WHICH GRASSMANNIANS ARE SPIN/SPIN ${ }^{c}$?

MICHAEL ALBANESE

Abstract

The purpose of this note is to determine which (unoriented, oriented, and complex) grassmannians are spin, and which ones are spin ${ }^{c}$. In order to achieve this goal, formulae for the first and second Stiefel-Whitney classes of a tensor product are derived. The corresponding non-orientable analogues $\mathrm{pin}^{+}, \mathrm{pin}^{-}$, and pin^{c} are also considered.

Let $\operatorname{Gr}(a, b)$ denote the grassmanian of a-dimensional subspaces of a real b-dimensional vector space, and denote the tautological bundle over it by γ. Recall that $T \operatorname{Gr}(a, b) \cong \operatorname{Hom}\left(\gamma, \gamma^{\perp}\right) \cong \gamma^{*} \otimes \gamma^{\perp} \cong$ $\gamma \otimes \gamma^{\perp}$ where γ^{\perp} is the orthogonal complement of $\gamma \subset \varepsilon^{b}$ with respect to a fixed Riemannian metric on ε^{b}. As a smooth manifold M is spin if and only if $w_{1}(M)=0$ and $w_{2}(M)=0$, we need to determine formulae for $w_{1}(E \otimes F)$ and $w_{2}(E \otimes F)$.

1. Stiefel-Whitney Classes of a Tensor Product

Lemma. Let L_{1} and L_{2} be real line bundles over a paracompact space B. Then $w_{1}\left(L_{1} \otimes L_{2}\right)=$ $w_{1}\left(L_{1}\right)+w_{1}\left(L_{2}\right)$.

Proof. Let $\pi_{i}: \mathbb{R} \mathbb{P}^{\infty} \times \mathbb{R} \mathbb{P}^{\infty} \rightarrow \mathbb{R} \mathbb{P}^{\infty}$ denote projection onto the $i^{\text {th }}$ factor and let $\mu: \mathbb{R} \mathbb{P}^{\infty} \times \mathbb{R}^{\infty} \rightarrow$ $\mathbb{R}^{\infty}{ }^{\infty}$ be a classifying map for $\pi_{1}^{*} \gamma \otimes \pi_{2}^{*} \gamma$. By the Künneth theorem, $\pi_{1}^{*} w_{1}(\gamma)$ and $\pi_{2}^{*} w_{1}(\gamma)$ form a basis for $H^{1}\left(\mathbb{R P}^{\infty} \times \mathbb{R P}^{\infty} ; \mathbb{Z}_{2}\right)$, so $w_{1}\left(\pi_{1}^{*} \gamma \otimes \pi_{2}^{*} \gamma\right)=a \pi_{1}^{*} w_{1}(\gamma)+b \pi_{2}^{*} w_{1}(\gamma)$ for some $a, b \in \mathbb{Z}_{2}$.
If $\sigma: \mathbb{R}^{\infty} \times \mathbb{R} \mathbb{P}^{\infty} \rightarrow \mathbb{R} \mathbb{P}^{\infty} \times \mathbb{R} \mathbb{P}^{\infty}$ is the map which interchanges factors, then $\pi_{1} \circ \sigma=\pi_{2}$ and $\pi_{2} \circ \sigma=\pi_{1}$, so $\sigma^{*} \mu^{*} w_{1}(\gamma)=a \pi_{2}^{*} w_{1}(\gamma)+b \pi_{1}^{*} w_{1}(\gamma)$, but $\sigma \circ \mu$ classifies $\pi_{2}^{*} \gamma \otimes \pi_{1}^{*} \gamma \cong \pi_{1}^{*} \gamma \otimes \pi_{2}^{*} \gamma$ so $\sigma \circ \mu$ is homotopic to μ. Therefore

$$
a \pi_{2}^{*} w_{1}(\gamma)+b \pi_{1}^{*} w_{1}(\gamma)=(\sigma \circ \mu)^{*} w_{1}(\gamma)=\mu^{*} w_{1}(\gamma)=a \pi_{1}^{*} w_{1}(\gamma)+b \pi_{2}^{*} w_{1}(\gamma)
$$

which implies $a=b$. So either $w_{1}\left(\pi_{1}^{*} \gamma \otimes \pi_{2}^{*} \gamma\right)=\pi_{1}^{*} w_{1}(\gamma)+\pi_{2}^{*} w_{1}(\gamma)$, or $w_{1}\left(\pi_{1}^{*} \gamma \otimes \pi_{2}^{*} \gamma\right)=0$.
Now let $f_{i}: B \rightarrow \mathbb{R} \mathbb{P}^{\infty}$ be a classifying map for L_{i}. Then

$$
\begin{aligned}
\left(f_{1}, f_{2}\right)^{*}\left(\pi_{1}^{*} \gamma \otimes \pi_{2}^{*} \gamma\right) & \cong\left(\left(f_{1}, f_{2}\right)^{*} \pi_{1}^{*} \gamma\right) \otimes\left(\left(f_{1}, f_{2}\right)^{*} \pi_{2}^{*} \gamma\right) \\
& \cong\left(\pi_{1} \circ\left(f_{1}, f_{2}\right)\right)^{*} \gamma \otimes\left(\pi_{2} \circ\left(f_{1}, f_{2}\right)^{*}\right) \gamma \\
& \cong f_{1}^{*} \gamma \otimes f_{2}^{*} \gamma \\
& \cong L_{1} \otimes L_{2} .
\end{aligned}
$$

As $w_{1}\left(L_{1} \otimes L_{2}\right)=w_{1}\left(\left(f_{1}, f_{2}\right)^{*}\left(\pi_{1}^{*} \gamma \otimes \pi_{2}^{*} \gamma\right)=\left(f_{1}, f_{2}\right)^{*} w_{1}\left(\pi_{1}^{*} \gamma \otimes \pi_{2}^{*} \gamma\right)\right.$, if $w_{1}\left(\pi_{1}^{*} \gamma \otimes \pi_{2}^{*} \gamma\right)=0$, then $w_{1}\left(L_{1} \otimes L_{2}\right)=0$. This is clearly false, just take L_{1} to be non-trivial and L_{2} to be trivial. Therefore $w_{1}\left(\pi_{1}^{*} \gamma \otimes \pi_{2}^{*} \gamma\right)=\pi_{1}^{*} w_{1}(\gamma)+\pi_{2}^{*} w_{1}(\gamma)$ and so

$$
\begin{aligned}
w_{1}\left(L_{1} \otimes L_{2}\right) & =\left(f_{1}, f_{2}\right)^{*} w_{1}\left(\pi_{1}^{*} \gamma \otimes \pi_{2}^{*} \gamma\right) \\
& =\left(f_{1}, f_{2}\right)^{*}\left(\pi_{1}^{*} w_{1}(\gamma)+\pi_{2}^{*} w_{1}(\gamma)\right) \\
& =\left(f_{1}, f_{2}\right)^{*} \pi_{1}^{*} w_{1}(\gamma)+\left(f_{1}, f_{2}\right)^{*} \pi_{2}^{*} w_{1}(\gamma) \\
& =\left(\pi_{1} \circ\left(f_{1}, f_{2}\right)\right)^{*} w_{1}(\gamma)+\left(\pi_{2} \circ\left(f_{1}, f_{2}\right)\right)^{*} w_{1}(\gamma) \\
& =f_{1}^{*} w_{1}(\gamma)+f_{2}^{*} w_{1}(\gamma)
\end{aligned}
$$

$$
\begin{aligned}
& =w_{1}\left(f_{1}^{*} \gamma\right)+w_{1}\left(f_{2}^{*} \gamma\right) \\
& =w_{1}\left(L_{1}\right)+w_{1}\left(L_{2}\right)
\end{aligned}
$$

With this lemma in hand, we can move on to the general case thanks to the splitting principle.
Theorem. Let E and F be real vector bundles over a paracompact space B. Let $m=\operatorname{rank} E$ and $n=\operatorname{rank} F$. Then $w(E \otimes F)=p_{m, n}\left(w_{1}(E), \ldots, w_{m}(E), w_{1}(F), \ldots, w_{n}(F)\right)$ where $p_{m, n}$ is the unique polynomial which satisfies

$$
p_{m, n}\left(\sigma_{1}, \ldots, \sigma_{m}, \tau_{1}, \ldots, \tau_{n}\right)=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(1+x_{i}+y_{j}\right)
$$

where $\sigma_{k}=\sigma_{k}\left(x_{1}, \ldots, x_{m}\right)$ and $\tau_{k}=\tau_{k}\left(y_{1}, \ldots, y_{n}\right)$ are the $k^{\text {th }}$ elementary symmetric polynomials in m and n variables respectively.

Proof. By the splitting principle, there is a paracompact space Y and a map $g: Y \rightarrow B$ such that $g^{*} E \cong \ell_{1}^{\prime} \oplus \cdots \oplus \ell_{m}^{\prime}$ and $g^{*}: H^{*}\left(Y ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(B ; \mathbb{Z}_{2}\right)$ is injective. Again by the splitting principle, there is a paracompact space X and a map $f: X \rightarrow Y$ such that $f^{*} g^{*} F \cong \eta_{1} \oplus \cdots \oplus \eta_{n}$, and $f^{*}: H^{*}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(Y ; \mathbb{Z}_{2}\right)$ is injective. Letting $\ell_{i}=f^{*} \ell_{i}^{\prime}$, we have $f^{*} g^{*} E \cong \ell_{1} \oplus \cdots \oplus \ell_{m}$. So

$$
f^{*} g^{*}(E \otimes F) \cong\left(f^{*} g^{*} E\right) \otimes\left(f^{*} g^{*} F\right) \cong\left(\ell_{1} \oplus \cdots \oplus \ell_{m}\right) \otimes\left(\eta_{1} \oplus \cdots \oplus \eta_{n}\right) \cong \bigoplus_{i=1}^{m} \bigoplus_{j=1}^{n} \ell_{i} \otimes \eta_{j}
$$

Therefore,

$$
\begin{aligned}
w\left(f^{*} g^{*}(E \otimes F)\right) & =w\left(\bigoplus_{i=1}^{m} \bigoplus_{j=1}^{n} \ell_{i} \otimes \eta_{j}\right) \\
& =\prod_{i=1}^{m} \prod_{j=1}^{n} w\left(\ell_{i} \otimes \eta_{j}\right) \\
& =\prod_{i=1}^{m} \prod_{j=1}^{n}\left(1+w_{1}\left(\ell_{i} \otimes \eta_{j}\right)\right) \\
& =\prod_{i=1}^{m} \prod_{j=1}^{n}\left(1+w_{1}\left(\ell_{i}\right)+w_{1}\left(\eta_{j}\right)\right) \\
& =\prod_{i=1}^{m} \prod_{j=1}^{n}\left(1+x_{i}+y_{j}\right)
\end{aligned}
$$

where the penultimate equality uses the lemma and $x_{i}:=w_{1}\left(\ell_{i}\right), y_{j}:=w_{1}\left(\eta_{j}\right)$.
Denote the final expression above by $q\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$. Note that q is a polynomial which is symmetric in the x_{i} and the y_{j} separately, so by the fundamental theorem of symmetric polynomials, there is a unique polynomial $p_{m, n}$ such that

$$
q\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right)=p_{m, n}\left(\sigma_{1}, \ldots, \sigma_{m}, \tau_{1}, \ldots, \tau_{n}\right)
$$

Now note that $\sigma_{i}\left(x_{1}, \ldots, x_{m}\right)=w_{i}\left(\ell_{1} \oplus \cdots \oplus \ell_{m}\right)=w_{i}\left(f^{*} g^{*} E\right)=f^{*} g^{*} w_{i}(E)$ and likewise $\tau_{j}\left(y_{1}, \ldots, y_{n}\right)=$ $f^{*} g^{*} w_{j}(F)$, so

$$
\begin{aligned}
f^{*} g^{*} w(E \otimes F) & =w\left(f^{*} g^{*}(E \otimes F)\right) \\
& =q\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \\
& =p_{m, n}\left(\sigma_{1}, \ldots, \sigma_{m}, \tau_{1}, \ldots, \tau_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =p_{m, n}\left(f^{*} g^{*} w_{1}(E), \ldots, f^{*} g^{*} w_{m}(E), f^{*} g^{*} w_{1}(F), \ldots, f^{*} g^{*} w_{n}(F)\right) \\
& =f^{*} g^{*} p_{m, n}\left(w_{1}(E), \ldots, w_{m}(E), w_{1}(F), \ldots, w_{n}(F)\right)
\end{aligned}
$$

By the injectivity of f^{*} and g^{*}, we have $w(E \otimes F)=p_{m, n}\left(w_{1}(E), \ldots, w_{m}(E), w_{1}(F), \ldots, w_{n}(F)\right)$.

The two proofs above constitute a solution to Problem 7-C from [4].
As in the proof, we will use $q\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ to denote the right hand side of the equation in the theorem.

If we can identify the degree k part of $p_{m, n}$, then we can obtain an explicit formula for $w_{k}(E \otimes F)$ in terms of $w_{1}(E), \ldots, w_{k}(E), w_{1}(F), \ldots, w_{k}(F)$. In particular, we need to express the degree k part of q as a polynomial in elementary symmetric polynomials. To achieve our main goal, we only need to do this for $k=1$ and 2 .

The degree one part of q is

$$
\sum_{i=1}^{m} \sum_{j=1}^{n}\left(x_{i}+y_{j}\right)=n \sum_{i=1}^{m} x_{i}+m \sum_{j=1}^{n} y_{j}=n \sigma_{1}\left(x_{1}, \ldots, x_{m}\right)+m \tau_{1}\left(y_{1}, \ldots, y_{n}\right)
$$

Therefore, we have the following:
Proposition. For vector bundles E, F over a paracompact space with $\operatorname{rank} E=m$ and $\operatorname{rank} F=n$, we have

$$
w_{1}(E \otimes F)=n w_{1}(E)+m w_{1}(F)
$$

Now we need to identify the degree two part of q; this is more difficult. First note that q is the product of $m n$ factors, and any two factors gives rise to four degree two terms, so there should be a total of $4\binom{m n}{2}$ terms in the degree two part of q. There are five distinct types of terms that can appear: x_{i}^{2}, $y_{j}^{2}, x_{i} x_{i^{\prime}}$ with $i \neq i^{\prime}, y_{j} y_{j^{\prime}}$ with $j \neq j^{\prime}$, and $x_{i} y_{j}$.
The x_{i}^{2} terms only arise from the subproduct $\left(1+x_{i}+y_{1}\right) \ldots\left(1+x_{i}+y_{n}\right)$, and each choice of two factors gives rise to one such term, so in total there are $\binom{n}{2}$ copies of x_{i}^{2}.
The y_{j}^{2} terms only arise from the subproduct $\left(1+x_{1}+y_{j}\right) \ldots\left(1+x_{m}+y_{j}\right)$, and each choice of two factors gives rise to one such term, so in total there are $\binom{m}{2}$ copies of y_{j}^{2}.

The $x_{i} x_{i^{\prime}}$ terms with $i \neq i^{\prime}$ only arise from the subproduct $\left(1+x_{i}+y_{1}\right) \ldots\left(1+x_{i}+y_{n}\right)\left(1+x_{i^{\prime}}+\right.$ $\left.y_{1}\right) \ldots\left(1+x_{i^{\prime}}+y_{n}\right)$, and each choice of a factor from the first n and a factor from the second n gives rise to one such term, so in total there are n^{2} copies of $x_{i} x_{i^{\prime}}$.

The $y_{j} y_{j^{\prime}}$ terms with $j \neq j^{\prime}$ only arise from the subproduct $\left(1+x_{1}+y_{j}\right) \ldots\left(1+x_{m}+y_{j}\right)\left(1+x_{1}+\right.$ $\left.y_{j^{\prime}}\right) \ldots\left(1+x_{m}+y_{j^{\prime}}\right)$, and each choice of a factor from the first m and a factor from the second m gives rise to one such term, so in total there are m^{2} copies of $y_{j} y_{j^{\prime}}$.

Now consider terms of the form $x_{i} y_{j}$. They can only arise from products of factors of the form $\left(1+x_{i^{\prime}}+y_{j^{\prime}}\right)$ where $i=i^{\prime}$ or $j=j^{\prime}$. Given one of the $n-1$ factors of the form $\left(1+x_{i}+y_{j^{\prime}}\right)$ with $j^{\prime} \neq j$, there are precisely m factors which contain y_{j}, namely $\left(1+x_{1}+y_{j}\right), \ldots,\left(1+x_{m}+y_{j}\right)$, which can combine with $\left(1+x_{i}+y_{j^{\prime}}\right)$ to produce one $x_{i} y_{j}$ term. Likewise, given one of the $m-1$ factors of the form $\left(1+x_{i^{\prime}}+y_{j}\right)$ with $i^{\prime} \neq i$, there are precisely n factors which contain x_{i}, namely $\left(1+x_{i}+y_{1}\right), \ldots,\left(1+x_{m}+y_{j}\right)$, which can combine with $\left(1+x_{i^{\prime}}+y_{j}\right)$ to produce one $x_{i} y_{j}$ term. Finally, the unique factor $\left(1+x_{i}+y_{j}\right)$ can combine with $(m-1)+(n-1)$ factors to produce one $x_{i} y_{j}$ term, namely factors of the form $\left(1+x_{i^{\prime}}+y_{j^{\prime}}\right)$ where $i=i^{\prime}$ or $j=j^{\prime}$, but not both. Note, we have double counted each appearance of $x_{i} y_{j}$, so in total there are $\frac{1}{2}[m(n-1)+n(m-1)+(m-1)+(n-1)]=m n-1$ copies of $x_{i} y_{j}$.

We should check that we haven't missed any terms. There are m terms of the form x_{i}^{2}, n terms of the form $y_{j}^{2},\binom{m}{2}$ terms of the form $x_{i} x_{i^{\prime}}$ with $i \neq i^{\prime},\binom{n}{2}$ terms of the form $y_{j} y_{j^{\prime}}$ with $j \neq j^{\prime}$, and $m n$ terms of the form $x_{i} y_{j}$. Therefore, there are a total of

$$
\begin{aligned}
& m\binom{n}{2}+n\binom{m}{2}+\binom{m}{2} n^{2}+\binom{n}{2} m^{2}+m n(m n-1) \\
= & \frac{1}{2} m n(n-1)+\frac{1}{2} m n(m-1)+\frac{1}{2} m^{2} n(n-1)+\frac{1}{2} m n^{2}(m-1)+m n(m n-1) \\
= & \frac{1}{2} m n[(n-1)+(m-1)+m(n-1)+n(m-1)+2(m n-1)] \\
= & \frac{1}{2} m n[n-1+m-1+m n-m+m n-n+2 m n-2] \\
= & \frac{1}{2} m n[4 m n-4] \\
= & 4 \frac{m n(m n-1)}{2} \\
= & 4\binom{m n}{2}
\end{aligned}
$$

terms in the degree two part of q as predicted.
So the degree two part of q is

$$
\begin{aligned}
& \binom{n}{2} \sum_{i=1}^{m} x_{i}^{2}+\binom{m}{2} \sum_{j=1}^{n} y_{j}^{2}+n^{2} \sum_{1 \leq i<i^{\prime} \leq m} x_{i} x_{i^{\prime}}+m^{2} \sum_{1 \leq j<j^{\prime} \leq n} y_{j} y_{j^{\prime}}+(m n-1) \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \\
= & \binom{n}{2}\left(\sum_{i=1}^{m} x_{i}\right)^{2}+\binom{m}{2}\left(\sum_{j=1}^{n} y_{j}\right)^{2}+n^{2} \sigma_{2}\left(x_{1}, \ldots, x_{m}\right)+m^{2} \tau_{2}\left(y_{1}, \ldots, y_{n}\right) \\
& +(m n-1)\left(\sum_{i=1}^{m} x_{i}\right)\left(\sum_{j=1}^{n} y_{j}\right) \\
= & \binom{n}{2} \sigma_{1}\left(x_{1}, \ldots, x_{m}\right)^{2}+\binom{m}{2} \tau_{1}\left(y_{1}, \ldots, y_{n}\right)^{2}+n^{2} \sigma_{2}\left(x_{1}, \ldots, x_{n}\right)+m^{2} \tau_{2}\left(y_{1}, \ldots, y_{n}\right) \\
& +(m n-1) \sigma_{1}\left(x_{1}, \ldots, x_{m}\right) \tau_{1}\left(y_{1}, \ldots, y_{n}\right) .
\end{aligned}
$$

Therefore, we have the following:

Proposition. For vector bundles E, F over a paracompact space with $\operatorname{rank} E=m$ and $\operatorname{rank} F=n$, we have

$$
w_{2}(E \otimes F)=\binom{n}{2} w_{1}(E)^{2}+\binom{m}{2} w_{1}(F)^{2}+n^{2} w_{2}(E)+m^{2} w_{2}(F)+(m n-1) w_{1}(E) w_{1}(F)
$$

2. Which Unoriented Grassmannians are spin manifolds?

Write the grassmannian $\operatorname{Gr}(a, b)$ as $\operatorname{Gr}(m, m+n)$ where $m=a$ and $n=b-a$. Then γ^{\perp} has rank n. As $T \operatorname{Gr}(m, m+n)=\gamma \otimes \gamma^{\perp}$, we have

$$
w_{1}(\operatorname{Gr}(m, m+n))=n w_{1}(\gamma)+m w_{1}\left(\gamma^{\perp}\right)
$$

Using the fact that $\gamma \oplus \gamma^{\perp} \cong \varepsilon^{m+n}$, we see that $w_{1}\left(\gamma^{\perp}\right)=w_{1}(\gamma)$ and therefore

$$
w_{1}(\operatorname{Gr}(m, m+n))=n w_{1}(\gamma)+m w_{1}\left(\gamma^{\perp}\right)=n w_{1}(\gamma)+m w_{1}(\gamma)=(m+n) w_{1}(\gamma)
$$

Proceeding in a similar way, we have

$$
w_{2}(\operatorname{Gr}(m, m+n))=\binom{n}{2} w_{1}(\gamma)^{2}+\binom{m}{2} w_{1}\left(\gamma^{\perp}\right)^{2}+n^{2} w_{2}(\gamma)+m^{2} w_{2}\left(\gamma^{\perp}\right)+(m n-1) w_{1}(\gamma) w_{1}\left(\gamma^{\perp}\right)
$$

Again, as $\gamma \oplus \gamma^{\perp} \cong \varepsilon^{m+n}$, we see that $w_{2}\left(\gamma^{\perp}\right)=w_{2}(\gamma)+w_{1}(\gamma) w_{1}\left(\gamma^{\perp}\right)=w_{2}(\gamma)+w_{1}(\gamma)^{2}$, so

$$
\begin{aligned}
& w_{2}(\operatorname{Gr}(m, m+n)) \\
= & \binom{n}{2} w_{1}(\gamma)^{2}+\binom{m}{2} w_{1}\left(\gamma^{\perp}\right)^{2}+n^{2} w_{2}(\gamma)+m^{2} w_{2}\left(\gamma^{\perp}\right)+(m n-1) w_{1}(\gamma) w_{1}\left(\gamma^{\perp}\right) \\
= & \binom{n}{2} w_{1}(\gamma)^{2}+\binom{m}{2} w_{1}(\gamma)^{2}+n^{2} w_{2}(\gamma)+m^{2}\left(w_{2}(\gamma)+w_{1}(\gamma)^{2}\right)+(m n-1) w_{1}(\gamma) w_{1}(\gamma) \\
= & {\left[\binom{m}{2}+\binom{n}{2}+m^{2}+m n-1\right] w_{1}(\gamma)^{2}+\left(m^{2}+n^{2}\right) w_{2}(\gamma) }
\end{aligned}
$$

As $\binom{d}{2}=\frac{1}{2} d(d-1)$, its parity is determined by $d \bmod 4$. More precisely, $\binom{d}{2}$ is even if $d \equiv 0,1 \bmod 4$ and odd if $d \equiv 2,3 \bmod 4$. So the parity of the first two terms is determined by the values of m and n modulo 4 , while the parity of remaining terms is determined by the values of m and n modulo 2 . So we see that

$$
w_{2}(\operatorname{Gr}(m, m+n))= \begin{cases}0 & (m, n) \equiv(0,2),(1,3),(2,0),(3,1) \bmod 4 \\ w_{2}(\gamma) & (m, n) \equiv(0,3),(1,0),(2,1),(3,2) \bmod 4 \\ w_{1}(\gamma)^{2} & (m, n) \equiv(0,0),(1,1),(2,2),(3,3) \bmod 4 \\ w_{2}(\gamma)+w_{1}(\gamma)^{2} & (m, n) \equiv(0,1),(1,2),(2,3),(3,0) \bmod 4\end{cases}
$$

Note that the difference $m-n$ is constant in each row, so we can more succinctly express the above as

$$
w_{2}(\operatorname{Gr}(m, m+n))= \begin{cases}0 & m-n \equiv 2 \bmod 4 \\ w_{2}(\gamma) & m-n \equiv 1 \bmod 4 \\ w_{1}(\gamma)^{2} & m-n \equiv 0 \bmod 4 \\ w_{2}(\gamma)+w_{1}(\gamma)^{2} & m-n \equiv 3 \bmod 4\end{cases}
$$

Upon first glance, the above description seems to contradict the fact that $\operatorname{Gr}(m, m+n)$ and $\operatorname{Gr}(n, m+n)$ are diffeomorphic, at least in the case where $m-n$ is odd. Why does interchanging m and n give a different expression for w_{2} ? In order to understand this disparity, denote the tautological bundles over $\operatorname{Gr}(m, m+n)$ and $\operatorname{Gr}(n, m+n)$ by γ_{m} and γ_{n} respectively.
Recall that there is a diffeomorphism $\varphi: \operatorname{Gr}(m, m+n) \rightarrow \operatorname{Gr}(n, m+n)$ given by $P \mapsto P^{\perp}$; note, this requires an inner product on the ambient vector space. It follows that $\varphi^{*} \gamma_{n} \cong \gamma_{m}^{\perp}$. So, if $m-n \equiv 3 \bmod 4$, we have $w_{2}(\operatorname{Gr}(m, m+n))=w_{2}\left(\gamma_{m}\right)+w_{1}\left(\gamma_{m}\right)^{2} \in H^{2}\left(\operatorname{Gr}(m, m+n) ; \mathbb{Z}_{2}\right)$ and $w_{2}(\operatorname{Gr}(n, m+n))=w_{2}\left(\gamma_{n}\right) \in H^{2}\left(\operatorname{Gr}(n, m+n) ; \mathbb{Z}_{2}\right)$. The cohomology rings are not equal, so we cannot compare these two elements, but the diffeomorphism φ gives rise to an isomorphism between them, namely φ^{*}. Under this isomorphism,

$$
\varphi^{*} w_{2}\left(\gamma_{n}\right)=w_{2}\left(\varphi^{*} \gamma_{n}\right)=w_{2}\left(\gamma_{m}^{\perp}\right)=w_{2}\left(\gamma_{m}\right)+w_{1}\left(\gamma_{m}\right)^{2}
$$

The case $m-n \equiv 1 \bmod 4$ is similar.
Now that we have expressions for $w_{1}(\operatorname{Gr}(m, m+n))$ and $w_{2}(\operatorname{Gr}(m, m+n))$, we can finally determine for which m and n the manifold $\operatorname{Gr}(m, m+n)$ is spin. We can also ask about the non-orientable anologues of spin, namely pin^{+}and pin^{-}. The obstruction to a smooth manifold M admitting a pin ${ }^{+}$ structure is $w_{2}(M)$, and the obstruction to admitting a pin ${ }^{-}$structure is $w_{2}(M)+w_{1}(M)^{2}$.

Recall that $H^{*}\left(\operatorname{Gr}(m, m+n) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[w_{1}(\gamma), \ldots, w_{m}(\gamma)\right] /\left(\bar{w}_{n+1}, \ldots, \bar{w}_{m+n}\right)$ where \bar{w}_{i} is the degree i component of the formal inverse of $1+w_{1}(\gamma)+\cdots+w_{m}(\gamma)$ in $\mathbb{Z}_{2}\left[w_{1}(\gamma), \ldots, w_{m}(\gamma)\right]$. It follows that if $m, n \geq 2$, then $w_{1}(\gamma), w_{2}(\gamma), w_{1}(\gamma)^{2}$, and $w_{2}(\gamma)+w_{1}(\gamma)^{2}$ are all non-zero. If $m=1$ or $n=1$, then
the grassmannian is a projective space, in which case it is easy to check whether $w_{1}(\gamma), w_{2}(\gamma), w_{1}(\gamma)^{2}$, and $w_{2}(\gamma)+w_{1}(\gamma)^{2}$ are non-zero or not.

Theorem. The grassmannian $\operatorname{Gr}(m, m+n)$ is:

- orientable if and only if $m+n$ is even.
- spin if and only if $m-n \equiv 2 \bmod 4$, or $m=n=1$, i.e. $\operatorname{Gr}(1,2)=\mathbb{R P}^{1}=S^{1}$.
- $p^{+} n^{+}$if and only if it is spin or is a projective space of dimension $4 k$.
- pin- if and only if it is spin or is a projective space of dimension $4 k+2$.

3. Which oriented grassmannians are spin?

Let $\mathrm{Gr}^{+}(a, b)$ denote the grassmanian of oriented a-dimensional subspaces of a real b-dimensional vector space, and denote the tautological bundle over it by γ_{+}. Similar to the unoriented case, we have $T \mathrm{Gr}^{+}(a, b) \cong \gamma_{+} \otimes \gamma_{+}^{\perp}$ where γ_{+}^{\perp} is the orthogonal complement of $\gamma_{+} \subset \varepsilon^{b}$ with respect to a fixed Riemannian metric on ε^{b}.
There is a double covering $\pi: \mathrm{Gr}^{+}(a, b) \rightarrow \operatorname{Gr}(a, b)$ which forgets the orientation of the subspace. It follows that $\pi^{*} \gamma \cong \gamma_{+}$, and hence $w_{i}\left(\gamma_{+}\right)=w_{i}\left(\pi^{*} \gamma\right)=\pi^{*} w_{i}(\gamma)$. The Gysin sequence associated to π is

$$
\cdots \rightarrow H^{i-1}\left(\operatorname{Gr}(a, b) ; \mathbb{Z}_{2}\right) \xrightarrow{w_{1} \cup} H^{i}\left(\operatorname{Gr}(a, b) ; \mathbb{Z}_{2}\right) \xrightarrow{\pi^{*}} H^{i}\left(\operatorname{Gr}^{+}(a, b) ; \mathbb{Z}_{2}\right) \xrightarrow{\pi_{*}} H^{i}\left(\operatorname{Gr}(a, b) ; \mathbb{Z}_{2}\right) \rightarrow \ldots
$$

where $w_{1} \in H^{1}\left(\operatorname{Gr}(a, b) ; \mathbb{Z}_{2}\right)=\left\{0, w_{1}(\gamma)\right\}$ is the first Stiefel-Whitney class of the real line bundle associated to π; as π is not the trivial double cover, we have $w_{1}=w_{1}(\gamma)$.

By the exactness of the Gysin sequence, the class $w_{i}\left(\gamma_{+}\right)$is zero if and only if $w_{i}(\gamma)=w_{1}(\gamma) \cup \alpha$ for some α, i.e. $w_{i}(\gamma)$ is in the ideal generated by $w_{1}(\gamma)$. In particular, $w_{1}\left(\gamma_{+}\right)=0$, and hence $w_{1}\left(\mathrm{Gr}^{+}(m, m+n)\right)=0$.

It now follows from the computation of $w_{2}(\operatorname{Gr}(m, m+n))$ in the previous section that

$$
w_{2}\left(\mathrm{Gr}^{+}(m, m+n)\right)= \begin{cases}0 & m-n \equiv 0 \bmod 2 \\ w_{2}\left(\gamma_{+}\right) & m-n \equiv 1 \bmod 2\end{cases}
$$

As $H^{*}\left(\operatorname{Gr}(m, m+n) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[w_{1}(\gamma), \ldots, w_{m}(\gamma)\right] /\left(\bar{w}_{n+1}, \ldots, \bar{w}_{m+n}\right)$, if $m, n \geq 2$, then $w_{2}(\gamma)$ is not in the ideal generated by $w_{1}(\gamma)$ and hence $w_{2}\left(\gamma^{+}\right) \neq 0$. If $m=1$ or $n=1$, then the orientable grassmannian is a sphere and hence $w_{2}\left(\operatorname{Gr}^{+}(m, m+n)\right)=0$.

Theorem. The grassmannian $\mathrm{Gr}^{+}(m, m+n)$ is always orientable. Moreover, the obstructions to spin, pin ${ }^{+}$, and pin ${ }^{-}$structures coincide and they vanish if and only if $m-n$ is even, $m=1$, or $n=1$.

This agrees with Theorem 8 of [1].

4. Which Complex Grassmannians are spin?

Let $\mathrm{Gr}^{\mathbb{C}}(a, b)$ denote the grassmanian of complex a-dimensional subspaces of a complex b-dimensional vector space, and denote the tautological bundle over it by $\gamma_{\mathbb{C}}$. Similar to the previous cases, we have $T \operatorname{Gr}^{\mathbb{C}}(a, b) \cong \overline{\gamma_{\mathbb{C}}} \otimes \gamma_{\mathbb{C}}^{\perp}$ as complex vector bundles, where $\gamma_{\mathbb{C}}^{\perp}$ is the orthogonal complement of $\gamma_{\mathbb{C}} \subset \varepsilon_{\mathbb{C}}^{b}$ with respect to some fixed hermitian metric on $\varepsilon_{\mathbb{C}}^{b}$.
As $\mathrm{Gr}^{\mathbb{C}}(m, m+n)$ is a complex manifold, it is orientable, i.e. $w_{1}\left(\operatorname{Gr}^{\mathbb{C}}(m, m+n)\right)=0$. Instead of using the formula for $w_{2}(E \otimes F)$, we have a shortcut in the complex case: we can use the Chern character to compute $c_{1}\left(\mathrm{Gr}^{\mathbb{C}}(m, m+n)\right)$ and hence $w_{2}\left(\mathrm{Gr}^{\mathbb{C}}(m, m+n)\right)$.

The Chern character is extremely useful as it satisfies $\operatorname{ch}(E \otimes F)=\operatorname{ch}(E) \operatorname{ch}(F)$. As $\operatorname{ch}(E)=\operatorname{rank}(E)+$ $c_{1}(E)+\ldots$ this immediately implies

$$
c_{1}(E \otimes F)=\operatorname{rank}(F) c_{1}(E)+\operatorname{rank}(E) c_{1}(F)
$$

In particular,

$$
c_{1}\left(\mathrm{Gr}^{\mathbb{C}}(m, m+n)\right)=c_{1}\left(\overline{\gamma_{\mathbb{C}}} \otimes \gamma_{\mathbb{C}}^{\perp}\right)=n c_{1}\left(\overline{\gamma_{\mathbb{C}}}\right)+m c_{1}\left(\gamma_{\mathbb{C}}^{1}\right) .
$$

As $\gamma_{\mathbb{C}} \oplus \gamma_{\mathbb{C}}^{\perp} \cong \varepsilon_{\mathbb{C}}^{m+n}$, we see that $c_{1}\left(\gamma_{\mathbb{C}}^{\perp}\right)=-c_{1}\left(\gamma^{\mathbb{C}}\right)$, while for the other term we use the fact that $c_{i}(\bar{E})=(-1)^{i} c_{i}(E)$, so we conclude that

$$
c_{1}\left(\mathrm{Gr}^{+}(m, m+n)\right)=n c_{1}\left(\overline{\gamma_{\mathbb{C}}}\right)+m c_{1}\left(\gamma_{\mathbb{C}}\right)=-n c_{1}\left(\gamma_{\mathbb{C}}\right)-m c_{1}\left(\gamma_{\mathbb{C}}\right)=-(m+n) c_{1}\left(\gamma_{\mathbb{C}}\right)
$$

As $H^{*}\left(\operatorname{Gr}^{\mathbb{C}}(m, m+n) ; \mathbb{Z}\right) \cong \mathbb{Z}\left[c_{1}\left(\gamma_{\mathbb{C}}\right), \ldots, c_{m}\left(\gamma_{\mathbb{C}}\right)\right] /\left(\bar{c}_{m+1}, \ldots, \bar{c}_{m+n}\right)$ where \bar{c}_{i} are defined in analogy with the previous cases, we see that $c_{1}\left(\gamma_{\mathbb{C}}\right)$ is non-zero and is not divisible by 2 . Therefore $w_{2}\left(\operatorname{Gr}^{\mathbb{C}}(m, m+n)\right)=(m+n) w_{2}\left(\gamma_{\mathbb{C}}\right)$; as $c_{1}\left(\gamma_{\mathbb{C}}\right)$ is not divisible by 2 , we see that $w_{2}\left(\gamma_{\mathbb{C}}\right) \neq 0$. Therefore, we arrive at the following result.

Theorem. The grassmannian $\mathrm{Gr}^{\mathbb{C}}(m, m+n)$ is always orientable. Moreover, the obstructions to spin, pin ${ }^{+}$, and pin ${ }^{-}$structures coincide and they vanish if and only if $m+n$ is even.

5. Which grassmannians are spin ${ }^{c}$?

Recall that a smooth manifold M is spin ${ }^{c}$ if and only if $w_{1}(M)=0$ and $w_{2}(M)$ has an integral lift. More generally, a smooth manifold M is pin^{c} if and only if $w_{2}(M)$ has an integral lift, so an orientable smooth manifold is pin ${ }^{c}$ if and only if it is spin ${ }^{c}$. The obstruction to lifting $w_{2}(M)$ to an integral class is the integral Stiefel-Whitney class $W_{3}(M)=\beta\left(w_{2}(M)\right) \in H^{3}(M ; \mathbb{Z})$; note, as $w_{2}(M)$ is 2-torsion, so is $W_{3}(M)$.

On an almost complex manifold M, the first Chern class $c_{1}(M)$ is an integral lift of $w_{2}(M)$, so M is spin^{c}; better still, almost complex manifolds have a canonical spin ${ }^{c}$ structure (see Example D. 6 of [3]). Therefore, all complex grassmannians are spin^{c} (and hence pin ${ }^{c}$).

Turning our attention to oriented grassmannians, first note that if $m=1$ or $n=1$, then $\mathrm{Gr}^{+}(m, m+n)$ is a sphere which is spin and hence spin ${ }^{c}$. For $m, n>1$, the oriented grassmannian $\mathrm{Gr}^{+}(m, m+n)$ is simply connected, so
$W_{3}\left(\operatorname{Gr}^{+}(m, m+n)\right) \in H^{3}\left(\mathrm{Gr}^{+}(m, m+n) ; \mathbb{Z}\right)_{\text {tors }} \cong H_{2}\left(\operatorname{Gr}^{+}(m, m+n) ; \mathbb{Z}\right)_{\text {tors }} \cong \pi_{2}\left(\mathrm{Gr}^{+}(m, m+n)\right)_{\text {tors }}$.
To determine $\pi_{2}\left(\mathrm{Gr}^{+}(m, m+n)\right.$), recall that $\mathrm{Gr}^{+}(m, m+n)$ is diffeomorphic to the homogeneous space $S O(m+n) /(S O(m) \times S O(n))$, so there is a fibre bundle $S O(m) \times S O(n) \rightarrow S O(m+n) \rightarrow$ $\mathrm{Gr}^{+}(m, m+n)$. From the associated long exact sequence in homotopy, we deduce

$$
\pi_{2}\left(\mathrm{Gr}^{+}(m, m+n)\right) \cong \begin{cases}0 & m=1, n \neq 2, \text { or } m \neq 2, n=1 \\ \mathbb{Z} & m=2 \text { or } n=2, \text { but not both } \\ \mathbb{Z} \oplus \mathbb{Z} & m=n=2 \\ \mathbb{Z}_{2} & m, n \geq 3\end{cases}
$$

As $W_{3}\left(\mathrm{Gr}^{+}(m, m+n)\right)$ is 2-torsion, it could only be non-zero when $m, n \geq 3$ in which case it would be the unique non-zero element of $H^{3}\left(\mathrm{Gr}^{+}(m, m+n) ; \mathbb{Z}\right) \cong \mathbb{Z}_{2}$. It follows that $W_{3}\left(\mathrm{Gr}^{+}(m, m+n)\right)$ is non-zero if and only if its reduction modulo 2 is. In general, we have $W_{3}(M)=\beta\left(w_{2}(M)\right) \equiv$ $\mathrm{Sq}^{1}\left(w_{2}(M)\right) \bmod 2$. Recall, if $m-n$ is even, $w_{2}\left(\operatorname{Gr}^{+}(m, m+n)\right)=0$, and if $m-n$ is odd, then $w_{2}\left(\operatorname{Gr}^{+}(m, m+n)\right)=w_{2}\left(\gamma^{+}\right)$. Now note that $\operatorname{Sq}^{1}\left(w_{2}\left(\gamma^{+}\right)\right)=w_{1}\left(\gamma^{+}\right) w_{2}\left(\gamma^{+}\right)+w_{3}\left(\gamma^{+}\right)=w_{3}\left(\gamma^{+}\right)$. As $H^{*}\left(\operatorname{Gr}(m, m+n) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[w_{1}(\gamma), \ldots, w_{m}(\gamma)\right] /\left(\bar{w}_{n+1}, \ldots, \bar{w}_{m+n}\right)$, the class $w_{3}(\gamma)$ is not in the ideal generated by $w_{1}(\gamma)$ for $m, n \geq 3$. As we did in section 3 , we deduce from the Gysin sequence that $w_{3}\left(\gamma^{+}\right)=\pi^{*} w_{3}(\gamma)$ is non-zero. Therefore $\mathrm{Gr}^{+}(m, m+n)$ is not spin ${ }^{c}$ (and hence not pin ${ }^{c}$) when $m-n$ is odd and $m, n \geq 3$.

To determine which unoriented grassmannians are pin^{c}, note that if $\operatorname{Gr}(m, m+n)$ is pin^{c}, then so is $\operatorname{Gr}^{+}(m, m+n)$, which by the above implies that $m-n$ is even, $m \leq 2$, or $n \leq 2$. When $m-n$ is even, $\operatorname{Gr}(m, m+n)$ is orientable and $w_{2}(\operatorname{Gr}(m, m+n))=0$ or $w_{1}(\gamma)^{2}$. Note that $w_{1}(\gamma)^{2}=\operatorname{Sq}^{1}\left(w_{1}(\gamma)\right)$ which has $W_{2}(\gamma)=\beta\left(w_{1}(\gamma)\right)$ as an integral lift, so $\operatorname{Gr}(m, m+n)$ is pin^{c} when $m-n$ is even. If $m=1$ or $n=1$, then $\operatorname{Gr}(m, m+n)$ is a projective space. As

$$
H^{3}\left(\mathbb{R P}^{n} ; \mathbb{Z}\right)= \begin{cases}\mathbb{Z} & n=3 \\ 0 & n \neq 3\end{cases}
$$

we see that $W_{3}\left(\mathbb{R}^{n}\right)=0$ and hence projective spaces are pin^{c}. Finally, suppose $m=2$ and $n>1$ is odd. Then $w_{2}(\operatorname{Gr}(2,2+n))$ is either $w_{2}(\gamma)$ or $w_{2}(\gamma)+w_{1}(\gamma)^{2}$; in both cases, we see that $W_{3}(\operatorname{Gr}(2,2+$ $n))=W_{3}(\gamma)$. Now note that $W_{3}(\gamma)=\beta\left(w_{2}(\gamma)\right) \equiv \operatorname{Sq}^{1}\left(w_{2}(\gamma)\right) \bmod 2$, and $\operatorname{Sq}^{1}\left(w_{2}(\gamma)\right)=w_{1}(\gamma) w_{2}(\gamma)+$ $w_{3}(\gamma)=w_{1}(\gamma) w_{2}(\gamma)$ as γ has rank 2. Given that $H^{*}\left(\operatorname{Gr}(2,2+n) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[w_{1}(\gamma), w_{2}(\gamma)\right] /\left(\bar{w}_{n+1}, \bar{w}_{n+2}\right)$ and $n+1>3$, we see that $w_{1}(\gamma) w_{2}(\gamma) \neq 0$ and hence $W_{3}(\operatorname{Gr}(2,2+n))=W_{3}(\gamma) \neq 0$. The case $n=2$ and $m>1$ odd is completely analogous.

In summary, we have the following:

Theorem.

- The complex grassmannians $\operatorname{Gr}^{\mathbb{C}}(m, m+n)$ are all pinc $/$ spin c.
- The oriented grassmannians $\mathrm{Gr}^{+}(m, m+n)$ are pinc $/$ spin c if and only if $m-n$ is even, $m \leq 2$, or $n \leq 2$.
- The unoriented grassmannians $\operatorname{Gr}(m, m+n)$ are pinc if and only if $m-n$ is even, $m=1$, or $n=1$. In particular, they are spin${ }^{c}$ if and only if $m-n$ is even.

In particular, for $k>1$, the oriented grassmannians $\operatorname{Gr}^{+}(2,2 k+1)$ are spin${ }^{c}$ but not spin. On the other hand, for $m, n \neq 2$, we see that $\mathrm{Gr}^{+}(m, m+n)$ is spin^{c} if and only if it is spin. More generally, a simply connected manifold M with $\pi_{2}(M)$ finite is spin^{c} if and only if it is spin, see page 50 of [2].

From the above, we discover an example of a manifold which is not pin ${ }^{c}$ but admits a finite cover which is. Namely, the manifold $\operatorname{Gr}(2,2 k+1)$ is not pin^{c} for $k \geq 2$, but its double cover $\operatorname{Gr}^{+}(2,2 k+1)$ is pin^{c}.

References

[1] Cahen, M. and Gutt, S., 1988. Spin structures on compact simply connected Riemannian symmetric spaces. Simon Stevin, 62(3/4), pp.209-242.
[2] Friedrich, T., 2000. Dirac operators in Riemannian geometry (Vol. 25). American Mathematical Soc..
[3] Lawson, H.B. and Michelsohn, M.L., 1989. Spin geometry (pms-38) (Vol. 38). Princeton university press.
[4] Milnor, J. and Stasheff, J.D., 1974. Characteristic Classes. (AM-76) (Vol. 76). Princeton university press.

