HOMOTOPY GROUPS OF A WEDGE SUM OF SPHERES

MICHAEL ALBANESE

Abstract. There is a trick for computing the first few homotopy groups of a wedge sum of spheres which uses cellular approximation. But how do you compute the remaining homotopy groups? The answer is given by Hilton’s Theorem. After introducing the trick, I explain Hilton’s theorem and how to implement it to calculate the homotopy groups of a wedge sum of spheres in terms of the homotopy groups of spheres.

Consider the space \(S^{m_1} \vee \cdots \vee S^{m_k} \). As \(A \vee B \) and \(B \vee A \) are homotopy equivalent, we can (and will) assume \(m_1 \leq \cdots \leq m_k \).

If \(m_1 = 0 \), then \(\pi_0(S^{m_1} \vee \cdots \vee S^{m_k}) = \pi_0(S^{m_2} \vee \cdots \vee S^{m_k}) \oplus \pi_0(S^{m_1} \vee \cdots \vee S^{m_k}) \) and for \(n > 0 \), \(\pi_n(S^{m_1} \vee \cdots \vee S^{m_k}) = \pi_n(S^{m_2} \vee \cdots \vee S^{m_k}) \). From now on we will assume that \(m_1 > 0 \) (and hence \(m_i > 0 \) for all \(i \)).

Cellular Approximation

If \(X \) is an \(p \)-dimensional CW complex and \(Y \) is a CW complex, then by cellular approximation \([X, Y] = [X, Y^{(p+1)}]\) where \(Y^{(p+1)} \) denotes the \((p+1)\)-skeleton of \(Y \). If \(X \) and \(Y \) are also pointed, then the same is true of the pointed homotopy classes; in particular, \(\pi_p(Y) = \pi_k(Y^{(p+1)}) \).

Returning to the problem at hand, note that \(S^{m_1} \vee \cdots \vee S^{m_k} \) is a subcomplex of \(S^{m_1} \times \cdots \times S^{m_k} \) - the latter is obtained from the former by attaching cells of dimension at least \(m_1 + m_2 \). However, \(S^{m_1} \vee \cdots \vee S^{m_k} \) need not be the \((m_1 + m_2 - 1)\)-skeleton of \(S^{m_1} \times \cdots \times S^{m_k} \) as it may contain cells of dimension greater than \(m_1 + m_2 - 1 \) (e.g. the 4-skeleton of \(S^2 \times S^3 \times S^5 \) is \(S^2 \vee S^3 \), not \(S^2 \vee S^3 \vee S^5 \)). However, \(S^{m_1} \vee \cdots \vee S^{m_k} \) and \(S^{m_1} \times \cdots \times S^{m_k} \) have the same \((m_1 + m_2 - 1)\)-skeleton, namely \(S^{m_1} \vee \cdots \vee S^{m_a} \) where \(a \) is such that \(m_a \leq m_1 + m_2 - 1 < m_{a+1} \). Therefore, for any \(n < m_1 + m_2 - 1 \) we have

\[
\begin{align*}
\pi_n(S^{m_1} \vee \cdots \vee S^{m_k}) &= \pi_n(S^{m_1} \vee \cdots \vee S^{m_a}) \\
&= \pi_n(S^{m_1} \times \cdots \times S^{m_k}) \\
&= \pi_n(S^{m_1}) \oplus \cdots \oplus \pi_n(S^{m_k}).
\end{align*}
\]

As \(m_1 + m_2 - 1 < m_{a+1} \leq \cdots \leq m_k \), \(\pi_n(S^{m_{a+1}}) = \cdots = \pi_n(S^{m_k}) = 0 \) so we can also express the above result as

\[
\pi_n(S^{m_1} \vee \cdots \vee S^{m_k}) = \pi_n(S^{m_1}) \oplus \cdots \oplus \pi_n(S^{m_a}).
\]

Hilton’s Theorem

Before introducing Hilton’s Theorem, we need to make one further reduction.

If \(m_1 = \cdots = m_b = 1 \) and \(m_{b+1}, \ldots, m_k > 1 \), the Seifert-van Kampen Theorem shows that \(\pi_1(S^{m_1} \vee \cdots \vee S^{m_k}) \cong F_b \), the free group on \(b \) generators. The higher homotopy groups are isomorphic to the higher homotopy groups of the universal cover which is homotopy equivalent to the wedge sum of countably many copies of \(S^{m_{k+1}} \vee \cdots \vee S^{m_k} \). With this in mind, we will assume from now on that \(m_1 > 1 \) (and hence \(m_i > 1 \) for all \(i \)) and set \(m_i = r_i + 1 \); note \(r_i \geq 1 \).

In order to state Hilton’s Theorem, we need to introduce what he calls basic products.
Let \(\alpha_j \) be the positive generator of \(\pi_m(S^m) \) (i.e. the homotopy class of the identity map)\(^1\). We call \(\alpha_1, \ldots, \alpha_k \) basic products of weight one, and we order them as follows: \(\alpha_1 < \cdots < \alpha_k \).

Now assume the basic products of weight less than \(w \) have been defined and ordered. Basic products of weight \(w \) are Whitehead products \([a, b]\) where \(a, b \) are basic products of weights \(u \) and \(v \) respectively, \(u + v = w, a < b \) (in the ordering), and if \(b = [c, d] \) where \(c \) and \(d \) are basic products, then \(c \leq a \). Order the weight \(w \) elements arbitrarily among themselves and greater than all lower weight basic products. It follows that \(u \leq v \).

Example: Suppose \(k = 3 \). Then there are three weight one basic products, namely \(\alpha_1, \alpha_2, \alpha_3 \), which are ordered as follows: \(\alpha_1 < \alpha_2 < \alpha_3 \).

The weight two basic products are \([\alpha_1, \alpha_2], [\alpha_1, \alpha_3], [\alpha_2, \alpha_3]\). We choose to extend the order as follows: \(\alpha_1 < \alpha_2 < \alpha_3 < [\alpha_1, \alpha_2] < [\alpha_1, \alpha_3] < [\alpha_2, \alpha_3] \).

The weight three basic products are \([\alpha_1, [\alpha_1, \alpha_2]], [\alpha_1, [\alpha_1, \alpha_3]], [\alpha_1, [\alpha_2, \alpha_3]], [\alpha_2, [\alpha_1, \alpha_3]], [\alpha_2, [\alpha_2, \alpha_3]], [\alpha_3, [\alpha_1, \alpha_3]], [\alpha_3, [\alpha_2, \alpha_3]]\). One possible ordering is

\[
\alpha_1 < \alpha_2 < \alpha_3 < [\alpha_1, \alpha_2] < [\alpha_1, \alpha_3] < [\alpha_2, \alpha_3] < [\alpha_1, \alpha_2] < [\alpha_1, \alpha_2] < [\alpha_2, \alpha_2] < [\alpha_2, \alpha_3] < [\alpha_3, \alpha_1, \alpha_3] < [\alpha_3, \alpha_3, \alpha_3].
\]

Note, the ordering on the weight two basic products played no role in determining the basic products of weight three. However, they do now play a role in determining the basic products of weight four. For example, \([\alpha_1, \alpha_2], [\alpha_1, \alpha_3]\) is a basic product of weight four but \([\alpha_1, \alpha_3], [\alpha_1, \alpha_2]\) is not; this is because we chose an order in which \([\alpha_1, \alpha_2] < [\alpha_1, \alpha_3]\). Had we chosen to extend the order to basic products of weight two in such a way that \([\alpha_1, \alpha_3] < [\alpha_1, \alpha_2]\), then \([\alpha_1, \alpha_3], [\alpha_1, \alpha_2]\) would be a basic product of weight four but \([\alpha_1, \alpha_2], [\alpha_1, \alpha_3]\) would not be. In general, the ordering of the elements of weight \(k \) only affects the basic products of weight \(2k \) and above.

Any basic product \(p \) of weight \(w \) is a string of symbols \(\alpha_{j_1}, \ldots, \alpha_{j_w} \) suitably bracketed. Let \(w_j \) be the number of occurrences of \(\alpha_j \) in the string representing \(p \). The height of \(p \) is defined to be \(q = \sum_{i=1}^k r_i w_i \).

Let \(\{p_s\} \) be the sequence of basic products written in increasing order, and denote the height of \(p_s \) by \(q_s \). Then Hilton’s Theorem [1] states that there is an isomorphism

\[
\pi_n(S^{m1} \vee \cdots \vee S^{m_k}) \cong \bigoplus_{i=1}^{\infty} \pi_n(S^{q_i+1}).
\]

There were choices involved in the definition of basic products (namely the orderings of the weight \(w \) basic products for \(w \geq 2 \)). It turns out that had we made different choices, the only difference is that the direct summands are reordered. More precisely, by a theorem of Witt [2], the number of basic products involving \(w_j \) copies of \(\alpha_j \), which necessarily have weight \(w = w_1 + \cdots + w_k \), is given by

\[
A(w_1, \ldots, w_k) = \frac{1}{w} \sum_{d|w} \mu(d) \frac{(w/d)!}{(w_1/d)! \cdots (w_k/d)!}
\]

where \(\mu \) denotes the Möbius function defined on the positive integers by

\[
\mu(d) = \begin{cases}
1 & \text{d is square-free with an even number of prime factors} \\
-1 & \text{d is square-free with an odd number of prime factors} \\
0 & \text{d has a squared prime factor.}
\end{cases}
\]

It follows that for any \(q \), the number of direct summands of the form \(\pi_n(S^{q+i}) \) is independent of the choices made. For the purposes of calculation, it is useful to note that \(A(w_{\sigma(1)}, \ldots, w_{\sigma(k)}) = A(w_1, \ldots, w_k) \) for all \(\sigma \in S_k \).

\(^1\)Note that Hilton uses the notation \(\iota_j \) instead of \(\alpha_j \).
We can calculate $\pi_n(S^{m_1} \vee \cdots \vee S^{m_k})$ as follows: for each q, find the sum of all $A(w_1, \ldots, w_k)$ for which $\sum_{i=1}^k r_i w_i = q$; call it c_{q+1} (this is the number of direct summands of the form $\pi_n(S^{q+1})$). Therefore we have

$$\pi_n(S^{m_1} \vee \cdots \vee S^{m_k}) \cong \bigoplus_{q=1}^{\infty} \pi_n(S^{q+1})^{\otimes c_{q+1}} = \bigoplus_{q=2}^{\infty} \pi_n(S^q)^{c_q}.$$

Furthermore, $\pi_n(S^q) = 0$ for $q > n$, so we only need to consider $q \leq n$ and hence

$$\pi_n(S^{m_1} \vee \cdots \vee S^{m_k}) \cong \bigoplus_{q=2}^n \pi_n(S^q)^{c_q}.$$

If $n < m_1 + m_2 - 1$, this agrees with the expression we found earlier. To see this, note that for $2 \leq q < m_1 + m_2 - 1$, any solution of the equation $(m_1 - 1)w_1 + \cdots + (m_k - 1)w_k = q - 1$ must be of the form $w_i = 1$ for some i with $m_i = q$ and zero for all other m_j. This solution corresponds to a unique basic product of weight one, namely α_i. So we see that c_q is equal to the number of spheres in the wedge product of dimension q and hence recover the previous result.

Example: Suppose we want to calculate the homotopy groups of $S^3 \vee S^4 \vee S^5 = S^{2+1} \vee S^{3+1} \vee S^{4+1}$. For $n < 3 + 4 - 1 = 6$ we have $\pi_n(S^3 \vee S^4 \vee S^5) = \pi_n(S^3) \oplus \pi_n(S^4) \oplus \pi_n(S^5)$.

For $n = 6$ we want to find the solutions of the equation $2w_1 + 3w_2 + 4w_3 = 5$. The only solution is $(1, 1, 0)$ and the only basic product involving α_1 once and α_2 once is $\{\alpha_1, \alpha_2\}$, so $c_6 = A(1, 1, 0) = 1$ and therefore

$$\pi_6(S^3 \vee S^4 \vee S^5) \cong \pi_6(S^3) \oplus \pi_6(S^4) \oplus \pi_6(S^5) \oplus \pi_6(S^6).$$

For $n = 7$ the equation of interest is $2w_1 + 3w_2 + 4w_3 = 6$. The solutions are $(3, 0, 0)$, $(0, 2, 0)$, and $(1, 0, 1)$. There are no basic products involving α_1 three times but no α_2 and α_3. Let’s check with the formula

$$A(3, 0, 0) = \frac{1}{3} \sum_{d \mid w_i} \mu(d)(3/d)! = \frac{1}{3} \sum_{d \mid w_i} \mu(d) = \frac{1}{3} (\mu(1) + \mu(3)) = \frac{1}{3} (1 - 1) = 0$$

Likewise, there are no basic products with α_2 twice, but no α_1 or α_3 (note, $[\alpha_2, \alpha_2]$ is not a basic product), so $A(0, 2, 0) = 0$. Finally, there is only one basic product with $(w_1, w_2, w_3) = (1, 0, 1)$, namely $[\alpha_1, \alpha_3]$. Therefore, $c_7 = A(3, 0, 0) + A(0, 2, 0) + A(1, 0, 1) = 1$, so

$$\pi_7(S^3 \vee S^4 \vee S^5) \cong \pi_7(S^3) \oplus \pi_7(S^4) \oplus \pi_7(S^5) \oplus \pi_7(S^6) \oplus \pi_7(S^7).$$
Here is a table of the relevant information for the next few values of n:

<table>
<thead>
<tr>
<th>n</th>
<th>solutions of $2w_1 + 3w_2 + 4w_3 = n - 1$</th>
<th>A</th>
<th>c_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$(2, 1, 0)$, $(0, 1, 1)$</td>
<td>$A(2, 1, 0) = 1$</td>
<td>$1 + 1 = 2$</td>
</tr>
<tr>
<td>9</td>
<td>$(4, 0, 0)$, $(2, 0, 1)$, $(1, 2, 0)$, $(0, 0, 2)$</td>
<td>$A(4, 0, 0) = 0$</td>
<td>$0 + 1 + 1 + 0 = 2$</td>
</tr>
<tr>
<td>10</td>
<td>$(3, 1, 0)$, $(1, 1, 1)$, $(0, 3, 0)$</td>
<td>$A(3, 1, 0) = 1$</td>
<td>$1 + 2 + 0 = 3$</td>
</tr>
<tr>
<td>11</td>
<td>$(5, 0, 0)$, $(3, 0, 1)$, $(2, 2, 0)$, $(1, 0, 2)$, $(0, 2, 1)$</td>
<td>$A(5, 0, 0) = 0$</td>
<td>$0 + 1 + 1 + 1 + 1 = 4$</td>
</tr>
<tr>
<td>12</td>
<td>$(4, 1, 0)$, $(2, 1, 1)$, $(1, 2, 0)$, $(0, 1, 2)$</td>
<td>$A(4, 1, 0) = 1$</td>
<td>$1 + 3 + 1 + 1 = 6$</td>
</tr>
</tbody>
</table>

So, using our knowledge of the homotopy groups of spheres, we see for example that

$$
\pi_{12}(S^3 \vee S^4 \vee S^5) \\
\cong \pi_{12}(S^3) \oplus \pi_{12}(S^4) \oplus \pi_{12}(S^5) \oplus \pi_{12}(S^6) \oplus \pi_{12}(S^7) \oplus \pi_{12}(S^8)^2 \oplus \pi_{12}(S^9)^2 \oplus \pi_{12}(S^{10})^3 \\
\oplus \pi_{12}(S^{11})^4 \oplus \pi_{12}(S^{12})^6 \\
\cong \mathbb{Z}_2^3 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{30} \oplus \mathbb{Z}_2 \oplus 0 \oplus 0^2 \oplus \mathbb{Z}_4^2 \oplus \mathbb{Z}_2^3 \oplus \mathbb{Z}_2^4 \oplus \mathbb{Z}^6 \\
\cong \mathbb{Z}^6 \oplus \mathbb{Z}_{30} \oplus \mathbb{Z}_2^3 \oplus \mathbb{Z}_2^4 \oplus \mathbb{Z}_4^2 \\
\cong \mathbb{Z}^6 \oplus (\mathbb{Z}_5 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_2) \oplus (\mathbb{Z}_5 \oplus \mathbb{Z}_3)^2 \oplus \mathbb{Z}_2^{11} \\
\cong \mathbb{Z}^6 \oplus \mathbb{Z}_5^2 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_2^{12}
$$

In this example, every sphere of dimension greater than $m_1 + m_2 - 1$ occurs at least once. This is not always the case. For example, consider $S^3 \vee S^5$. As the expression $2w_1 + 4w_2$ is never odd, $c_q = 0$ for q even, i.e. only homotopy groups of odd-dimensional spheres appear as direct summands. More generally, if the greatest common divisor of r_1, \ldots, r_k is r, then $c_q = 0$ if $r \nmid q$. Even if the relevant equation has solutions for a given q, there may not be any corresponding basic products. For example, $S^3 \vee S^4$. The equation $2w_1 + 3w_2 = 4$ has a unique solution, namely $(2, 0)$, but there are no basic products with two α_1 and no α_2, so $\pi_n(S^5)$ does not appear as a direct summand of $\pi_n(S^3 \vee S^4)$.

Here is some pseudocode for calculating the values of c_q

- Enter n.
- Enter m_1, \ldots, m_k.
- Reorder m_i in increasing order to get m_i'
- Set $r_i = m_i' - 1$.
- For $q = 2, \ldots, \min(r_1 + r_2, n)$, set c_q to be the number of elements of $[r_i]$ equal to $q - 1$.
- For $q = r_1 + r_2 + 1, \ldots, n$
 - Calculate non-negative integer solutions of $[r_i]^T w = q - 1$
 - For each solution w, calculate (using Witt's Theorem) $A(w)$.

\[\text{Set } c_q = \text{sum of } A(w) \]

- Output \([c_q]\)

\textbf{References}
