WHICH GRASSMANNIANS ARE SPIN/SPIN¢?

MICHAEL ALBANESE

ABSTRACT. The purpose of this note is to determine which (unoriented, oriented, and complex)
grassmannians are spin, and which ones are spin®. In order to achieve this goal, formulae for the first
and second Stiefel-Whitney classes of a tensor product are derived. The corresponding non-orientable
analogues pint, pin~, and pin€ are also considered.

Let Gr(a,b) denote the grassmanian of a-dimensional subspaces of a real b-dimensional vector space,
and denote the tautological bundle over it by . Recall that T Gr(a,b) = Hom(y,y+) = v* @ 4+ =
v ®~+ where v is the orthogonal complement of v C €® with respect to a fixed Riemannian metric on
eb. As a smooth manifold M is spin if and only if w; (M) = 0 and wy(M) = 0, we need to determine
formulae for w1 (E ® F) and wq(E ® F).

1. STIEFEL-WHITNEY CLASSES OF A TENSOR PRODUCT

Lemma. Let Ly and Lo be real line bundles over a paracompact space B. Then wyi(L; ® Lg) =
wl(Ll) —+ w1(L2).

Proof. Let m; : RP>® x RP*™ — RP* denote projection onto the i*" factor and let p : RP™ x RP>® —
RP* be a classifying map for 75+ ® 75+. By the Kiinneth theorem, w}w; () and 75w, (y) form a basis
for HY(RP™ x RP™; Zsy), so wy (m}y @ m47y) = aniwi(y) + brjwi(y) for some a,b € Zs.

If o : RP* x RP* — RP* x RP* is the map which interchanges factors, then 71 o ¢ = 7y and
T 00 = 71, 80 o w1 (y) = amjwi () + brjwi (), but oo u classifies T3y @ iy X iy @iy so ocop
is homotopic to p. Therefore

amywi () + brjwi(7) = (0 0 p) wi(y) = prwi(y) = amjwi(y) + brywa(y),
which implies a = b. So either wy (7y ® 757v) = 7iwi () + miwi(7y), or wy(7iy @ 757y) = 0.
Now let f; : B — RP* be a classifying map for L;. Then

(f1, fo)*(miy @ m37y) = ((f1, f2)"717) @ ((f1, f2) " 737)
= (o (f1, f2))"y @ (m2 0 (f1, f2)")y

As wi(Ly @ L2) = wi((f1, f2)" (717 @ m3v) = (f1, fo) wi(mly ® 737), if wi(r]y ® 73y) = 0, then
w1 (L1 ® Ly) = 0. This is clearly false, just take L; to be non-trivial and Ly to be trivial. Therefore
wi(miy ® 137) = mjwi(y) + m3wi(7y) and so

wy (L1 @ La) = (f1, fo) wi(miy @ 757)
= (f1, fo)" (riwi(7) + mowi (7))
= (f1, fo)'miwi() + (f1, f2) " mwi(y)
= (710 (f1, f2)) w1 () + (72 0 (f1, f2)) wi(7)

= fiwi(y) + fywi(v)
1
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wi(fiy) +wi(f37)
= U}l(Ll) =+ ’wl(Lg).

With this lemma in hand, we can move on to the general case thanks to the splitting principle.

Theorem. Let E and F be real vector bundles over a paracompact space B. Let m = rank E and
n=rank F. Then w(E @ F) = ppp(w1(E), ..., wn(E),wi(F),...,w,(F)) where py, , is the unique
polynomial which satisfies

m n
pm,n((flw-~a0'm77—17-~'77—n) :HH 1+xl+yj
i=1j=1

where oy, = o1(T1,. ., Tm) and T, = (Y1, - -, Yn) are the k' elementary symmetric polynomials in
m and n variables respectively.

Proof. By the splitting principle, there is a paracompact space Y and a map g : Y — B such that
GEXV @ - @l and g* : H*(Y;Zy) — H*(B;Z2) is injective. Again by the splitting principle,
there is a paracompact space X and a map f : X — Y such that f*¢*F = 9, & --- & n,, and
f*: HY(X;Zs) — H*(Y;Z2) is injective. Letting ¢; = f*¢;, we have f*¢*E =2 {1 @ -+ @ £y,. So

[gEQF) = (f"9E)®(f"¢F) =t - &ly)me-on) =P ten

i=1 j=1

Therefore,

w(f*g"(E® F)) @@z ® n;
Jj=1

where the penultimate equality uses the lemma and z; := w1 (), y; := wi(n;).

Denote the final expression above by q(z1,...,%m,y1,---,Yyn). Note that ¢ is a polynomial which is
symmetric in the x; and the y; separately, so by the fundamental theorem of symmetric polynomials,
there is a unique polynomial p,, , such that
(@15 Ty Yo Ym) = Pmon(O15 ooy Oy T - Th).

Now note that o;(z1,...,&m) = w;((1®- - -®ly,) = w;(f*¢*E) = f*g*w;(F) and likewise 7;(y1, ..., yn) =
g w]( ), s0

ffewEeF) =w(f g (E®F))

= Q(x17"‘7$m7y17"'7yn)

:pm,n(Uly- --7O-maT1a"'aTn)
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= [0 pmn(Wi(E),. .., wn(E),wi(F),...,w,(F)).
By the injectivity of f* and g*, we have W(EQ® F) = ppyn(W1(E), ..., wn(E),w1(F),...,w,(F)). O

The two proofs above constitute a solution to Problem 7-C from [4].

As in the proof, we will use q(x1,...,%m,¥1,---,Yn) to denote the right hand side of the equation in
the theorem.

If we can identify the degree k part of p, ,, then we can obtain an explicit formula for wi(E ® F) in
terms of wy(E),...,wi(E),w1(F),...,wg(F). In particular, we need to express the degree k part of ¢
as a polynomial in elementary symmetric polynomials. To achieve our main goal, we only need to do
this for K =1 and 2.

The degree one part of ¢ is

m n m n
ZZ(% +y) = anZ erZyj =n01(1,. .., Tom) + M7 (Y15 -+ Yn)-
i=1 j=1

i=1 j=1

Therefore, we have the following:

Proposition. For vector bundles E, F over a paracompact space with rank E = m and rank F' = n,
we have

w1 (E ® F) = nwy (E) + mw; (F).

Now we need to identify the degree two part of g; this is more difficult. First note that ¢ is the product
of mn factors, and any two factors gives rise to four degree two terms, so there should be a total of
4("’2”) terms in the degree two part of g. There are five distinct types of terms that can appear: z?,
yJQ-, xixy with @ # 7', yjy; with j # j/, and z;y;.

The z? terms only arise from the subproduct (1 + z; +41)...(1 + x; + y,), and each choice of two

factors gives rise to one such term, so in total there are (72’) copies of 2.

The y7 terms only arise from the subproduct (1 + 21 +y;) ... (1 + &y, + y;), and each choice of two

factors gives rise to one such term, so in total there are (ZL) copies of y?

The x;x; terms with ¢ # ¢ only arise from the subproduct (14 z; + 41)... (1 4+ z; + yu)(1 + zy +
y1)...(1+ x4 + yn), and each choice of a factor from the first n and a factor from the second n gives
rise to one such term, so in total there are n? copies of x;x;.

The y,y;» terms with j # j’ only arise from the subproduct (1 +x1 +y;)... (1 + zm +y;)(1 + 21 +
yjr) ... (1 + am + y;v), and each choice of a factor from the first m and a factor from the second m
gives rise to one such term, so in total there are m? copies of y;y;.

Now consider terms of the form z;y;. They can only arise from products of factors of the form
(1 + i + y;r) where i = ¢/ or j = j'. Given one of the n — 1 factors of the form (1 + x; + y;7)
with j' # j, there are precisely m factors which contain y;, namely (1 + z1 +y;),..., (1 + zm + y;),
which can combine with (1 + z; + y;/) to produce one z;y; term. Likewise, given one of the m — 1
factors of the form (1 + ;s + y;) with ¢’ # 4, there are precisely n factors which contain z;, namely
(I4+z;+vy1),...,(14+xm+y,), which can combine with (14 z; +y;) to produce one z;y; term. Finally,
the unique factor (1 + x; + y;) can combine with (m — 1) + (n — 1) factors to produce one z;y; term,
namely factors of the form (1 + z; + y;/) where i = ¢’ or j = j’, but not both. Note, we have double
counted each appearance of z;y;, so in total there are 3 [m(n—1)+n(m—1)+(m—1)+(n—1)] = mn—1
copies of z;y;.
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We should check that we haven’t missed any terms. There are m terms of the form 2

7, n terms of
the form y?, (}) terms of the form z;zy with i # ', () terms of the form y;y; with j # j’, and mn

terms of the form x;y;. Therefore, there are a total of

m(Z) + n(?) + (7;1) n? + (Z) m2 + mn(mn — 1)

2

1 1 1 1
§mn(n -1)+ imn(m -1)+ 3m n(n—1)+ §mn2(m —1)+mn(mn —1)

%mn[(n )t (m—1) 4 m(n— 1)+ n(m— 1)+ 2(mn — 1)]

1
:§mn[n—1+m—1+mn—m+mn—n+2mn—2}

1
= imn[llmn — 4]

_ 4mn(m2n -1

mn
=4
()
terms in the degree two part of g as predicted.
So the degree two part of g is
7\ e m\ — &
(2) > i+ (2) doyian® Y wmwe+m® Y gy (mn—1)) > xy

j=1

i=1 1<i<i'<m 1<j<j'<n i=1 j=1
2

m 2 n
n m
<2> ( E J?Z) + (2> E Yj +n20'2(5517--~7xm)+m27-2(y1a-~'7yn)
j=1

i=1

+ (mn —1) (Z xl> ZyJ

=1

2 2
+ (mn—1)o1(x1,. s )T (Y1, -+, Yn)-

n m
( )01(x1,.--,mm)2+< )71(y1,---7yn)2+n202(x1,---,xn)+m272(y1,---,:yn)

Therefore, we have the following:

Proposition. For vector bundles E, F over a paracompact space with rank E = m and rank F' = n,
we have

wo(E® F) = (Z) wi(E)? + @) w1 (F)? + nwe(E) + m2wa(F) + (mn — 1w (E)w: (F).

2. WHICH UNORIENTED (GRASSMANNIANS ARE SPIN MANIFOLDS?
Write the grassmannian Gr(a,b) as Gr(m,m + n) where m = a and n = b — a. Then ' has rank n.
As T Gr(m,m +n) =y ®~*, we have
w1 (Gr(m,m +n)) = nwy(y) + mw (y*).
Using the fact that v @ v+ =2 e™*" we see that wy (y1) = wy () and therefore
)

w1 (Gr(m,m +n)) = nw1(y) + mwi(y) = nw1(y) + mwi(y) = (m + n)w1 (7).
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Proceeding in a similar way, we have

wa(Grm,m ) = (5 Jun )2+ ('3 Jun0r 2+ ma(0) (o) + o= (3 (),

2

Again, as v @yt = ™" we see that wa (1) = wa(7) + w1 (Y)wi(vH) = wa(7y) + wi(7)?, so

wQ(Gr(m, m + Tl))
_ (g) wi(7)? + (T;) wi(71)? + nPwa(y) + mPwa(yH) + (mn — Djwi (y)wi (v)

= (5 )un2+ (5 ) + wuata) e wa(a) + 01 (2% + (= Dy () o)

(5)+ () em sy

As (g) = %d(d — 1), its parity is determined by d mod 4. More precisely, (g) is even if d = 0,1 mod 4
and odd if d = 2,3 mod 4. So the parity of the first two terms is determined by the values of m and n
modulo 4, while the parity of remaining terms is determined by the values of m and n modulo 2. So

we see that

0 (m,n) = (0,2),(1,3),(2,0),(3,1) mod 4

_Jwa(v) (m,n) = (0,3),(1,0),(2,1),(3,2) mod 4

waGrlmmt ) =3 2 (m,m) = (0,0),(1,1), (2,2), (3, 3) mod 4
wa(y) +wi ()% (m,n) =(0,1),(1,2),(2,3),(3,0) mod 4

Note that the difference m — n is constant in each row, so we can more succinctly express the above as

0 m—mn=2mod4
wa(7) m—n=1mod4
wy(Gr(m, m +n)) = wi(7)? m —n = 0mod 4

wa(y) +wi(y)? m —n =3 mod 4.

Upon first glance, the above description seems to contradict the fact that Gr(m, m+n) and Gr(n, m+n)
are diffeomorphic, at least in the case where m — n is odd. Why does interchanging m and n give a
different expression for wy? In order to understand this disparity, denote the tautological bundles over
Gr(m,m + n) and Gr(n,m + n) by ~,, and =, respectively.

Recall that there is a diffeomorphism ¢ : Gr(m,m +n) — Gr(n,m + n) given by P — P=; note,
this requires an inner product on the ambient vector space. It follows that ¢*y, = ~%. So, if
m —n = 3mod 4, we have wa(Gr(m,m + n)) = wa(ym) + w1(ym)?> € H*(Gr(m,m + n);Zs) and
wo(Gr(n,m + n)) = wa(y,) € H?>(Gr(n,m + n);Zz). The cohomology rings are not equal, so we
cannot compare these two elements, but the diffeomorphism ¢ gives rise to an isomorphism between
them, namely ¢*. Under this isomorphism,

w2 (yn) = wa(*vn) = wa () = W2 (Ym) + w1 (m)>.

The case m —n = 1 mod 4 is similar.

Now that we have expressions for wy (Gr(m,m 4+ n)) and ws(Gr(m, m + n)), we can finally determine
for which m and n the manifold Gr(m,m + n) is spin. We can also ask about the non-orientable
anologues of spin, namely pin* and pin~. The obstruction to a smooth manifold M admitting a pin*
structure is wo (M), and the obstruction to admitting a pin~ structure is wq (M) + w1 (M)?.

Recall that H*(Gr(m, m +n); Zs) = Zao[w1 (), - - - s, Wi (Y)]/(Wn+1, - - -, Wintr ) Where w; is the degree i
component of the formal inverse of 1+ w1 (y) + - + wp(y) in Za[wi(7), ..., wn(y)]. It follows that
if m,n > 2, then wi (), wa(y), w1(7)?, and wa(7y) + wy(y)? are all non-zero. If m =1 or n = 1, then
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the grassmannian is a projective space, in which case it is easy to check whether w1 (7), wa(7), w1 (7)?,

and wy(y) + w1 (7)? are non-zero or not.

Theorem. The grassmannian Gr(m,m +n) is:

orientable if and only if m +n is even.

spin if and only if m —n =2mod 4, orm =n =1, i.e. Gr(1,2) = RP* = S,

pint if and only if it is spin or is a projective space of dimension 4k.

pin~ if and only if it is spin or is a projective space of dimension 4k + 2.

3. WHICH ORIENTED GRASSMANNIANS ARE SPIN?

Let Grt(a,b) denote the grassmanian of oriented a-dimensional subspaces of a real b-dimensional
vector space, and denote the tautological bundle over it by v4. Similar to the unoriented case, we
have T Gr™ (a,b) & v, ® v+ where v is the orthogonal complement of v, C e’ with respect to a fixed
Riemannian metric on °.

There is a double covering 7 : Gr™ (a,b) — Gr(a, b) which forgets the orientation of the subspace. It
follows that 7*y = v, and hence w;(v4+) = w;(7*y) = 7*w;(v). The Gysin sequence associated to 7
is

o H7N(Gr(a, b); Zo) 2% H(Gr(a,b); Zo) = H (G (a,b); Zs) == Hi(Gr(a,b): Zs) — ...

where wy € H'(Gr(a,b);Zs) = {0,w;i(7y)} is the first Stiefel-Whitney class of the real line bundle
associated to 7; as 7 is not the trivial double cover, we have wy = w1 (7).

By the exactness of the Gysin sequence, the class w;(y4) is zero if and only if w;(y) = w1(y) U«
for some «, i.e. w;(7) is in the ideal generated by wi(y). In particular, w;i(vy4+) = 0, and hence
wy (Grt(m,m +n)) = 0.

It now follows from the computation of ws(Gr(m,m + n)) in the previous section that

0 —n =0mod 2
wo(Grt(m,m +n)) = men o

wa(v+) m—n=1mod 2.
As H*(Gr(m,m + n); Za) = Zo[w1(Y), -, Wi (V)]/ (@nt1, - -« s Wingn), if myn > 2, then wy(7y) is not
in the ideal generated by wi;(y) and hence wa(y+) # 0. If m = 1 or n = 1, then the orientable
grassmannian is a sphere and hence wy(Gr™ (m,m +n)) = 0.

Theorem. The grassmannian Gr™ (m, m-+n) is always orientable. Moreover, the obstructions to spin,
pint, and pin~ structures coincide and they vanish if and only if m —n is even, m =1, orn = 1.

This agrees with Theorem 8 of [1].

4. WHICH COMPLEX GRASSMANNIANS ARE SPIN?

Let Grc(a, b) denote the grassmanian of complex a-dimensional subspaces of a complex b-dimensional
vector space, and denote the tautological bundle over it by «¢. Similar to the previous cases, we have
T G‘rr(c(a7 b) 2 7c ® v¢ as complex vector bundles, where 4¢ is the orthogonal complement of ¢ C €2
with respect to some fixed hermitian metric on 5%.

As Gr®(m, m+n) is a complex manifold, it is orientable, i.e. wl(GrC(m, m+n)) = 0. Instead of using
the formula for we(E ® F'), we have a shortcut in the complex case: we can use the Chern character
to compute ¢;(Gr®(m,m +n)) and hence wy(Gr®(m, m + n)).
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The Chern character is extremely useful as it satisfies ch(E® F') = ch(F) ch(F'). As ch(E) = rank(E)+
c1(E) + ... this immediately implies

c1(E® F) =rank(F)cy (E) 4 rank(E)cy (F).

In particular,

c1(Gr(m,m +n)) = e1(Fe @ 1¢) = ner(3e) + mer (18)-
m—+n (C)

As e g 2 e, we see that ¢1(7¢) = —ai(y
¢i(E) = (=1)'¢;(E), so we conclude that

, while for the other term we use the fact that

c1(Grt (m,m +n)) = ne1 () + mei(vg) = —ner(ve) — mer(ye) = —(m +n)er(ve)-

As H*(Gr%(m,m + n);Z) = Zler(ve),- - em(¥e)]/(@ms1, - - -+ Emyn) where ¢; are defined in anal-
ogy with the previous cases, we see that ¢i(yc) is non-zero and is not divisible by 2. Therefore
wy (GrE(m,m +n)) = (m + n)wa(c); as ¢1(yc) is not divisible by 2, we see that wy(yc) # 0. There-
fore, we arrive at the following result.

Theorem. The grassmannian Grc(m, m-+n) is always orientable. Moreover, the obstructions to spin,
pin™, and pin~ structures coincide and they vanish if and only if m +n is even.

5. WHICH GRASSMANNIANS ARE SPIN¢?

Recall that a smooth manifold M is spin® if and only if wi(M) = 0 and wz(M) has an integral lift.
More generally, a smooth manifold M is pin® if and only if wo (M) has an integral lift, so an orientable
smooth manifold is pin® if and only if it is spin®. The obstruction to lifting wy (M) to an integral class
is the integral Stiefel-Whitney class W3(M) = B(wo(M)) € H3(M;Z); note, as wo(M) is 2-torsion, so
is W3 (M)

On an almost complex manifold M, the first Chern class ¢;(M) is an integral lift of ws (M), so M is

spin®; better still, almost complex manifolds have a canonical spin® structure (see Example D.6 of [3]).
Therefore, all complex grassmannians are spin® (and hence pin€).

Turning our attention to oriented grassmannians, first note that if m = 1 or n = 1, then Gr™ (m, m+n)
is a sphere which is spin and hence spin®. For m,n > 1, the oriented grassmannian Gr™ (m,m + n) is
simply connected, so

W3 (Gr (m,m+n)) € H*(Grt (m,m+n); Z)ors = Ho(Gr (m, m+n); Z)tors = m2(Gr (m, m+n))ors-

To determine mo(Grt(m,m + n)), recall that Gr™ (m,m + n) is diffeomorphic to the homogeneous
space SO(m 4+ n)/(SO(m) x SO(n)), so there is a fibre bundle SO(m) x SO(n) — SO(m + n) —
Gr*(m,m 4 n). From the associated long exact sequence in homotopy, we deduce

0 m=1n#2 orm#2n=1

/ m = 2 or n = 2, but not both
7o (Gr (m, m +n)) = 267 men2

Lo m,n >3

As W3(Gr™ (m, m + n)) is 2-torsion, it could only be non-zero when m,n > 3 in which case it would
be the unique non-zero element of H3(Grt(m,m + n);Z) = Z,. It follows that W3(Grt (m,m + n))
is non-zero if and only if its reduction modulo 2 is. In general, we have W3(M) = B(wa(M)) =
Sq* (wa(M)) mod 2. Recall, if m — n is even, wy(Grt(m, m +n)) = 0, and if m — n is odd, then
w(Gr* (m, m +n)) = wa(y"). Now note that Sq* (wa(y7)) = w1 (v )wa(v) + ws(y) = w(v7). As
H*(Gr(m,m +n); Za) = Zolwi(Y), -« -, Wi (V)]/(@Wnt1s - -, Wintn), the class wz(y) is not in the ideal
generated by wi () for m,n > 3. As we did in section 3, we deduce from the Gysin sequence that
w3 (y+) = 7*w3(7) is non-zero. Therefore Gr™ (m, m+mn) is not spin® (and hence not pin®) when m—n
is odd and m,n > 3.
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To determine which unoriented grassmannians are pin€, note that if Gr(m,m + n) is pin®, then so is
Gr+(m7m + n), which by the above implies that m — n is even, m < 2, or n < 2. When m — n is
even, Gr(m, m+n) is orientable and wo(Gr(m, m+n)) = 0 or w; (7)?. Note that wi ()% = Sq* (w1 (7))
which has Wa(y) = B(w1(7)) as an integral lift, so Gr(m,m +n) is pin® when m —n is even. If m =1
or n =1, then Gr(m,m + n) is a projective space. As

Z n=3
0 n#*3

we see that W3(RP™) = 0 and hence projective spaces are pin®. Finally, suppose m = 2 and n > 1 is
odd. Then wy(Gr(2,2+n)) is either wa(y) or wa(7y) + w1 (7)?; in both cases, we see that W3(Gr(2,2 +
n)) = Wi (7). Now note that Wi (y) = B(wa(7)) = Sq* (wz(y)) mod 2, and Sq* (wa (7)) = w1 (y)wa(7y) +
ws () = w1 (y)wa(7y) as v has rank 2. Given that H*(Gr(2,2+4n); Zg) = Za[w1 (), w2(Y)]/(Wn+1, Wnt2)
and n 4+ 1 > 3, we see that wy(y)wa(y) # 0 and hence W5(Gr(2,2 +n)) = Ws(vy) # 0. The case n =2
and m > 1 odd is completely analogous.

H3(RP™;Z) = {

In summary, we have the following:

Theorem.
e The compler grassmannians Gr(c(m7 m +n) are all pin®/spin®.

o The oriented grassmannians Gr™ (m, m+n) are pin® /spin® if and only if m —n is even, m < 2,
orn < 2.

e The unoriented grassmannians Gr(m,m +n) are pin® if and only if m —n is even, m =1, or
n = 1. In particular, they are spin® if and only if m — n is even.

In particular, for & > 1, the oriented grassmannians Gr'(2,2k + 1) are spin® but not spin. On the
other hand, for m,n # 2, we see that Gr™ (m, m -+ n) is spin® if and only if it is spin. More generally,
a simply connected manifold M with mo(M) finite is spin® if and only if it is spin, see page 50 of [2].

From the above, we discover an example of a manifold which is not pin® but admits a finite cover
which is. Namely, the manifold Gr(2, 2k + 1) is not pin® for k& > 2, but its double cover Gr™(2,2k + 1)
is pin®.
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