THE HIRZEBRUCH χ_{y} GENUS AND A THEOREM OF HIRZEBRUCH ON ALMOST COMPLEX MANIFOLDS

MICHAEL ALBANESE

Abstract

The purpose of this note is to give an introduction to the Hirzebruch χ_{y} genus and to give a proof of a theorem of Hirzebruch which states that on a closed almost complex manifold M of dimension $4 m$ we have $\chi(M) \equiv(-1)^{m} \sigma(M) \bmod 4$.

Let (M, g) be an $2 n$-dimensional closed Riemannian manifold. Given a spin^{c} structure, one can form the complex spin^{c} bundles $\mathbb{S}_{\mathbb{C}}^{+}$and $\mathbb{S}_{\mathbb{C}}^{-}$. Then there is a spin ${ }^{c}$ Dirac operator $\not{ }^{c}: \Gamma\left(\mathbb{S}_{\mathbb{C}}^{+}\right) \rightarrow \Gamma\left(\mathbb{S}_{\mathbb{C}}^{-}\right)$which has index

$$
\operatorname{ind}\left(\not \partial^{c}\right)=\int_{M} \exp \left(c_{1}(L) / 2\right) \hat{A}(T M)
$$

where L is the complex line bundle associated to the spin^{c} structure; see Theorem D. 15 of [5].
If $E \rightarrow M$ is a hermitian vector bundle, then there is a twisted spin^{c} Dirac operator $\not \partial_{E}^{c}: \Gamma\left(\mathbb{S}_{\mathbb{C}}^{+} \otimes E\right) \rightarrow$ $\Gamma\left(\mathbb{S}_{\mathbb{C}}^{-} \otimes E\right)$ which has index

$$
\operatorname{ind}\left(\not \ddot{D}_{E}^{c}\right)=\int_{M} \exp \left(c_{1}(L) / 2\right) \operatorname{ch}(E) \hat{A}(T M)
$$

I don't know a reference for this precise statement (if you do, please let me know), but the fact that this quantity is an integer is Theorem 26.1.1 of [3].

Suppose now that M admits an almost complex structure and g is hermitian. Then there is a canonical spin^{c} structure which has associated line bundle $L=\operatorname{det}_{\mathbb{C}}(T M)$, so $c_{1}(L)=c_{1}(M)$; see Example D. 6 of [5]. Using the fact that $\exp \left(c_{1}(M) / 2\right) \hat{A}(T M)=\operatorname{Td}(T M)$, the index becomes

$$
\begin{equation*}
\operatorname{ind}\left(\not \partial_{E}^{c}\right)=\int_{M} \operatorname{ch}(E) \operatorname{Td}(T M) \tag{1}
\end{equation*}
$$

In addition, the complex spin ${ }^{c}$ bundles take the form $\mathbb{S}_{\mathbb{C}}^{+} \cong \bigwedge^{0, \text { even }} M$ and $\mathbb{S}_{\mathbb{C}}^{-}=\bigwedge^{0, \text { odd }} M$; see corollary 3.4.6 of [6]. If $E=\bigwedge^{p, 0} M$, then we have a twisted spin^{c} Dirac operator $\not \partial_{\Lambda^{c, 0} M}^{c}: \Gamma\left(\bigwedge^{p, \text { even }} M\right) \rightarrow$ $\Gamma\left(\bigwedge^{p, \text { odd }} M\right)$; for notational convenience, we will instead write $\not \partial_{p}^{c}$ for this operator. We define $\chi^{p}(M):=$ $\operatorname{ind}\left(\not \partial_{p}^{c}\right)$; if $p=0$, this is just the Todd genus. The Hirzebruch χ_{y} genus is defined to be

$$
\chi_{y}(M):=\sum_{p=0}^{n} \chi^{p}(M) y^{p}
$$

Integrable Case

Suppose now that J is integrable, in which case $n=\operatorname{dim}_{\mathbb{C}} M$. Then, modulo order zero terms, we have $\not \partial^{c}=\sqrt{2}\left(\bar{\partial}+\bar{\partial}^{*}\right)$; see Proposition 8 of [1]. In addition, if E is holomorphic, then modulo order zero terms $\not \partial_{E}^{c}=\sqrt{2}\left(\bar{\partial}_{E}+\bar{\partial}_{E}^{*}\right)$ and (1) becomes the statement of the Hirzebruch-Riemann-Roch theorem.

In particular, $\bigwedge^{p, 0} M$ is holomorphic and $\not \partial_{p}^{c}: \Gamma\left(\bigwedge^{p, \text { even }} M\right) \rightarrow \Gamma\left(\bigwedge^{p, \text { odd }} M\right)$ is just $\sqrt{2}\left(\bar{\partial}+\bar{\partial}^{*}\right)$ to highest order. If $\mathcal{H}_{\bar{\partial}}^{p, q}(M)$ denotes the $\bar{\partial}$-harmonic (p, q)-forms on M, then

$$
\begin{aligned}
\operatorname{ind}\left(\not \partial_{p}^{c}\right) & =\operatorname{ind} \sqrt{2}\left(\bar{\partial}+\bar{\partial}^{*}\right) \\
& =\operatorname{dim}\left(\bigoplus_{q \text { even }} \mathcal{H}_{\bar{\partial}}^{p, q}(M)\right)-\operatorname{dim}\left(\bigoplus_{q \text { odd }} \mathcal{H}_{\bar{\partial}}^{p, q}(M)\right) \\
& =\sum_{q \text { even }} \operatorname{dim} \mathcal{H}_{\bar{\partial}}^{p, q}(M)-\sum_{q \text { odd }} \operatorname{dim} \mathcal{H}_{\bar{\partial}}^{p, q}(M) \\
& =\sum_{q \text { even }} h^{p, q}(M)-\sum_{q \text { odd }} h^{p, q}(M) \\
& =\sum_{q=0}^{n}(-1)^{q} h^{p, q}(M) \\
& =\chi\left(M, \Omega^{p}\right)
\end{aligned}
$$

Using the penultimate expression above, we have

$$
\chi_{y}(M)=\sum_{p=0}^{n} \sum_{q=0}^{n}(-1)^{q} h^{p, q}(M) y^{p} .
$$

We now list some properties of $\chi_{y}(M)$ in the integrable case.
Property 1. $\chi_{y}(M)=(-y)^{n} \chi_{y^{-1}}(M)$.
Proof. As

$$
(-y)^{n} \chi_{y^{-1}}(M)=(-y)^{n} \sum_{p=0}^{n} \chi^{p}(M) y^{-p}=\sum_{p=0}^{n}(-1)^{n} \chi^{p}(M) y^{n-p}
$$

this property is equivalent to $\chi^{p}(M)=(-1)^{n} \chi^{n-p}(M)$.
By Serre duality we have $h^{p, q}(M)=h^{n-p, n-q}(M)$, so

$$
\begin{aligned}
\chi^{p}(M) & =\sum_{q=0}^{n}(-1)^{q} h^{p, q}(M) \\
& =\sum_{q=0}^{n}(-1)^{q} h^{n-p, n-q}(M) \\
& =(-1)^{n} \sum_{q=0}^{n}(-1)^{n-q} h^{n-p, n-q}(M) \\
& =(-1)^{n} \chi^{n-p}(M)
\end{aligned}
$$

Property 2. If M admits a Kähler metric, then $\chi_{-1}(M)=\chi(M)$.
Proof. Note that in the Kähler case

$$
\chi_{-1}(M)=\sum_{p=0}^{n} \sum_{q=0}^{n}(-1)^{p+q} h^{p, q}(M)=\sum_{k=0}^{2 n}(-1)^{k} \sum_{p+q=k} h^{p, q}(M)=\sum_{k=0}^{2 n}(-1)^{k} b_{k}(M)=\chi(M) .
$$

THE HIRZEBRUCH χ_{y} GENUS AND A THEOREM OF HIRZEBRUCH ON ALMOST COMPLEX MANIFOLDS 3
Property 3. Suppose that n is even and M admits a Kähler metric. Then $\chi_{1}(M)=\sigma(M)$.
Proof. Using the fact that $h^{p, q}(M)=h^{q, p}(M)$, we have

$$
\chi_{1}(M)=\sum_{p=0}^{n} \sum_{q=0}^{n}(-1)^{q} h^{p, q}(M)=\sum_{p=0}^{n} \sum_{q=0}^{n}(-1)^{q} h^{q, p}(M)=\sum_{p=0}^{n} \sum_{q=0}^{n}(-1)^{p} h^{p, q}(M) .
$$

It follows from the Hard Lefschetz Theorem that the final expression is equal to $\sigma(M)$; see Corollary 3.3.18 of [4].

As we will see in the next section, all three of these properties hold in general.

> Non-Integrable Case

Suppose now that J is not integrable.
In order to establish the properties mentioned in the previous section, we need the following expression for $\chi_{y}(M)$.

Theorem. Let x_{i} be the Chern roots of TM. Then

$$
\chi_{y}(M)=\int_{M} \prod_{i=1}^{n} \frac{x_{i}\left(1+y e^{-x_{i}}\right)}{1-e^{-x_{i}}}
$$

Proof. By the splitting principle, we can suppose that $T M=\ell_{1} \oplus \cdots \oplus \ell_{n}$, and hence $T^{*} M=\ell_{1}^{*} \oplus \cdots \oplus \ell_{n}^{*}$, without any loss of generality. Defining $x_{i}=c_{1}\left(\ell_{i}\right)$, we have $-x_{i}=c_{1}\left(\ell_{i}^{*}\right)$. Note that

$$
\bigwedge^{p, 0} M=\bigwedge^{p} T^{*} M=\bigwedge^{p}\left(\ell_{1}^{*} \oplus \cdots \oplus \ell_{n}^{*}\right)=s_{p}\left(\ell_{1}^{*}, \ldots, \ell_{n}^{*}\right)
$$

where s_{p} is the $p^{\text {th }}$ elementary symmetric polynomial (addition and multiplication correspond to direct sum and tensor product respectively). Therefore

$$
\operatorname{ch}\left(\bigwedge^{p, 0} M\right)=\operatorname{ch}\left(s_{p}\left(\ell_{1}^{*}, \ldots, \ell_{n}^{*}\right)\right)=s_{p}\left(\operatorname{ch}\left(\ell_{1}^{*}\right), \ldots, \operatorname{ch}\left(\ell_{n}^{*}\right)\right)=s_{p}\left(e^{-x_{1}}, \ldots, e^{-x_{n}}\right)
$$

So we have

$$
\begin{aligned}
\chi_{y}(M) & =\sum_{p=0}^{n} \chi^{p}(M) y^{p} \\
& =\sum_{p=0}^{n} \operatorname{ind}\left(\not \partial_{p}^{c}\right) y^{p} \\
& =\sum_{p=0}^{n}\left(\int_{M} \operatorname{ch}\left(\bigwedge^{p, 0} M\right) \operatorname{Td}(M)\right) y^{p} \\
& =\int_{M}\left(\sum_{p=0}^{n} \operatorname{ch}\left(\bigwedge^{p, 0} M\right) y^{p}\right) \operatorname{Td}(M) \\
& =\int_{M}\left(\sum_{p=0}^{n} s_{p}\left(e^{-x_{1}}, \ldots, e^{-x_{n}}\right) y^{p}\right) \prod_{i=1}^{n} \frac{x_{i}}{1-e^{-x_{i}}} \\
& =\int_{M} \prod_{i=1}^{n}\left(1+e^{-x_{i}} y\right) \prod_{i=1}^{n} \frac{x_{i}}{1-e^{-x_{i}}} \\
& =\int_{M} \prod_{i=1}^{n} \frac{x_{i}\left(1+e^{-x_{i}} y\right)}{1-e^{-x_{i}}} .
\end{aligned}
$$

Setting $y=-1$, we now see that property 2 holds in the non-integrable case:

$$
\chi_{-1}(M)=\int_{M} \prod_{i=1}^{n} \frac{x_{i}\left(1-e^{-x_{i}}\right)}{1-e^{-x_{i}}}=\int_{M} \prod_{i=1}^{n} x_{i}=\int_{M} c_{n}(M)=\int_{M} e(M)=\chi(M)
$$

When J is integrable, property 2 gives us the following result (which also follows from the existence of the Frölicher spectral sequence).

Corollary. Let M be an n-dimensional compact complex manifold. The Euler characteristic of M is given by

$$
\chi(M)=\sum_{p=0}^{n} \sum_{q=0}^{n}(-1)^{p+q} h^{p, q}(M)
$$

For the other two properties, we need the following lemma. Thanks to Professor Ping Li for pointing this out to me.

Lemma. Let t be a parameter. Then

$$
\chi_{y}(M)=\int_{M} \prod_{i=1}^{n} \frac{x_{i}\left(1+y e^{-t x_{i}}\right)}{1-e^{-t x_{i}}}
$$

Proof. The key is to note that $\chi_{y}(M)$ only depends on the degree $2 n$ part of the integrand. As $\operatorname{deg} x_{i}=2$, if we replace x_{i} by $t x_{i}$, then we have

$$
\int_{M} \prod_{i=1}^{n} \frac{t x_{i}\left(1+y e^{-t x_{i}}\right)}{1-e^{-t x_{i}}}=t^{n} \int_{M} \prod_{i=1}^{n} \frac{x_{i}\left(1+y e^{-x_{i}}\right)}{1-e^{-x_{i}}}=t^{n} \chi_{y}(M)
$$

Dividing through by t^{n}, we arrive at the result.

With this lemma in hand, we have

$$
\begin{aligned}
\chi_{y}(M) & =\int_{M} \prod_{i=1}^{n} \frac{x_{i}\left(1+y e^{-x_{i}}\right)}{1-e^{-x_{i}}} \\
& =\int_{M} \prod_{i=1}^{n} \frac{x_{i}\left(1+y e^{x_{i}}\right)}{1-e^{x_{i}}} \\
& =\int_{M} \prod_{i=1}^{n}(-y) \frac{x_{i}\left(y^{-1}+e^{x_{i}}\right)}{e^{x_{i}}-1} \\
& =(-y)^{n} \int_{M} \prod_{i=1}^{n} \frac{x_{i}\left(e^{x_{i}}+y^{-1}\right)}{e^{x_{i}}-1} \\
& =(-y)^{n} \int_{M} \prod_{i=1}^{n} \frac{x_{i}\left(1+y^{-1} e^{-x_{i}}\right)}{1-e^{-x_{i}}} \\
& =(-y)^{n} \chi_{y^{-1}}(M)
\end{aligned}
$$

where the second equality uses the lemma with $t=-1$. So we see that property 1 holds.
For property 3 , suppose $n=2 m$. Setting $y=1$ gives

$$
\chi_{1}(M)=\int_{M} \prod_{i=1}^{n} \frac{x_{i}\left(1+e^{-x_{i}}\right)}{1-e^{-x_{i}}}=\int_{M} \prod_{i=1}^{n} \frac{x_{i}\left(1+e^{2 x_{i}}\right)}{1-e^{2 x_{i}}}=\int_{M} \prod_{i=1}^{n} \frac{x_{i}}{\tanh \left(x_{i}\right)}
$$

where the lemma was used with $t=-2$ in the second equality. Recall that the power series which generates the L genus (in terms of Pontryagin classes) is

$$
Q(x)=\frac{\sqrt{x}}{\tanh (\sqrt{x})}
$$

By lemma 1.3.1 of [3], the corresponding power series which generates the L genus (in terms of Chern classes) is

$$
\widetilde{Q}(x)=\frac{x}{\tanh (x)}
$$

So the above computation shows that

$$
\chi_{1}(M)=\int_{M} \prod_{i=1}^{n} \frac{x_{i}}{\tanh \left(x_{i}\right)}=\int_{M} L_{m}\left(p_{1}, \ldots, p_{m}\right)=\sigma(M) .
$$

In the integrable case, we immediately obtain the following corollary.
Corollary. Let M be an n-dimensional compact complex manifold with n even. The signature of M is given by

$$
\sigma(M)=\sum_{p=0}^{n} \sum_{q=0}^{n}(-1)^{q} h^{p, q}(M)
$$

Note, in the proof of property 3 in the Kähler case, the exponent of -1 is p, not q. Because $h^{p, q}(M)=$ $h^{q, p}(M)$, it doesn't make any difference. However, in the non-Kähler case, having exponent p does not compute the signature as can easily be checked for a Hopf surface.
If M has odd dimension, it follows from Serre duality that $\chi_{1}(M)=0$.

A Theorem of Hirzebruch

The three properties of $\chi_{y}(M)$ give rise to the following result of Hirzebruch.
Theorem. Suppose M is a closed $4 m$-dimensional manifold which admits an almost complex structure, then $\chi(M) \equiv(-1)^{m} \sigma(M) \bmod 4$.

Proof. We separate the proof into two cases based on the parity of m.
If $m=2 k$ is even, then $n=2 m=4 k$ so

$$
\begin{aligned}
\chi(M) & =\chi_{-1}(M) \\
& =\sum_{p=0}^{4 k}(-1)^{p} \chi^{p}(M) \\
& =\sum_{p=0}^{4 k} \chi^{p}(M)-2 \sum_{p=0}^{2 k-1} \chi^{2 p+1}(M) \\
& =\chi_{1}(M)-2\left[\sum_{p=0}^{k-1} \chi^{2 p+1}(M)+\sum_{p=k}^{2 k-1} \chi^{2 p+1}(M)\right] \\
& =\sigma(M)-2\left[\sum_{p=0}^{k-1} \chi^{2 p+1}(M)+\sum_{p=k}^{2 k-1}(-1)^{4 k} \chi^{4 k-(2 p+1)}(M)\right] \\
& =\sigma(M)-2\left[\sum_{p=0}^{k-1} \chi^{2 p+1}(M)+\sum_{p=k}^{2 k-1} \chi^{2(2 k-1-p)+1}(M)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sigma(M)-2\left[\sum_{p=0}^{k-1} \chi^{2 p+1}(M)+\sum_{p=0}^{k-1} \chi^{2 p+1}(M)\right] \\
& =\sigma(M)-4 \sum_{p=0}^{k-1} \chi^{2 p+1}(M)
\end{aligned}
$$

Therefore $\chi(M) \equiv \sigma(M) \bmod 4$.
If $m=2 k+1$ is odd, then $n=2 m=4 k+2$ so

$$
\begin{aligned}
\chi(M) & =\chi-1(M) \\
& =\sum_{p=0}^{4 k+2}(-1)^{p} \chi^{p}(M) \\
& =-\sum_{p=0}^{4 k+2} \chi^{p}(M)+2 \sum_{p=0}^{2 k+1} \chi^{2 p}(M) \\
& =-\chi_{1}(M)+2\left[\sum_{p=0}^{k} \chi^{2 p}(M)+\sum_{p=k+1}^{2 k+1} \chi^{2 p}(M)\right] \\
& =-\sigma(M)+2\left[\sum_{p=0}^{k} \chi^{2 p}(M)+\sum_{p=k+1}^{2 k+1}(-1)^{4 k+2} \chi^{4 k+2-2 p}(M)\right] \\
& =-\sigma(M)+2\left[\sum_{p=0}^{k} \chi^{2 p}(M)+\sum_{p=k+1}^{2 k+1} \chi^{2(2 k+1-p)}(M)\right] \\
& =-\sigma(M)+2\left[\sum_{p=0}^{k} \chi^{2 p}(M)+\sum_{p=0}^{k} \chi^{2 p}(M)\right] \\
& =-\sigma(M)+4 \sum_{p=0}^{k} \chi^{2 p}(M) .
\end{aligned}
$$

Therefore $\chi(M) \equiv-\sigma(M) \bmod 4$.

We end with an application of this theorem.
Let $M_{k}=k \mathbb{C P}^{2 m}$ denote the connected sum of $k \geq 0$ copies of $\mathbb{C P}^{2 m}$. Note that $\chi\left(M_{k}\right)=(2 m-1) k+$ $2=2 m k-k+2$ and $\sigma\left(M_{k}\right)=k$. For k even, we have $\chi\left(M_{k}\right) \equiv-k+2 \bmod 4$ while $(-1)^{m} \sigma\left(M_{k}\right) \equiv$ $(-1)^{m} k \bmod 4$. Therefore, the manifolds M_{k} with k even do not admit almost complex structures. On the other hand, for k odd, we have $\chi\left(M_{k}\right) \equiv 2 m-k+2 \bmod 4$ and $(-1)^{m} \sigma\left(M_{k}\right) \equiv(-1)^{m} k \bmod 4$. By splitting into cases (either m even and m odd, or $k \equiv 1 \bmod 4$ and $k \equiv 3 \bmod 4$), one can verify that $\chi\left(M_{k}\right) \equiv(-1)^{m} \sigma\left(M_{k}\right) \bmod 4$ for k odd; that is, we can't use the above theorem to rule out the existence of almost complex structures on these manifolds. In fact, these manifolds do admit almost complex structures, see [2].
On the other hand, the manifolds $N_{k}=k \mathbb{C P}^{2 m+1}$ admit almost complex structures (even integrable ones) for all $k>0$. To see this, note that the map $\mathbb{C P}^{2 m+1} \rightarrow \mathbb{C P}^{2 m+1}$ given by $\left[z_{0}, \ldots, z_{2 m+1}\right] \mapsto$ $\left[\overline{z_{0}}, \ldots, \overline{z_{2 m+1}}\right]$ is an orientation-reserving diffeomorphism, and hence $\mathbb{C P}^{2 m+1}$ and $\overline{\mathbb{C P}^{2 m+1}}$ are diffeomorphic as oriented manifolds. Therefore, we see that N_{k} is diffeomorphic, as an oriented manifold, to the blowup of $\mathbb{C P}^{2 m+1}$ at $k-1$ points.

THE HIRZEBRUCH χ_{y} GENUS AND A THEOREM OF HIRZEBRUCH ON ALMOST COMPLEX MANIFOLDS 7

References

[1] Gauduchon, P., 1997. Hermitian connections and Dirac operators. Bollettino della Unione Matematica Italiana-B, (2), pp.257-288.
[2] Goertsches, O. and Konstantis, P., 2019. Almost complex structures on connected sums of complex projective spaces. Annals of K-Theory, 4(1), pp.139-149.
[3] Hirzebruch, F., Borel, A. and Schwarzenberger, R.L.E., 1966. Topological methods in algebraic geometry (Vol. 175). Berlin-Heidelberg-New York: Springer.
[4] Huybrechts, D., 2006. Complex geometry: an introduction. Springer Science \& Business Media.
[5] Lawson, H.B. and Michelsohn, M.L., 2016. Spin geometry (pms-38) (Vol. 38). Princeton university press.
[6] Morgan, J.W., 2014. The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44) (Vol. 44). Princeton University Press.

