{k} / d\right)!}
$$

where μ denotes the Möbius function defined on the positive integers by

$$
\mu(d)= \begin{cases}1 & d \text { is square-free with an even number of prime factors } \\ -1 & d \text { is square-free with an odd number of prime factors } \\ 0 & d \text { has a squared prime factor }\end{cases}
$$

It follows that for any q, the number of direct summands of the form $\pi_{n}\left(S^{q+1}\right)$ is independent of the choices made. For the purposes of calculation, it is useful to note that $A\left(w_{\sigma(1)}, \ldots, w_{\sigma(k)}\right)=$ $A\left(w_{1}, \ldots, w_{k}\right)$ for all $\sigma \in S_{k}$.

[^0]We can calculate $\pi_{n}\left(S^{m_{1}} \vee \cdots \vee S^{m_{k}}\right)$ as follows: for each q, find the sum of all $A\left(w_{1}, \ldots, w_{k}\right)$ for which $\sum_{i=1}^{k} r_{i} w_{i}=q$; call it c_{q+1} (this is the number of direct summands of the form $\pi_{n}\left(S^{q+1}\right)$). Therefore we have

$$
\pi_{n}\left(S^{m_{1}} \vee \cdots \vee S^{m_{k}}\right) \cong \bigoplus_{q=1}^{\infty} \pi_{n}\left(S^{q+1}\right)^{\oplus c_{q+1}}=\bigoplus_{q=2}^{\infty} \pi_{n}\left(S^{q}\right)^{c_{q}}
$$

Furthermore, $\pi_{n}\left(S^{q}\right)=0$ for $q>n$, so we only need to consider $q \leq n$ and hence

$$
\pi_{n}\left(S^{m_{1}} \vee \cdots \vee S^{m_{k}}\right) \cong \bigoplus_{q=2}^{n} \pi_{n}\left(S^{q}\right)^{c_{q}}
$$

If $n<m_{1}+m_{2}-1$, this agrees with the expression we found earlier. To see this, note that for $2 \leq q<m_{1}+m_{2}-1$, any solution of the equation $\left(m_{1}-1\right) w_{1}+\cdots+\left(m_{k}-1\right) w_{k}=q-1$ must be of the form $w_{i}=1$ for some i with $m_{i}=q$ and zero for all other m_{j}. This solution corresponds to a unique basic product of weight one, namely α_{i}. So we see that c_{q} is equal to the number of spheres in the wedge product of dimension q and hence recover the previous result.

Example: Suppose we want to calculate the homotopy groups of $S^{3} \vee S^{4} \vee S^{5}=S^{2+1} \vee S^{3+1} \vee S^{4+1}$. For $n<3+4-1=6$ we have $\pi_{n}\left(S^{3} \vee S^{4} \vee S^{5}\right)=\pi_{n}\left(S^{3}\right) \oplus \pi_{n}\left(S^{4}\right) \oplus \pi_{n}\left(S^{5}\right)$.

For $n=6$ we want to find the solutions of the equation $2 w_{1}+3 w_{2}+4 w_{3}=5$. The only solution is $(1,1,0)$ and the only basic product involving α_{1} once and α_{2} once is $\left[\alpha_{1}, \alpha_{2}\right]$, so $c_{6}=A(1,1,0)=1$ and therefore

$$
\pi_{6}\left(S^{3} \vee S^{4} \vee S^{5}\right) \cong \pi_{6}\left(S^{3}\right) \oplus \pi_{6}\left(S^{4}\right) \oplus \pi_{6}\left(S^{5}\right) \oplus \pi_{6}\left(S^{6}\right)
$$

For $n=7$ the equation of interest is $2 w_{1}+3 w_{2}+4 w_{3}=6$. The solutions are $(3,0,0),(0,2,0)$, and $(1,0,1)$. There are no basic products involving α_{1} three times but no α_{2} and α_{3}. Let's check with the formula

$$
A(3,0,0)=\frac{1}{3} \sum_{d \mid w_{i}} \frac{\mu(d)(3 / d)!}{(3 / d)!0!0!}=\frac{1}{3} \sum_{d \mid w_{i}} \mu(d)=\frac{1}{3}(\mu(1)+\mu(3))=\frac{1}{3}(1-1)=0
$$

Likewise, there are no basic products with α_{2} twice, but no α_{1} or α_{3} (note, $\left[\alpha_{2}, \alpha_{2}\right]$ is not a basic product), so $A(0,2,0)=0$. Finally, there is only one basic product with $\left(w_{1}, w_{2}, w_{3}\right)=(1,0,1)$, namely $\left[\alpha_{1}, \alpha_{3}\right.$]. Therefore, $c_{7}=A(3,0,0)+A(0,2,0)+A(1,0,1)=1$, so

$$
\pi_{7}\left(S^{3} \vee S^{4} \vee S^{5}\right) \cong \pi_{7}\left(S^{3}\right) \oplus \pi_{7}\left(S^{4}\right) \oplus \pi_{7}\left(S^{5}\right) \oplus \pi_{7}\left(S^{6}\right) \oplus \pi_{7}\left(S^{7}\right)
$$

Here is a table of the relevant information for the next few values of n :

n	solutions of $2 w_{1}+3 w_{2}+4 w_{3}=n-1$	A	c_{n}
8	$(2,1,0)$	$A(2,1,0)=1$	
	$(0,1,1)$	$A(0,1,1)=1$	$1+1=2$
9	$(4,0,0)$	$A(4,0,0)=0$	
	$(2,0,1)$	$A(2,0,1)=1$	
	$(1,2,0)$	$A(1,2,0)=1$	$0+1+1+0=2$
10	$(0,0,2)$	$A(0,0,2)=0$	
	$(3,1,0)$	$A(3,1,0)=1$	
	$(1,1,1)$	$A(1,1,1)=2$	
	$(0,3,0)$	$A(0,3,0)=0$	$1+2+0=3$
	$(5,0,0)$	$A(5,0,0)=0$	
	$(3,0,1)$	$A(3,0,1)=1$	
	$(2,2,0)$	$A(2,2,0)=1$	
	$(1,0,2)$	$A(1,0,2)=1$	
	$(0,2,1)$	$A(0,2,1)=1$	$0+1+1+1+1=4$
12	$(4,1,0)$	$A(4,1,0)=1$	
	$(2,1,1)$	$A(2,1,1)=3$	
	$(1,2,0)$	$A(1,2,0)=1$	
	$(0,1,2)$	$A(0,1,2)=1$	$1+3+1+1=6$

So, using our knowledge of the homotopy groups of spheres, we see for example that

$$
\begin{aligned}
& \pi_{12}\left(S^{3} \vee S^{4} \vee S^{5}\right) \\
\cong & \pi_{12}\left(S^{3}\right) \oplus \pi_{12}\left(S^{4}\right) \oplus \pi_{12}\left(S^{5}\right) \oplus \pi_{12}\left(S^{6}\right) \oplus \pi_{12}\left(S^{7}\right) \oplus \pi_{12}\left(S^{8}\right)^{2} \oplus \pi_{12}\left(S^{9}\right)^{2} \oplus \pi_{12}\left(S^{10}\right)^{3} \\
& \oplus \pi_{12}\left(S^{11}\right)^{4} \oplus \pi_{12}\left(S^{12}\right)^{6} \\
\cong & \mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{30} \oplus \mathbb{Z}_{2} \oplus 0 \oplus 0^{2} \oplus \mathbb{Z}_{24}^{2} \oplus \mathbb{Z}_{2}^{3} \oplus \mathbb{Z}_{2}^{4} \oplus \mathbb{Z}^{6} \\
\cong & \mathbb{Z}^{6} \oplus \mathbb{Z}_{30} \oplus \mathbb{Z}_{24}^{2} \oplus \mathbb{Z}_{2}^{11} \\
\cong & \mathbb{Z}^{6} \oplus\left(\mathbb{Z}_{5} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{2}\right) \oplus\left(\mathbb{Z}_{8} \oplus \mathbb{Z}_{3}\right)^{2} \oplus \mathbb{Z}_{2}^{11} \\
\cong & \mathbb{Z}^{6} \oplus \mathbb{Z}_{8}^{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{3}^{3} \oplus \mathbb{Z}_{2}^{12}
\end{aligned}
$$

In this example, every sphere of dimension greater than $m_{1}+m_{2}-1$ occurs at least once. This is not always the case. For example, consider $S^{3} \vee S^{5}$. As the expression $2 w_{1}+4 w_{2}$ is never odd, $c_{q}=0$ for q even, i.e. only homotopy groups of odd-dimensional spheres appear as direct summands. More generally, if the greatest common divisor of r_{1}, \ldots, r_{k} is r, then $c_{q}=0$ if $r \nmid q$. Even if the relevant equation has solutions for a given q, there may not be any corresponding basic products. For example, $S^{3} \vee S^{4}$. The equation $2 w_{1}+3 w_{2}=4$ has a unique solution, namely $(2,0)$, but there are no basic products with two α_{1} and no α_{2}, so $\pi_{n}\left(S^{5}\right)$ does not appear as a direct summand of $\pi_{n}\left(S^{3} \vee S^{4}\right)$.

Here is some pseudocode for calculating the values of c_{q}

- Enter n.
- Enter m_{1}, \ldots, m_{k}.
- Reorder m_{i} in increasing order to get m_{i}^{\prime}
- Set $r_{i}=m_{i}^{\prime}-1$.
- For $q=2, \ldots, \min \left(r_{1}+r_{2}, n\right)$, set c_{q} to be the number of elements of $\left[r_{i}\right]$ equal to $q-1$.
- For $q=r_{1}+r_{2}+1, \ldots, n$
- Calculate non-negative integer solutions of $\left[r_{i}\right]^{T} \mathbf{w}=q-1$
- For each solution w, calculate (using Witt's Theorem) $A(\mathbf{w})$.
- Set $c_{q}=$ sum of $A(\mathbf{w})$
- Output $\left[c_{q}\right]$

References

[1] P. Hilton, On the homotopy groups of the union of spheres, Journal of the London Mathematical Society, 30 (1955), pp. 154-172.
[2] E. Witt, Treue Darstellung Liescher Ringe, Journal für die reine und angewandte Mathematik, 177 (1937), pp. 152-160.

[^0]: ${ }^{1}$ Note that Hilton uses the notation ι_{j} instead of α_{j}.

