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What are the symmetric unimodular bilinear forms that can be the intersection form of a closed 4-
manifold? It follows from the theorem of Rochlin [1] that the signature of a closed, simply connected
manifold of dimension four, whose intersection form is even, is divisible by 16. In this note, we present
an example which shows that the simply connected hypothesis is essential in the above statement.

The theorem of Rochlin says that the signature of a manifold of dimension 4 which is closed and almost
parallelisable is divisible by 16. On the other hand, an orientable manifold M of dimension 4 is almost
parallelisable if and only if its second Stiefel-Whitney class w2(M) ∈ H2(M ;Z2) is zero. This condition
can also be expressed in terms of the mod 2 intersection form as follows: Let u2 = u2(M) ∈ H2(M ;Z2),
be the second Wu class defined by the formula 〈u2 · x, [M ]〉 = 〈Sq2(x), [M ]〉 for all x ∈ Hn−2(M ;Z2).
We recall the formula of Wu, w = Sq(u), where w = 1 + w1 + w2 + . . . and u = 1 + u1 + u2 + . . . are
respectively the total classes of Stiefel-Whitney and of Wu. For the remainder, M now denotes a closed
orientable manifold of dimension 4. Then w1(M) = 0 and the formula of Wu gives w2(M) = u2(M).
Thus we have the formula w2 · x = Sq2(x) = x2 for all x ∈ H2(M ;Z2). So for M closed, orientable of
dimension 4, we have w2 = 0 if and only if x2 = 0 for all x ∈ H2(M ;Z2).

Let T 2 = T 2(M ;Z) be the torsion subgroup of H2 = H2(M ;Z) and let ρ : H2(M ;Z) → H2(M ;Z2)
be reduction mod 2. The subspaces ρ(T 2) and ρ(H2) are mutually orthogonal (for the product mod
2). In fact, for dimension reasons (cf. [2]) each is the orthogonal complement of the other. It follows
that:

(i) w2(M) ∈ ρ(H2)

(ii) w2(M) ∈ ρ(T 2)⇔ the intersection form on H2/T 2 is even.

Thus for M4 simply connected (T 2 = 0) the conditions

(a) M has even intersection form (w2 ∈ ρ(T 2))

(b) M is almost parallelisable (w2 = 0)

are equivalent.

Thus we find the statement at the beginning as a corollary of the theorem of Rochlin. If M is simply
connected of dimension 4 and possesses an even intersection form, then its signature is divisible by 16.
But in general, condition (a) above is weaker than (b) as can be seen in the following example:

Let M̃ = S2×S2 andM = M̃/Z2 where Z2 acts on M̃ by (x, y)→ (−x,−y). We have rankH2(M)+2 =

χ(M) = 1
2χ(M̃) = 2 so rankH2(M) = 0, that is to say H2(M) = T 2(M). On the other hand, from

the diagonal embedding S2 ↪→ S2 × S2 we obtain by passing to quotients an embedding RP2 i
↪−→ M

with self-intersection 1. If x ∈ H2(M ;Z2) is the Poincaré dual of i∗[RP2] ∈ H2(M ;Z2), we have
w2 · x = x2 = 1 and so w2 6= 0.

The manifold above has signature zero, since H2/T 2 = 0. Nevertheless, this construction gave us hope
that there could be a manifold with even intersection form and signature ≡ 8 mod 16. Here is such an
example: Let M̃ be the hypersurface of degree 4 of CP3 given by the equation z40 + z41 + z42 + z43 = 0.
We define an involution on CP3 by (z0, z1, z2, z3) 7→ (z1,−z0, z3,−z2). It is easy to verify that it

1



2 NATHAN HABEGGER

is an involution without fixed points which leaves M̃ invariant. By taking quotients we obtain an

embedding M = M̃/Z2
i−→ Q = CP3/Z2. It is easy to verify that M is orientable with normal bundle

ν(i) non-orientable.

We will verify that the intersection form of M is even, signature(M) = −8, rankH2(M ;Z) = 10.
According to the classification of unimodular symmetric forms (cf [4]), we obtain

Proposition. Any even unimodular symmetric bilinear form with |signature| ≤ 4
5 rank is the inter-

section form of a closed manifold of dimension 4.

The manifold M̃ has the following properties (cf. [3]). M̃ is simply connected, rankH2(M̃ ;Z) =

22, signature(M̃) = −16. We have −16 = signature(M̃) = 〈p1(M̃)/3, [M̃ ]〉 = 〈p1(M)/3, 2[M ]〉 =

2 signature(M), therefore signature(M) = −8. On the other hand rankH2(M)+2 = χ(M) = 1
2χ(M̃) =

1
2 (rankH2(M̃) + 2) = 12 and therefore rankH2(M) = 10.

It remains to be seen that the intersection form of M is even. From what precedes, it suffices to see
that w2(M) ∈ ρ(T 2(M ;Z)). From the fibre equation TM + ν(i) = i∗TQ induced by the inclusion

M
i−→ Q, we deduce that w2(M) + w2(ν(i)) = i∗w2(Q). We will show that H2(Q;Z2) = ρ(T 2(Q;Z))

and w2(ν(i)) = 0. It follows that w2(M) = i∗w2(Q) ∈ i∗ρ(T 2(Q;Z)) ⊂ ρ(T 2(M ;Z)).

Let CP1 ↪→ CP3 be given by z2 = z3 = 0. By taking quotients, we obtain RP2 = CP1/Z2
j
↪−→ Q.

Recall that for a two-sheeted covering X̃ → X, we have the short exact sequences of chain complexes:
0→ C(X)⊗ Z2 → C(X̃)⊗ Z2 → C(X)⊗ Z2 → 0. So we obtain the diagram

H2(CP1;Z2) H2(RP2;Z2) H1(RP2;Z2) H1(CP1;Z2) = 0

H2(CP3;Z2) H2(Q;Z2) H1(Q;Z2) H1(CP3;Z2) = 0

0

∼= ∼=

It follows that H2(RP2;Z2)→ H2(Q;Z2) is an isomorphism. By duality, H2(Q;Z2)→ H2(RP2;Z2) is
an isomorphism. The commutative diagram

Ext(H1(Q;Z),Z) H2(Q;Z) H2(Q;Z2)

Ext(H1(RP2;Z),Z) H2(RP2;Z) H2(RP2;Z2)

∼=

ρ

∼=

∼= ρ

∼=

establishes that ρ(T 2(Q;Z)) = H2(Q;Z2).

As j∗[RP2] generates H2(Q;Z2) and the intersection of RP2 and M is zero (M̃ is of degree 4), it follows
that i∗[M ] = 0 in H4(Q;Z2). The Euler class of the normal bundle ν(i) is therefore also trivial, which
shows that w2(ν(i)) = 0.

I would like to thank M. Michel Kervaire for the interest he took during the development of this work.
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