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Abstract. These are notes for a lecture I gave in John Morgan’s Homotopy Theory course at Stony

Brook in Fall 2018.

Let X be a CW complex and Y a simply connected space. Last time we discussed the obstruction to
extending a map f : X(n) → Y to a map X(n+1) → Y ; recall that X(k) denotes the k-skeleton of X.
There is an obstruction o(f) ∈ Cn+1(X;πn(Y )) which vanishes if and only if f can be extended to
X(n+1). Moreover, o(f) is a cocycle and [o(f)] ∈ Hn+1(X;πn(Y )) vanishes if and only if f |X(n−1) can
be extended to X(n+1); that is, f may need to be redefined on the n-cells.

Obstructions to lifting a map

Given a fibration F → E
p−→ B and a map f : X → B, when can f be lifted to a map g : X → E? If

X = B and f = idB , then we are asking when p has a section. For convenience, we will only consider
the case where F and B are simply connected, from which it follows that E is simply connected. For
a more general statement, see Theorem 7.37 of [2].

Suppose g has been defined on X(n). Let en+1 be an n-cell and α : Sn → X(n) its attaching map, then
p ◦ g ◦α : Sn → B is equal to f ◦α and is nullhomotopic (as f extends over the (n+ 1)-cell). From the
long exact sequence of a fibration (here we use simply connected so [Sn, F ] = πn(F ) etc.), we see that
there is a map β : Sn → F such that g ◦ α is homotopic to i ◦ β where i : F → E is the inclusion. So
we obtain o(g) ∈ Cn+1(X;πn(F )) which vanishes if and only if g extends to X(n+1). As before, o(g)
is a cocycle and [o(g)] ∈ Hn+1(X;πn(F )) vanishes if and only if g|X(n−1) extends to X(n+1).

Lots of interesting problems can be analysed using obstructions to lifting a map. For example:

• When does a vector bundle have a nowhere-zero section?

• When is a smooth manifold orientable?

• When is a smooth manifold spin?

• When does a smooth manifold admit an almost complex structure?

• When does a topological manifold admit a PL structure or smooth structure?

We’re going to focus on the fourth one.

Almost Complex Structures

A linear complex structure on a real vector space V is an endomorphism J : V → V such that
J ◦ J = − idV . If V is endowed with a linear complex structure J , then we can view V as a complex
vector space by defining (a + bi) · v = av + bJ(v). In particular, if V is finite-dimensional, then
dimR V = 2 dimC V is even. Moreover, if {e1, . . . , en} is a basis for V as a complex vector space, then
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{e1, J(e1), . . . , en, J(en)} is a basis for V as a real vector space and e1 ∧J(e1)∧ · · · ∧ en ∧J(en) defines
an orientation; this orientation is independent of the choice of basis {e1, . . . , en}.

Let E → B be a real vector bundle. An almost complex structure on E is a bundle endomorphism
J : E → E such that J ◦ J = − idE . It follows that in order for an almost complex structure to exist,
E must have even rank and be orientable. Note, given an almost complex structure, one can view E
as a complex vector bundle.

Remark: The reason I use the terminology ‘linear almost complex structure’ on V rather than ‘almost
complex structure’ is that the latter could be interpreted as an almost complex structure on the
manifold V , i.e. an almost complex structure on the vector bundle TV .

An almost complex structure on a smooth manifold M is defined to be an almost complex structure on
TM . Again, if M admits an almost complex structure then M has even dimension and is orientable.
Moreover, TM can be viewed as a complex vector bundle.

Question: Does every even-dimensional orientable smooth manifold admit an almost complex struc-
ture?

Answer: No, there are obstructions.

Classifying Spaces

A topological group is a group (G, ∗) such that G is a topological space, and the maps ∗ : G×G→ G
and i : G→ G, g 7→ g−1 are continuous. If G is a smooth manifold and the maps ∗ and i are smooth,
then (G, ∗) is called a Lie group.

A fiber bundle with fiber F is a continuous map π : E → B such that for every b ∈ B, there is an open
neighbourhood U ⊆ B of b and a homeomorphism ϕ : π−1(U)→ U × F such that π = pr1 ◦ϕ.

Let G be topological group. A principal G-bundle is a fiber bundle π : E → B together with a
continuous right action E × G → E which preserves fibers (i.e. π(e · g) = π(e)), and acts freely and
transitively on them. As the action is free and transitive, we can (non-canonically) identify the fibers
of π with G.

An isomorphism between principal G-bundles P → B and Q→ B is a G-equivariant map φ : P → Q
covering the identity. Denote the isomorphism classes of principal G-bundles on a topological space B
by PrinG(B).

Fiber bundles, and hence principal bundles, are Serre fibrations; see Proposition 4.48 of [4]. Note
however, they are not necessarily Hurewicz fibrations, see [1].

Examples

1. If G a discrete group, a principal G-bundle is a normal covering with group of deck transformations
isomorphic to G.

2. If H is a closed subgroup of a Lie group G, then G→ G/H is a principal H-bundle.

3. Main example, frame bundles.

Let E → B be a real rank n vector bundle. The frame bundle of E is a space F (E) together with a map
π : F (E)→ B such that π−1(p) is the collection of ordered bases, or frames, for Ep. Any two frames
are related by a unique element of GL(n,R). This is a principal GL(n,R)-bundle. Conversely, given
a principal GL(n,R)-bundle, one can build a real vector bundle via a process known as the associated
bundle construction. This defines a bijection between PrinGL(n,R)(B) and Vectn(B), the collection of
isomorphism classes of real rank n vector bundles.
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Equipping E with a Riemannian metric, we can take the orthogonal frame bundle which is a principal
O(n)-bundle. Different Riemannian metrics give isomorphic principal O(n)-bundles. Again by the
associated bundle construction, there is a bijection between PrinO(n)(B) and Vectn(B).

If E also admits an orientation, we can take the oriented orthonormal frame bundle which is a principal
SO(n)-bundle. Now we obtain a bijection between PrinSO(n)(B) and Vect+n (B), the collection of
isomorphism classes of oriented real rank n vector bundles.

If E has rank 2n and is the underlying real vector bundle of a complex vector bundle, then one can take
the bundle of complex frames which is a principal GL(n,C)-bundle. If E is equipped with a hermitian
metric, we can take the bundle of unitary frames which is a principal U(n)-bundle. As in the real
case, there is a bijection PrinGL(n,C)(B) and PrinU(n)(B), and a bijection PrinGL(n,C)(B)-bundles and

VectCn(B), the collection of isomorphism classes of rank n complex vector bundles.

Theorem. Let G be a topological group. There is a space BG and a principal G-bundle G→ EG→
BG such that for every paracompact topological space B, isomorphism classes of principal G-bundles
on B are in bijection with [B,BG].

The space BG is unique up to homotopy and is called the classifying space. Milnor gave an explicit
model for BG using the join construction, see [5]. We call G → EG → BG the universal principal
G-bundle; it is characterised by the fact that EG is weakly contractible; it follows from the long exact
sequence in homotopy that πn(BG) ∼= πn−1(G). Given a map f : B → BG, we can associate to it
the principal G-bundle f∗EG→ B. If P → B is a principal G-bundle, a map f : B → BG such that
f∗EG ∼= P is called a classifying map for P .

The association G → BG is functorial. In particular, given a continuous group homomorphism ρ :
H → G, there is an associated continuous map Bρ : BH → BG. If i : H → G is inclusion, then the
homotopy fiber of Bi : BH → BG is G/H.

Characteristic Classes

From the theorem, we see that there is a bijection between Vect+n (B) and [B,BSO(n)], as well as a

bijection between VectCn(B) and [B,BU(n)]. The grassmannians Gr+n (R∞) and GrCn(C∞) are explicit
models for BSO(n) and BU(n), and the tautological bundles over them are the universal bundles.

One can show that H∗(BSO(n);Z2) ∼= Z2[w2, . . . , wn] where degwi = i. Given a principal SO(n)-
bundle P → B, we define wi(P ) = f∗wi where f : B → BSO(n) is any classifying map for P – these
are the Stiefel-Whitney classes for P . Note, the class wi(P ) doesn’t depend on the choice of classifying
map as homotopic maps induce the same map on cohomology.

Similarly, we have H∗(BU(n);Z) ∼= Z[c1, . . . , cn] where deg ci = 2i. Given a principal U(n)-bundle
P → B, we define ci(P ) = f∗ci where f : B → BU(n) is any classifying map for P – these are the
Chern classes of P .

The integral cohomology of BSO(2n) is more complicated than that of BU(n). There are elements
pi ∈ H4i(BSO(2n);Z) for i = 1, . . . , n and e ∈ H2n(BSO(2n);Z). Modulo torsion, these classes
generate the cohomology, but not freely. More precisely, H∗(BSO(2n);Q) ∼= Q[p1, . . . , pn, e]/(pn−e2).
Given a principal SO(2n)-bundle P → B, we define pi(P ) = f∗pi where f : B → BSO(2n) is any
classifying map for P – these are the Pontryagin classes of P . We define e(P ) = f∗e – this is the Euler
class of P .

Obstructions to the Existence of an Almost Complex Structure

Let p : BU(n) → BSO(2n) be the map induced by the inclusion i : U(n) → SO(2n); i.e. p = Bi.
Postcomposition with p gives a map [B,BU(n)] → [B,BSO(2n)] and hence a map from complex



4 MICHAEL ALBANESE

rank n vector bundles to orientable rank 2n real vector bundles; this just forgets the almost complex
structure. We want to know when a principal SO(2n)-bundle comes from a principal U(n)-bundle,
that is when f : B → BSO(2n) admits a lift g : B → BU(n). Suppose g is a lift of f , i.e. then f = g◦p.
It follows that if E is a complex rank n vector bundle, ci(E) ≡ w2i(E) mod 2 and w2i+1(E) = 0.

The obstructions to a such a lift lie in Hk+1(X;πk(F )) where F is the homotopy fiber of BU(n) →
BSO(2n). As the map BU(n)→ BSO(2n) is induced by inclusion, the homotopy fiber is SO(2n)/U(n)
which can be identified with the space of linear complex structures on R2n which are compatible with
a given inner product and orientation. It is a closed manifold of dimension n(n−1). Note, when n = 1,
this space is a point as U(1) = SO(2) which corresponds to the fact that every orientable rank 2 real
vector bundle is a complex line bundle.

In order to do obstruction theory, we need to determine the first non-zero homotopy group of SO(2n)/U(n).
From the long exact sequence in homotopy associated to the fibration U(n)→ SO(2n)→ SO(2n)/U(n)
together with the fact that π2(G) = 0 for Lie groups1 we see that

0→ π2(SO(2n)/U(n))→ Z→ Z2 → π1(SO(2n)/U(n))→ 0.

As ker(Z → Z2) ∼= Z, regardless of the map, we see that π2(SO(2n)/U(n)) ∼= Z. So either Z → Z2 is
given by 1 7→ 1, in which case π1(SO(2n)/U(n)) = 0, or 1 7→ 0, in which case π1(SO(2n)/U(n)) = 0.
Using the five lemma, we can show the following.

Lemma. For n > 1, π1(SO(2n)/U(n)) = 0 and π2(SO(2n)/U(n)) ∼= Z.

In fact, we see that π1(SO(2n)/U(n)) ∼= π1(SO(4)/U(2)) and π2(SO(2n)/U(n)) ∼= π2(SO(4)/U(2))
for all n > 1 (then use the fact that SO(4)/U(2) = S2). More generally, πi(SO(2n+ 2)/U(n+ 1)) ∼=
πi(SO(2n)/U(n)) for i ≤ 2n− 2. This is called the stable range (pass to the direct limit SO/U which
is (ΩO)0 by Bott periodicity).

Therefore, the first obstruction to a lift g lies in H3(B;Z). What is it? This is the hardest part
of obstruction theory, actually identifying the obstructions. The following result gets us started, see
Theorem 5.7 of [3].

Theorem. The first non-trivial obstruction is natural.

This means that the first obstruction to lifting f : B → BSO(2n) to BU(n) is the pullback by f of
the first obstruction to lifting id : BSO(2n) → BSO(2n) to BU(n), i.e. the obstruction to finding a
section of BU(n)→ BSO(2n). This obstruction lies in H3(BSO(2n);Z).

By the Universal Coefficient Theorem,

H3(BSO(2n);Z) ∼= Hom(H3(BSO(2n);Z),Z)⊕ Ext(H2(BSO(2n);Z),Z).

As H3(BSO(2n);Q) ∼= H3(BSO(2n);Q) = 0, we see that H3(BSO(2n);Z) is torsion, so the first
summand is zero. On the other hand, π1(BSO(2n)) = π0(SO(2n)) = 0, and π2(BSO(2n)) =
π1(SO(2n)) = Z2 as n > 1, so by Hurewicz, H2(BSO(2n);Z) ∼= Z2. So H3(BSO(2n);Z) ∼= Z2.
What is the non-zero element?

Consider the short exact sequence of abelian groups 0 → Z ×2−−→ Z → Z2 → 0. This induces a long
exact sequence in cohomology

· · · → H2(BSO(2n);Z)
×2−−→ H2(BSO(2n);Z)

ρ−→ H2(BSO(2n);Z2)
β−→ H3(BSO(2n);Z)→ . . .

where ρ is reduction modulo 2, and β is the coboundary map which is called the Bockstein associated

to the coefficient sequence 0 → Z ×2−−→ Z → Z2 → 0. By exactness, x ∈ H2(BSO(2n);Z) satisfies
β(x) = 0 if and only if there is y ∈ H2(BSO(2n);Z) such that ρ(y) = x; we usually write y ≡ x mod 2

1Note, if G is a topological group, π2(G) is not necessarily zero. For example, ΩX has the homotopy type of a

topological group for any space X and π2(ΩX) = π3(X) which can be arbitrary.
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and say y an integral lift for x. Recall, w2 ∈ H2(BSO(2n);Z) is non-zero and H2(BSO(2n);Z) ∼=
Hom(H2(BSO(2n);Z),Z)⊕Ext(H1(BSO(2n);Z),Z) = Hom(Z2,Z)⊕Ext(0,Z) = 0 so w2 has no inte-
gral lift, and therefore W3 := β(w2) 6= 0 and hence must be the non-zero element of H3(BSO(2n);Z).

It turns out that the first obstruction to the existence of a section of BU(n) → BSO(2n) is W3,
the argument will be given later (see the section on the six-dimensional case). Therefore, the first
obstruction to the existence of an almost complex structure on an orientable real rank 2n vector
bundle E is f∗W3 where f : B → BSO(2n) is any classifying map. As the Bockstein is natural,
f∗W3 = f∗β(w2) = β(f∗w2) = β(w2(E)) =: W3(E). Note that W3(E) = 0 if and only if w2(E) has an
integral lift. Note, this shouldn’t be completely surprising as c1(E) ≡ w2(E) mod 2 (so W3(E) = 0 is
clearly a necessary condition). What wasn’t clear from the beginning is that this is all that’s required
to lift B(3) → BSO(2n) to B(3) → BU(n), there could have been other conditions.

Theorem. Let M2n be an orientable smooth manifold with n > 1. The first obstruction to M admitting
an almost complex structure is W3(M).

Note, if g : B(3) → BU(n) is defined, then c := g∗c1 ∈ H2(B(3);Z) ∼= H2(B;Z). This is important as
further obstructions will be phrased in terms of c. In particular, if g : B → BU(n) can be defined,
then c will be the first Chern class of the corresponding complex vector bundle.

One might predict that the other obstructions will just be the necessary conditions w2i+1(E) = 0 and
W2i+1(E) = 0 (i.e. w2i(E) has an integral lift). However, these are not sufficient. For example, they
are satisfied by E = TS2n for every n, but the only spheres which admit almost complex structures
are S2 and S6.

Now let’s stick to a smooth manifold M and let f classify its tangent bundle.

Four-dimensional case

In this case, SO(4)/U(2) = S2. So there is one more potential obstruction in H4(M ;π3(S2)) =
H4(M ;Z). As M is assumed to be oriented, this group is zero if M is not closed, otherwise it is Z if it
is closed. So, if M is a non-compact, orientable four-manifold, it admits an almost complex structure
if and only W3(M) = 0.

If M is closed, then there is a genuine second obstruction. It is c21−(2e(M)+p1(M)). Said another way,
c must satisfy

∫
M
c2 = 2χ(M) + 3τ(M). Again, it is not hard to see that this condition is necessary

using the Hirzebruch signature theorem.

Note, in the closed case, the first obstruction always vanishes (M is spinc), so you can always find c
with c ≡ w2(M) mod 2, however, it may not be possible to choose one such that the second obstruction
vanishes. This is the case for M = S4 for example: c must be 0, so

∫
M
c2 = 0 while 2χ(S4)+3σ(S4) = 4.

Theorem. (Wu) Let M be a closed oriented smooth four-manifold. Then M admits an almost complex
structure with c1(M) = c if and only if

• c ≡ w2(M) mod 2

•
∫
M
c2 = 2χ(M) + 3τ(M).

Six-dimensional case

In this case SO(6)/U(3) = CP3. From the fibration S1 → S7 → CP3, we see that πi(CP3) = πi(S
7) = 0

for i = 3, 4, 5, 6. So there are no further obstructions.

Theorem. Let M be an orientable six-manifold. Then M admits an almost complex structure if and
only if W3(M) = 0.
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Unlike in the four-dimensional case, the vanishing of W3 is not automatic in six-dimensions. One
example is S1 × (SU(3)/SO(3)); the manifold SU(3)/SO(3) is known as the Wu manifold.

Now we can finally justify why the first obstruction to the existence of a section of BU(n)→ BSO(2n)
is W3. If it weren’t, the obstruction would vanish and hence every orientable six-manifold would admit
an almost complex structure, including S1×(SU(3)/SO(3)). But then w2(S1×(SU(3)/SO(3))) would
have an integral lift (given by the first Chern class), but this is impossible.

One example where the obstruction vanishes is S6. This is one explanation for the existence of an
almost complex structure on S6.

The primary obstruction always vanishes for spheres (i.e. S2n is spinc), but only S2 and S6 admit
almost complex structures, so we see that in dimensions other than 2 and 6, there are always additional
obstructions.
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