THE HIRZEBRUCH y, GENUS AND A THEOREM OF HIRZEBRUCH ON
ALMOST COMPLEX MANIFOLDS

MICHAEL ALBANESE

ABSTRACT. The purpose of this note is to give an introduction to the Hirzebruch x, genus and to
give a proof of a theorem of Hirzebruch which states that on a closed almost complex manifold M of
dimension 4m we have x(M) = (—1)™o (M) mod 4.

Let (M, g) be an 2n-dimensional closed Riemannian manifold. Given a spin® structure, one can form
the complex spin® bundles S{ and Sz. Then there is a spin® Dirac operator @ : T'(S{) — T'(Sz) which
has index

ind(§°) = / exp(ci (L) /2)A(TM)
M
where L is the complex line bundle associated to the spin® structure; see Theorem D.15 of [5].

If E — M is a hermitian vector bundle, then there is a twisted spin® Dirac operator @5 : I‘(SZ:r ®RF) —
I'(Sg ® E) which has index

ind(§%) = /M exp(c1(L)/2) ch(E)A(TM).

I don’t know a reference for this precise statement (if you do, please let me know), but the fact that
this quantity is an integer is Theorem 26.1.1 of [3].

Suppose now that M admits an almost complex structure and g is hermitian. Then there is a canonical
spin® structure which has associated line bundle L = detc(TM), so ¢1(L) = ¢1(M); see Example D.6
of [5]. Using the fact that exp(c1(M)/2)A(TM) = Td(T M), the index becomes

ind(#%) = / ch(E) Td(TM). (1)
M

In addition, the complex spin® bundles take the form S(Jcr ~ /\0’even M and S; = /\O’Odd M;; see corollary

3.4.6 of [6]. If E = A\"° M, then we have a twisted spin® Dirac operator Ipvonr s TP M) —

T(A° M); for notational convenience, we will instead write (?; for this operator. We define x?(M) :=

ind(t?;); if p =0, this is just the Todd genus. The Hirzebruch yx, genus is defined to be

INTEGRABLE CASE

Suppose now that J is integrable, in which case n = dim¢ M. Then, modulo order zero terms, we have

#° = \/2(0 + 9*); see Proposition 8 of [1]. In addition, if E is holomorphic, then modulo order zero

terms @y = V/2(0p + 0%) and (1) becomes the statement of the Hirzebruch-Riemann-Roch theorem.
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In particular, A”° M is holomorphic and #, TN M) — C(AP° M) is just v2(0 + 9%) to
highest order. If #5*(M) denotes the d-harmonic (p, g)-forms on M, then

ind(¢;) = ind v2(9 + 9*)
= dim ( D H%%M)) —dim | @ HEU(M

q even q odd

= Z dim ’Hp’q Z dim ’Hp’q

q even q odd

> RPUM) = Y hPI(M)

q even q odd

n

= > (1)

q=0
= x(M,QP).
Using the penultimate expression above, we have
- S vy

p=0 q=0

We now list some properties of x, (M) in the integrable case.
Property 1. x, (M) = (—y)"x,-1(M).

Proof. As

(=D)"XP(M)y" ",
0

(=y)" Xy (M) = (=y)" Y X" (M)y P =
p=0
this property is equivalent to x?(M) = (=1)"x""P(M).
By Serre duality we have h?4(M) = h»P"~9(M), so

n

p

(M) = D (1) R ()
q=0

= _(=DIn"Pra(M)

n

= (=1)" ) (=1)" TP (M)

q=0

Property 2. If M admits a Kahler metric, then x_1(M) = x(M).

Proof. Note that in the K&hler case

_ ZZ 1)PHapPa(Mf) = Z(_l)k Z RPA(M) = Z(—l)kbk(M) = x(M).
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Property 3. Suppose that n is even and M admits a Kihler metric. Then x1(M) = o(M).

Proof. Using the fact that h??(M) = h?P(M), we have

=SS uean = 3 cueran = 3 Y apwr

p=0¢=0 p=04¢=0 p=0 q=0

It follows from the Hard Lefschetz Theorem that the final expression is equal to o(M); see Corollary
3.3.18 of [4]. 0

As we will see in the next section, all three of these properties hold in general.

NON-INTEGRABLE CASE
Suppose now that J is not integrable.

In order to establish the properties mentioned in the previous section, we need the following expression
for x,(M).

Theorem. Let z; be the Chern roots of TM. Then
/ H x;(1 4 ye 1)
1—e @

Proof. By the splitting principle, we can suppose that TM = {1®- - -®¢,,, and hence T*M = {1&- - -BL},
without any loss of generality. Defining z; = ¢1(¢;), we have —z; = ¢1(€}). Note that

/\p’OMz NTM=N(Ge o) =s,....6)

where sy, is the p't elementary symmetric polynomial (addition and multiplication correspond to direct
sum and tensor product respectively). Therefore

ch (/\p’0 M) = ch(sy(£5,...,05)) = s,(ch(€7),...,ch(£)) = sp(e™®, ..., e~ "),

So we have

e
My l—er®
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Setting y = —1, we now see that property 2 holds in the non-integrable case:

= [ =5 = [ T [ n = [ eon =xan

=1

When J is integrable, property 2 gives us the following result (which also follows from the existence
of the Frolicher spectral sequence).

Corollary. Let M be an n-dimensional compact complex manifold. The Fuler characteristic of M is
given by

Z Z p+q hP9(M).

p=0 q=0

For the other two properties, we need the following lemma. Thanks to Professor Ping Li for pointing
this out to me.

Lemma. Lett be a parameter. Then
zi(1+ye ™)
H 1 — e tzi :

Proof. The key is to note that x,(M) only depends on the degree 2n part of the integrand. As
deg x; = 2, if we replace x; by tz;, then we have

t:cllere b 1+ye i)
/ H e—ta; H 1— e = t"xy(M).
Dividing through by t”, we arrive at the result. O

With this lemma in hand, we have

n

xll—i—ye ‘”)
My 1—e"
B D14 ye® )
My 1 — e
n _1+€$7)
M¢:1 emlfl

/ H 11 +y 1
e*i —1
/ H‘“ (L+y~le™)
M I—e®
=(=y)" xy—l(M)

where the second equality uses the lemma with ¢ = —1. So we see that property 1 holds.

For property 3, suppose n = 2m. Setting y = 1 gives

n

zi(1 4 e%) x;(1+ e**)
/H Zl—e i /MH 21—62"’“ /Htanhfﬂz
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where the lemma was used with ¢ = —2 in the second equality. Recall that the power series which
generates the L genus (in terms of Pontryagin classes) is

Q)= — Y2
tanh(y/z)
By lemma 1.3.1 of [3], the corresponding power series which generates the L genus (in terms of Chern

classes) is
~ x

Q) = tanh(z)

So the above computation shows that

/Htanhg;z /MLm(plvmvpm):a(M).

In the integrable case, we immediately obtain the following corollary.

Corollary. Let M be an n-dimensional compact complex manifold with n even. The signature of M

18 given by
Z Z 1)2hP 9 (M

p=0¢=0

Note, in the proof of property 3 in the Kéahler case, the exponent of —1 is p, not q. Because h?*4(M) =
h%P (M), it doesn’t make any difference. However, in the non-Kéhler case, having exponent p does not
compute the signature as can easily be checked for a Hopf surface.

If M has odd dimension, it follows from Serre duality that x1(M) = 0.

A THEOREM OF HIRZEBRUCH

The three properties of x, (M) give rise to the following result of Hirzebruch.

Theorem. Suppose M is a closed 4m-dimensional manifold which admits an almost complez structure,
then x(M) = (—=1)"c(M) mod 4.

Proof. We separate the proof into two cases based on the parity of m.

If m = 2k is even, then n = 2m = 4k so
X(M) = x-1(M)

4k
=D (~1)Px"(M)
p=0

4k 2k—1
=D XP(M) =2 ) X (M)
p=0 p=0
k—1 2k—1
=1 (M) -2 Z (0 Z YPHY(M
p=0
(k-1 2k—1
=o(M)—2 | Y x*PTHM) + D (—1)F ()
| p=0 p=k
(k-1 2k—1
= o(0) — 2 | 30 )+ Y PP ()
p=0 p=k
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k—1 k—1
=a(M) =2 xTH(M)+ > x*TH(M)
p=0

Therefore x(M) = o(M) mod 4.

If m =2k +1is odd, then n = 2m = 4k 4+ 2 so

X(M) = x-1(M)

4k+2 2k+1

=Y w2y (M)
p=0 p=0

k 2k+1
=—xa(M)+2 | Y x*(M)+ Y x*(M)
p=0 p=k+1
k 2k+1
=-—0o(M)+2 szp(M) + Z (_1)4k+2x4k+2—2p(M)
=0 p=k+1
k 2k+1
=—o(M)+2 D XPM)+ Y ()
p=0 p=k+1
-k .
= —o(M)+2 | x*(M)+ > x*(M)
Lp=0 p=0
k
— —o(M)+43 " x**(M).

p=0

Therefore x(M) = —o(M) mod 4. O

We end with an application of this theorem.

Let M, = kCP*™ denote the connected sum of k > 0 copies of CP*™. Note that x(Mj) = (2m — 1)k +
2 =2mk —k+ 2 and o(My) = k. For k even, we have x(My) = —k 4+ 2 mod 4 while (—1)"c(M},) =
(—1)™k mod 4. Therefore, the manifolds M}, with k even do not admit almost complex structures. On
the other hand, for k odd, we have x(My) = 2m — k + 2mod 4 and (—1)™c (M) = (—1)™k mod 4.
By splitting into cases (either m even and m odd, or kK = 1 mod 4 and k¥ = 3 mod 4), one can verify
that x (M) = (—=1)"0o (M) mod 4 for k odd; that is, we can’t use the above theorem to rule out the
existence of almost complex structures on these manifolds. In fact, these manifolds do admit almost
complex structures, see [2].

On the other hand, the manifolds Nj, = kCP*™ ! admit almost complex structures (even integrable
ones) for all k > 0. To see this, note that the map CP*" ! — CP?"! given by (205 -+ 22m+1] —
[Z0, . - . Zam+1) is an orientation-reserving diffeomorphism, and hence CP?™ ™! and CP*™ ! are diffeo-
morphic as oriented manifolds. Therefore, we see that Ny is diffeomorphic, as an oriented manifold,
to the blowup of CP*™*! at k — 1 points.
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