# ALMOST COMPLEX STRUCTURES AND OBSTRUCTION THEORY 

MICHAEL ALBANESE

Abstract. These are notes for a lecture I gave in John Morgan's Homotopy Theory course at Stony Brook in Fall 2018.

Let $X$ be a CW complex and $Y$ a simply connected space. Last time we discussed the obstruction to extending a map $f: X^{(n)} \rightarrow Y$ to a map $X^{(n+1)} \rightarrow Y$; recall that $X^{(k)}$ denotes the $k$-skeleton of $X$. There is an obstruction $\mathfrak{o}(f) \in C^{n+1}\left(X ; \pi_{n}(Y)\right)$ which vanishes if and only if $f$ can be extended to $X^{(n+1)}$. Moreover, $\mathfrak{o}(f)$ is a cocycle and $[\mathfrak{o}(f)] \in H^{n+1}\left(X ; \pi_{n}(Y)\right)$ vanishes if and only if $\left.f\right|_{X^{(n-1)}}$ can be extended to $X^{(n+1)}$; that is, $f$ may need to be redefined on the $n$-cells.

## ObStructions to Lifting a map

Given a fibration $F \rightarrow E \xrightarrow{p} B$ and a map $f: X \rightarrow B$, when can $f$ be lifted to a map $g: X \rightarrow E$ ? If $X=B$ and $f=\operatorname{id}_{B}$, then we are asking when $p$ has a section. For convenience, we will only consider the case where $F$ and $B$ are simply connected, from which it follows that $E$ is simply connected. For a more general statement, see Theorem 7.37 of [2].

Suppose $g$ has been defined on $X^{(n)}$. Let $e^{n+1}$ be an $n$-cell and $\alpha: S^{n} \rightarrow X^{(n)}$ its attaching map, then $p \circ g \circ \alpha: S^{n} \rightarrow B$ is equal to $f \circ \alpha$ and is nullhomotopic (as $f$ extends over the ( $n+1$ )-cell). From the long exact sequence of a fibration (here we use simply connected so $\left[S^{n}, F\right]=\pi_{n}(F)$ etc.), we see that there is a map $\beta: S^{n} \rightarrow F$ such that $g \circ \alpha$ is homotopic to $i \circ \beta$ where $i: F \rightarrow E$ is the inclusion. So we obtain $\mathfrak{o}(g) \in C^{n+1}\left(X ; \pi_{n}(F)\right)$ which vanishes if and only if $g$ extends to $X^{(n+1)}$. As before, $\mathfrak{o}(g)$ is a cocycle and $[\mathfrak{o}(g)] \in H^{n+1}\left(X ; \pi_{n}(F)\right)$ vanishes if and only if $\left.g\right|_{X^{(n-1)}}$ extends to $X^{(n+1)}$.

Lots of interesting problems can be analysed using obstructions to lifting a map. For example:

- When does a vector bundle have a nowhere-zero section?
- When is a smooth manifold orientable?
- When is a smooth manifold spin?
- When does a smooth manifold admit an almost complex structure?
- When does a topological manifold admit a PL structure or smooth structure?

We're going to focus on the fourth one.

## Almost Complex Structures

A linear complex structure on a real vector space $V$ is an endomorphism $J: V \rightarrow V$ such that $J \circ J=-\mathrm{id}_{V}$. If $V$ is endowed with a linear complex structure $J$, then we can view $V$ as a complex vector space by defining $(a+b i) \cdot v=a v+b J(v)$. In particular, if $V$ is finite-dimensional, then $\operatorname{dim}_{\mathbb{R}} V=2 \operatorname{dim}_{\mathbb{C}} V$ is even. Moreover, if $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis for $V$ as a complex vector space, then
$\left\{e_{1}, J\left(e_{1}\right), \ldots, e_{n}, J\left(e_{n}\right)\right\}$ is a basis for $V$ as a real vector space and $e_{1} \wedge J\left(e_{1}\right) \wedge \cdots \wedge e_{n} \wedge J\left(e_{n}\right)$ defines an orientation; this orientation is independent of the choice of basis $\left\{e_{1}, \ldots, e_{n}\right\}$.

Let $E \rightarrow B$ be a real vector bundle. An almost complex structure on $E$ is a bundle endomorphism $J: E \rightarrow E$ such that $J \circ J=-\mathrm{id}_{E}$. It follows that in order for an almost complex structure to exist, $E$ must have even rank and be orientable. Note, given an almost complex structure, one can view $E$ as a complex vector bundle.

Remark: The reason I use the terminology 'linear almost complex structure' on $V$ rather than 'almost complex structure' is that the latter could be interpreted as an almost complex structure on the manifold $V$, i.e. an almost complex structure on the vector bundle $T V$.

An almost complex structure on a smooth manifold $M$ is defined to be an almost complex structure on $T M$. Again, if $M$ admits an almost complex structure then $M$ has even dimension and is orientable. Moreover, $T M$ can be viewed as a complex vector bundle.

Question: Does every even-dimensional orientable smooth manifold admit an almost complex structure?

Answer: No, there are obstructions.

## Classifying Spaces

A topological group is a group $(G, *)$ such that $G$ is a topological space, and the maps $*: G \times G \rightarrow G$ and $i: G \rightarrow G, g \mapsto g^{-1}$ are continuous. If $G$ is a smooth manifold and the maps $*$ and $i$ are smooth, then $(G, *)$ is called a Lie group.
A fiber bundle with fiber $F$ is a continuous map $\pi: E \rightarrow B$ such that for every $b \in B$, there is an open neighbourhood $U \subseteq B$ of $b$ and a homeomorphism $\varphi: \pi^{-1}(U) \rightarrow U \times F$ such that $\pi=\operatorname{pr}_{1} \circ \varphi$.
Let $G$ be topological group. A principal $G$-bundle is a fiber bundle $\pi: E \rightarrow B$ together with a continuous right action $E \times G \rightarrow E$ which preserves fibers (i.e. $\pi(e \cdot g)=\pi(e)$ ), and acts freely and transitively on them. As the action is free and transitive, we can (non-canonically) identify the fibers of $\pi$ with $G$.

An isomorphism between principal $G$-bundles $P \rightarrow B$ and $Q \rightarrow B$ is a $G$-equivariant map $\phi: P \rightarrow Q$ covering the identity. Denote the isomorphism classes of principal $G$-bundles on a topological space $B$ by $\operatorname{Prin}_{G}(B)$.

Fiber bundles, and hence principal bundles, are Serre fibrations; see Proposition 4.48 of [4]. Note however, they are not necessarily Hurewicz fibrations, see [1].

## Examples

1. If $G$ a discrete group, a principal $G$-bundle is a normal covering with group of deck transformations isomorphic to $G$.
2. If $H$ is a closed subgroup of a Lie group $G$, then $G \rightarrow G / H$ is a principal $H$-bundle.
3. Main example, frame bundles.

Let $E \rightarrow B$ be a real rank $n$ vector bundle. The frame bundle of $E$ is a space $F(E)$ together with a map $\pi: F(E) \rightarrow B$ such that $\pi^{-1}(p)$ is the collection of ordered bases, or frames, for $E_{p}$. Any two frames are related by a unique element of $G L(n, \mathbb{R})$. This is a principal $G L(n, \mathbb{R})$-bundle. Conversely, given a principal $G L(n, \mathbb{R})$-bundle, one can build a real vector bundle via a process known as the associated bundle construction. This defines a bijection between $\operatorname{Prin}_{G L(n, \mathbb{R})}(B)$ and $\operatorname{Vect}_{n}(B)$, the collection of isomorphism classes of real rank $n$ vector bundles.

Equipping $E$ with a Riemannian metric, we can take the orthogonal frame bundle which is a principal $O(n)$-bundle. Different Riemannian metrics give isomorphic principal $O(n)$-bundles. Again by the associated bundle construction, there is a bijection between $\operatorname{Prin}_{O(n)}(B)$ and $\operatorname{Vect}_{n}(B)$.

If $E$ also admits an orientation, we can take the oriented orthonormal frame bundle which is a principal $S O(n)$-bundle. Now we obtain a bijection between $\operatorname{Prin}_{S O(n)}(B)$ and $\operatorname{Vect}_{n}^{+}(B)$, the collection of isomorphism classes of oriented real rank $n$ vector bundles.

If $E$ has rank $2 n$ and is the underlying real vector bundle of a complex vector bundle, then one can take the bundle of complex frames which is a principal $G L(n, \mathbb{C})$-bundle. If $E$ is equipped with a hermitian metric, we can take the bundle of unitary frames which is a principal $U(n)$-bundle. As in the real case, there is a bijection $\operatorname{Prin}_{G L(n, \mathbb{C})}(B)$ and $\operatorname{Prin}_{U(n)}(B)$, and a bijection $\operatorname{Prin}_{G L(n, \mathbb{C})}(B)$-bundles and $\operatorname{Vect}_{n}^{\mathbb{C}}(B)$, the collection of isomorphism classes of rank $n$ complex vector bundles.

Theorem. Let $G$ be a topological group. There is a space $B G$ and a principal $G$-bundle $G \rightarrow E G \rightarrow$ $B G$ such that for every paracompact topological space $B$, isomorphism classes of principal $G$-bundles on $B$ are in bijection with $[B, B G]$.

The space $B G$ is unique up to homotopy and is called the classifying space. Milnor gave an explicit model for $B G$ using the join construction, see [5]. We call $G \rightarrow E G \rightarrow B G$ the universal principal $G$-bundle; it is characterised by the fact that $E G$ is weakly contractible; it follows from the long exact sequence in homotopy that $\pi_{n}(B G) \cong \pi_{n-1}(G)$. Given a map $f: B \rightarrow B G$, we can associate to it the principal $G$-bundle $f^{*} E G \rightarrow B$. If $P \rightarrow B$ is a principal $G$-bundle, a map $f: B \rightarrow B G$ such that $f^{*} E G \cong P$ is called a classifying map for $P$.

The association $G \rightarrow B G$ is functorial. In particular, given a continuous group homomorphism $\rho$ : $H \rightarrow G$, there is an associated continuous map $B \rho: B H \rightarrow B G$. If $i: H \rightarrow G$ is inclusion, then the homotopy fiber of $B i: B H \rightarrow B G$ is $G / H$.

## Characteristic Classes

From the theorem, we see that there is a bijection between $\operatorname{Vect}_{n}^{+}(B)$ and $[B, B S O(n)]$, as well as a bijection between $\operatorname{Vect}_{n}^{\mathbb{C}}(B)$ and $[B, B U(n)]$. The grassmannians $\operatorname{Gr}_{n}^{+}\left(\mathbb{R}^{\infty}\right)$ and $\operatorname{Gr}_{n}^{\mathbb{C}}\left(\mathbb{C}^{\infty}\right)$ are explicit models for $B S O(n)$ and $B U(n)$, and the tautological bundles over them are the universal bundles.

One can show that $H^{*}\left(B S O(n) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[w_{2}, \ldots, w_{n}\right]$ where $\operatorname{deg} w_{i}=i$. Given a principal $S O(n)$ bundle $P \rightarrow B$, we define $w_{i}(P)=f^{*} w_{i}$ where $f: B \rightarrow B S O(n)$ is any classifying map for $P$ - these are the Stiefel-Whitney classes for $P$. Note, the class $w_{i}(P)$ doesn't depend on the choice of classifying map as homotopic maps induce the same map on cohomology.
Similarly, we have $H^{*}(B U(n) ; \mathbb{Z}) \cong \mathbb{Z}\left[c_{1}, \ldots, c_{n}\right]$ where $\operatorname{deg} c_{i}=2 i$. Given a principal $U(n)$-bundle $P \rightarrow B$, we define $c_{i}(P)=f^{*} c_{i}$ where $f: B \rightarrow B U(n)$ is any classifying map for $P$ - these are the Chern classes of $P$.

The integral cohomology of $B S O(2 n)$ is more complicated than that of $B U(n)$. There are elements $p_{i} \in H^{4 i}(B S O(2 n) ; \mathbb{Z})$ for $i=1, \ldots, n$ and $e \in H^{2 n}(B S O(2 n) ; \mathbb{Z})$. Modulo torsion, these classes generate the cohomology, but not freely. More precisely, $H^{*}(B S O(2 n) ; \mathbb{Q}) \cong \mathbb{Q}\left[p_{1}, \ldots, p_{n}, e\right] /\left(p_{n}-e^{2}\right)$. Given a principal $S O(2 n)$-bundle $P \rightarrow B$, we define $p_{i}(P)=f^{*} p_{i}$ where $f: B \rightarrow B S O(2 n)$ is any classifying map for $P$ - these are the Pontryagin classes of $P$. We define $e(P)=f^{*} e$ - this is the Euler class of $P$.

## Obstructions to the Existence of an Almost Complex Structure

Let $p: B U(n) \rightarrow B S O(2 n)$ be the map induced by the inclusion $i: U(n) \rightarrow S O(2 n)$; i.e. $p=B i$. Postcomposition with $p$ gives a map $[B, B U(n)] \rightarrow[B, B S O(2 n)]$ and hence a map from complex
rank $n$ vector bundles to orientable rank $2 n$ real vector bundles; this just forgets the almost complex structure. We want to know when a principal $S O(2 n)$-bundle comes from a principal $U(n)$-bundle, that is when $f: B \rightarrow B S O(2 n)$ admits a lift $g: B \rightarrow B U(n)$. Suppose $g$ is a lift of $f$, i.e. then $f=g \circ p$. It follows that if $E$ is a complex rank $n$ vector bundle, $c_{i}(E) \equiv w_{2 i}(E) \bmod 2$ and $w_{2 i+1}(E)=0$.
The obstructions to a such a lift lie in $H^{k+1}\left(X ; \pi_{k}(F)\right)$ where $F$ is the homotopy fiber of $B U(n) \rightarrow$ $B S O(2 n)$. As the map $B U(n) \rightarrow B S O(2 n)$ is induced by inclusion, the homotopy fiber is $S O(2 n) / U(n)$ which can be identified with the space of linear complex structures on $\mathbb{R}^{2 n}$ which are compatible with a given inner product and orientation. It is a closed manifold of dimension $n(n-1)$. Note, when $n=1$, this space is a point as $U(1)=S O(2)$ which corresponds to the fact that every orientable rank 2 real vector bundle is a complex line bundle.

In order to do obstruction theory, we need to determine the first non-zero homotopy group of $S O(2 n) / U(n)$. From the long exact sequence in homotopy associated to the fibration $U(n) \rightarrow S O(2 n) \rightarrow S O(2 n) / U(n)$ together with the fact that $\pi_{2}(G)=0$ for Lie groups ${ }^{1}$ we see that

$$
0 \rightarrow \pi_{2}(S O(2 n) / U(n)) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}_{2} \rightarrow \pi_{1}(S O(2 n) / U(n)) \rightarrow 0
$$

As $\operatorname{ker}\left(\mathbb{Z} \rightarrow \mathbb{Z}_{2}\right) \cong \mathbb{Z}$, regardless of the map, we see that $\pi_{2}(S O(2 n) / U(n)) \cong \mathbb{Z}$. So either $\mathbb{Z} \rightarrow \mathbb{Z}_{2}$ is given by $1 \mapsto 1$, in which case $\pi_{1}(S O(2 n) / U(n))=0$, or $1 \mapsto 0$, in which case $\pi_{1}(S O(2 n) / U(n))=0$. Using the five lemma, we can show the following.

Lemma. For $n>1, \pi_{1}(S O(2 n) / U(n))=0$ and $\pi_{2}(S O(2 n) / U(n)) \cong \mathbb{Z}$.
In fact, we see that $\pi_{1}(S O(2 n) / U(n)) \cong \pi_{1}(S O(4) / U(2))$ and $\pi_{2}(S O(2 n) / U(n)) \cong \pi_{2}(S O(4) / U(2))$ for all $n>1$ (then use the fact that $S O(4) / U(2)=S^{2}$ ). More generally, $\pi_{i}(S O(2 n+2) / U(n+1)) \cong$ $\pi_{i}(S O(2 n) / U(n))$ for $i \leq 2 n-2$. This is called the stable range (pass to the direct limit $S O / U$ which is $(\Omega O)_{0}$ by Bott periodicity).
Therefore, the first obstruction to a lift $g$ lies in $H^{3}(B ; \mathbb{Z})$. What is it? This is the hardest part of obstruction theory, actually identifying the obstructions. The following result gets us started, see Theorem 5.7 of [3].

Theorem. The first non-trivial obstruction is natural.
This means that the first obstruction to lifting $f: B \rightarrow B S O(2 n)$ to $B U(n)$ is the pullback by $f$ of the first obstruction to lifting id : $B S O(2 n) \rightarrow B S O(2 n)$ to $B U(n)$, i.e. the obstruction to finding a section of $B U(n) \rightarrow B S O(2 n)$. This obstruction lies in $H^{3}(B S O(2 n) ; \mathbb{Z})$.

By the Universal Coefficient Theorem,

$$
H^{3}(B S O(2 n) ; \mathbb{Z}) \cong \operatorname{Hom}\left(H_{3}(B S O(2 n) ; \mathbb{Z}), \mathbb{Z}\right) \oplus \operatorname{Ext}\left(H_{2}(B S O(2 n) ; \mathbb{Z}), \mathbb{Z}\right)
$$

As $H_{3}(B S O(2 n) ; \mathbb{Q}) \cong H^{3}(B S O(2 n) ; \mathbb{Q})=0$, we see that $H_{3}(B S O(2 n) ; \mathbb{Z})$ is torsion, so the first summand is zero. On the other hand, $\pi_{1}(B S O(2 n))=\pi_{0}(S O(2 n))=0$, and $\pi_{2}(B S O(2 n))=$ $\pi_{1}(S O(2 n))=\mathbb{Z}_{2}$ as $n>1$, so by Hurewicz, $H_{2}(B S O(2 n) ; \mathbb{Z}) \cong \mathbb{Z}_{2}$. So $H^{3}(B S O(2 n) ; \mathbb{Z}) \cong \mathbb{Z}_{2}$. What is the non-zero element?
Consider the short exact sequence of abelian groups $0 \rightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \rightarrow \mathbb{Z}_{2} \rightarrow 0$. This induces a long exact sequence in cohomology

$$
\cdots \rightarrow H^{2}(B S O(2 n) ; \mathbb{Z}) \xrightarrow{\times 2} H^{2}(B S O(2 n) ; \mathbb{Z}) \xrightarrow{\rho} H^{2}\left(B S O(2 n) ; \mathbb{Z}_{2}\right) \xrightarrow{\beta} H^{3}(B S O(2 n) ; \mathbb{Z}) \rightarrow \ldots
$$

where $\rho$ is reduction modulo 2 , and $\beta$ is the coboundary map which is called the Bockstein associated to the coefficient sequence $0 \rightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \rightarrow \mathbb{Z}_{2} \rightarrow 0$. By exactness, $x \in H^{2}(B S O(2 n) ; \mathbb{Z})$ satisfies $\beta(x)=0$ if and only if there is $y \in H^{2}(B S O(2 n) ; \mathbb{Z})$ such that $\rho(y)=x$; we usually write $y \equiv x \bmod 2$

[^0]and say $y$ an integral lift for $x$. Recall, $w_{2} \in H^{2}(B S O(2 n) ; \mathbb{Z})$ is non-zero and $H^{2}(B S O(2 n) ; \mathbb{Z}) \cong$ $\operatorname{Hom}\left(H_{2}(B S O(2 n) ; \mathbb{Z}), \mathbb{Z}\right) \oplus \operatorname{Ext}\left(H_{1}(B S O(2 n) ; \mathbb{Z}), \mathbb{Z}\right)=\operatorname{Hom}\left(\mathbb{Z}_{2}, \mathbb{Z}\right) \oplus \operatorname{Ext}(0, \mathbb{Z})=0$ so $w_{2}$ has no integral lift, and therefore $W_{3}:=\beta\left(w_{2}\right) \neq 0$ and hence must be the non-zero element of $H^{3}(B S O(2 n) ; \mathbb{Z})$.

It turns out that the first obstruction to the existence of a section of $B U(n) \rightarrow B S O(2 n)$ is $W_{3}$, the argument will be given later (see the section on the six-dimensional case). Therefore, the first obstruction to the existence of an almost complex structure on an orientable real rank $2 n$ vector bundle $E$ is $f^{*} W_{3}$ where $f: B \rightarrow B S O(2 n)$ is any classifying map. As the Bockstein is natural, $f^{*} W_{3}=f^{*} \beta\left(w_{2}\right)=\beta\left(f^{*} w_{2}\right)=\beta\left(w_{2}(E)\right)=: W_{3}(E)$. Note that $W_{3}(E)=0$ if and only if $w_{2}(E)$ has an integral lift. Note, this shouldn't be completely surprising as $c_{1}(E) \equiv w_{2}(E) \bmod 2\left(\right.$ so $W_{3}(E)=0$ is clearly a necessary condition). What wasn't clear from the beginning is that this is all that's required to lift $B^{(3)} \rightarrow B S O(2 n)$ to $B^{(3)} \rightarrow B U(n)$, there could have been other conditions.

Theorem. Let $M^{2 n}$ be an orientable smooth manifold with $n>1$. The first obstruction to $M$ admitting an almost complex structure is $W_{3}(M)$.

Note, if $g: B^{(3)} \rightarrow B U(n)$ is defined, then $c:=g^{*} c_{1} \in H^{2}\left(B^{(3)} ; \mathbb{Z}\right) \cong H^{2}(B ; \mathbb{Z})$. This is important as further obstructions will be phrased in terms of $c$. In particular, if $g: B \rightarrow B U(n)$ can be defined, then $c$ will be the first Chern class of the corresponding complex vector bundle.

One might predict that the other obstructions will just be the necessary conditions $w_{2 i+1}(E)=0$ and $W_{2 i+1}(E)=0$ (i.e. $w_{2 i}(E)$ has an integral lift). However, these are not sufficient. For example, they are satisfied by $E=T S^{2 n}$ for every $n$, but the only spheres which admit almost complex structures are $S^{2}$ and $S^{6}$.

Now let's stick to a smooth manifold $M$ and let $f$ classify its tangent bundle.

## Four-dimensional case

In this case, $S O(4) / U(2)=S^{2}$. So there is one more potential obstruction in $H^{4}\left(M ; \pi_{3}\left(S^{2}\right)\right)=$ $H^{4}(M ; \mathbb{Z})$. As $M$ is assumed to be oriented, this group is zero if $M$ is not closed, otherwise it is $\mathbb{Z}$ if it is closed. So, if $M$ is a non-compact, orientable four-manifold, it admits an almost complex structure if and only $W_{3}(M)=0$.

If $M$ is closed, then there is a genuine second obstruction. It is $c_{1}^{2}-\left(2 e(M)+p_{1}(M)\right)$. Said another way, $c$ must satisfy $\int_{M} c^{2}=2 \chi(M)+3 \tau(M)$. Again, it is not hard to see that this condition is necessary using the Hirzebruch signature theorem.

Note, in the closed case, the first obstruction always vanishes ( $M$ is $\operatorname{spin}^{c}$ ), so you can always find $c$ with $c \equiv w_{2}(M) \bmod 2$, however, it may not be possible to choose one such that the second obstruction vanishes. This is the case for $M=S^{4}$ for example: $c$ must be 0 , so $\int_{M} c^{2}=0$ while $2 \chi\left(S^{4}\right)+3 \sigma\left(S^{4}\right)=4$.

Theorem. ( $\mathbf{W u}$ ) Let $M$ be a closed oriented smooth four-manifold. Then $M$ admits an almost complex structure with $c_{1}(M)=c$ if and only if

- $c \equiv w_{2}(M) \bmod 2$
- $\int_{M} c^{2}=2 \chi(M)+3 \tau(M)$.


## Six-dimensional case

In this case $S O(6) / U(3)=\mathbb{C P}^{3}$. From the fibration $S^{1} \rightarrow S^{7} \rightarrow \mathbb{C P}^{3}$, we see that $\pi_{i}\left(\mathbb{C P}^{3}\right)=\pi_{i}\left(S^{7}\right)=0$ for $i=3,4,5,6$. So there are no further obstructions.

Theorem. Let $M$ be an orientable six-manifold. Then $M$ admits an almost complex structure if and only if $W_{3}(M)=0$.

Unlike in the four-dimensional case, the vanishing of $W_{3}$ is not automatic in six-dimensions. One example is $S^{1} \times(S U(3) / S O(3))$; the manifold $S U(3) / S O(3)$ is known as the Wu manifold.

Now we can finally justify why the first obstruction to the existence of a section of $B U(n) \rightarrow B S O(2 n)$ is $W_{3}$. If it weren't, the obstruction would vanish and hence every orientable six-manifold would admit an almost complex structure, including $S^{1} \times(S U(3) / S O(3))$. But then $w_{2}\left(S^{1} \times(S U(3) / S O(3))\right)$ would have an integral lift (given by the first Chern class), but this is impossible.

One example where the obstruction vanishes is $S^{6}$. This is one explanation for the existence of an almost complex structure on $S^{6}$.

The primary obstruction always vanishes for spheres (i.e. $S^{2 n}$ is spin ${ }^{c}$ ), but only $S^{2}$ and $S^{6}$ admit almost complex structures, so we see that in dimensions other than 2 and 6 , there are always additional obstructions.

## References

[1] Andrade, R., Example of fiber bundle that is not a fibration. [online] MathOverflow. Available at: https: //mathoverflow.net/q/119115/21564 [accessed 20 Sept. 2018].
[2] Davis, J.F. and Kirk, P., 2001. Lecture notes in algebraic topology (Vol. 35). American Mathematical Soc.
[3] Griffiths, P., and Morgan, J.W., 1981. Rational homotopy theory and differential forms (Vol. 16). Boston: Birkhuser.
[4] Hatcher, A., 2002. Algebraic topology. 2002. Cambridge UP, Cambridge, 606(9).
[5] Milnor, J., 1956. Construction of universal bundles, II. Annals of Mathematics, pp.430-436.


[^0]:    ${ }^{1}$ Note, if $G$ is a topological group, $\pi_{2}(G)$ is not necessarily zero. For example, $\Omega X$ has the homotopy type of a topological group for any space $X$ and $\pi_{2}(\Omega X)=\pi_{3}(X)$ which can be arbitrary.

