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Preface

These notes were designed as lecture notes for a first course in Operator
Algebras. The student is assumed to have already taken a first course in
Linear Analysis. In particular, they are assumed to already know the Hahn-
Banach Theorem, the Open Mapping Theorem, etc. A list of those results
which will be used in the sequel is included in the second section of the first
chapter.
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CHAPTER 1

A Brief Review of Banach Space Theory

1. Definitions and examples

1.1. Definition. A complex normed linear space is a pair (X, ‖·‖)
where X is a vector space over C and ‖ · ‖ is a norm on X. That is:

• ‖x‖ ≥ 0 for all x ∈ X;
• ‖x‖ = 0 if and only if x = 0;
• ‖λx‖ = |λ|‖x‖ for all λ ∈ C, x ∈ X
• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

A Banach space is a complete normed linear space.

1.2. Example. Consider (C, ‖ · ‖p), n ≥ 1, 1 ≤ p ≤ ∞. For x ∈ C,
we define

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

.

We can also consider (C, ‖ · ‖∞), for each n ≥ 1. In this case, given x ∈ C,
we have ‖x‖∞ = max1≤i≤n |xi|.

1.3. Remark. All norms on a finite dimensional Banach space are
equivalent. In other words, they generate the same topology.

1.4. Example. Consider (C(X), ‖ · ‖∞), where X is a compact Haus-
dorff space and

C(X) = { f : X → C : f is continuous }

The norm we consider is the supremum norm, ‖f‖∞ = maxx∈X |f(x)|.

1.5. Example. Let X be a locally compact Hausdorff space. Then
(C0(X), ‖ · ‖∞) is a Banach space, where

C0(X) = { f ∈ C(X) : f vanishes at ∞}
= { f ∈ C(X) : ∀ε > 0, {x ∈ X : |f(x)| ≥ ε } is compact in X }.

As before, the norm here is the supremum norm: ‖f‖∞ = supx∈X |f(x)|.
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2 1. A BRIEF REVIEW OF BANACH SPACE THEORY

1.6. Example. If (X, Ω, µ) is a measure space and 1 ≤ p ≤ ∞, then

Lp(X, Ω, µ) = { f : X → C : f is Lebesgue measurable

and
∫

X
|f(x)|p dµ(x) <∞}

is a Banach space. The norm here is given by ‖f‖p =
(∫

X |f(x)|p dµ(x)
)1/p

.
With (X, Ω, µ) as above, we also define

L∞(X, Ω, µ) = { f : X → C : f is Lebesgue measurable and
for some K ≥ 0, µ({x ∈ X : f(x) > K }) = 0 }.

In this case the norm is ‖f‖∞ = infg=f( a.e. wrt µ) ( supx∈X |g(x)| ) .

1.7. Example. Let I be a set and let 1 ≤ p <∞. Define `p(I) to be
the set of all functions

{ f : I → C :
∑
i∈I

|f(i)|p <∞}

and for f ∈ `p(I), define ‖f‖p = (
∑

i∈I |f(i)|p)1/p. Then `p(I) is a Banach
space. If I = N, we also write `p. Of course,

`∞(I) = { f : I → C : sup{ |f(i)| : i ∈ I } <∞}
and ‖f‖∞ = sup{ |f(i)| : i ∈ I }. A closed subspace of particular interest
here is

c0(I) = { f ∈ l∞(I) : for all ε > 0, card ({ i ∈ I : |f(i)| ≥ ε }) <∞}.
Again, if I = N, we write only `∞ and c0, respectively.

1.8. Example. Consider as a particular case of Example 1.6,
T = { z ∈ C : |z| = 1 }, and suppose µ is normalized Lebesgue measure.
Then we can define the so-called Hardy spaces

Hp(T, µ) = { f ∈ Lp(T, µ) :
∫ 2π

0
f(t) expint dt = 0 }.

These are Banach spaces for each p ≥ 1, including p = ∞.

1.9. Example. Let n ≥ 1 and let

C(n)([0, 1]) = { f : [0, 1] → C : f has n continuous derivatives }.

Define ‖f‖ = max0≤k≤n{ sup{ |f (k)(x)| : x ∈ [0, 1] } }. Then C(n)([0, 1]) is a
Banach space.

1.10. Example. If X is a Banach space and Y is a closed subspace of
X, then

• Y is a Banach space under the inherited norm, and
• X/Y is a Banach space — where X/Y = {x + Y : x ∈ X }. The

norm is the usual quotient norm, namely: ‖x+Y‖ = infy∈Y ‖x+y‖.
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1.11. Example. Examples of Banach spaces can of course be com-
bined. For instance, if X and Y are Banach spaces, then we can form the
so-called `p-direct sum of X and Y as follows:

X⊕pY = { (x, y) : x ∈ X, y ∈ Y },

and ‖(x, y)‖ =
(
‖x‖p

X + ‖y‖p
Y

)1/p
.

1.12. Example. Let X and Y be Banach spaces. Then the set of
continuous linear transformations B(X, Y) from X into Y is a Banach space
under the operator norm ‖T ‖ = sup‖x‖≤1 ‖Tx‖. When X = Y, we also
write B(X) for B(X, X).

In particular, B(Cn) is isomorphic to the n × n complex matrices Mn

and forms a Banach space under a variety of norms, including the operator
norm from above. On the other hand, as we observed in Remark 1.3, all
such norms must be equivalent to the operator norm.

1.13. Example. Suppose that X is a Banach space. Then X∗ =
B(X, C) is a Banach space, called the dual space of X.

For example, if µ is σ-finite measure on the measure space (X,Ω),
1 ≤ p <∞, and if q, 1 < q ≤ ∞, is chosen so that 1

p + 1
q = 1, then

[Lp(X, Ω, µ)]∗ = Lq(X, Ω, µ)
[`p]∗ = `q

[c0]∗ = `1.

In general, the first two equalities fail if p = ∞.
As a second example, suppose X is a compact, Hausdorff space. Then

C(X)∗ = M(X)
= {µ : µ is a regular Borel measure on X }
= { f : X → C : f is of bounded variation on X }.

Note that for Φµ ∈M(X), the action on C(X) is given by Φµ(f) =
∫
X f dµ.

For our purposes, one of the most important examples of a Banach space
will be:

1.14. Definition. A Hilbert space H is a Banach space whose norm
is generated by an inner product 〈·, ·〉, which is a map from H ×H → C
satisfying:

(1) 〈λx+ βy, z〉 = λ〈x, z〉+ β〈y, z〉
(2) 〈x, y〉 = 〈y, x〉
(3) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0,
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for all x, y, z ∈ H; λ, β ∈ C. The norm on H is given by ‖x‖ = (〈x, x〉)1/2,
x ∈ H.

Each Hilbert space H is equipped with a Hilbert space basis. This
is an orthonormal set {eα}α∈Λ in H with the property that any x ∈ H
can be expressed as x =

∑
α∈Λ xαeα in a unique way. The cardinality of

the Hilbert space basis is known as the dimension of the space H. It is
a standard result that any two Hilbert spaces of the same dimension are
isomorphic. Examples of Hilbert spaces are:

• The space (Cn, ‖ · ‖2), n ≥ 1, as defined in Example 1.2.
• The space L2(X, Ω, µ) defined in Example 1.6.
• The space `2(I) defined in Example 1.7.
• The space H2(T, µ) defined in Example 1.8.
• Mn is a Hilbert space with the inner product < x, y >= tr(y∗x).

Here ‘tr’ denotes the usual trace functional on Mn, and if y ∈ Mn,
then y∗ denotes the conjugate transpose of y.

2. The main theorems

2.1. Theorem. [The Hahn-Banach Theorem] Suppose X is a Ba-
nach space, M ⊆ X is a linear manifold and f : M → C is a continuous lin-
ear functional. Then there exists a functional F ∈ X∗ such that ‖F‖ = ‖f‖
and F |M = f .

2.2. Corollary. Let X be a Banach space and suppose 0 6= x ∈ X.
Then there exists f ∈ X∗ such that ‖f‖ = 1 and f(x) = ‖x ‖.

2.3. Corollary. Let X be a Banach space and suppose x 6= y are two
vectors in X. Then there exists f ∈ X∗ such that f(x) 6= f(y).

2.4. Corollary. Let X be a Banach space, M be a closed subspace of
X and x be a vector in X such that x /∈ M . Then there exists f ∈ X∗ such
that f ≡ 0 on M and f(x) 6= 0.

2.5. Theorem. [The Open Mapping Theorem] Let T : X → Y
be a continuous linear map of a Banach space X onto a Banach space Y.
Then T is open; that is, T (V ) is open in Y for all open sets V in X.

2.6. Corollary. [The Banach Isomorphism Theorem] Let T :
X → Y be a continuous, injective linear map of a Banach space X onto a
Banach space Y. Then T−1 is continuous.
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2.7. Definition. Let X and Y be Banach spaces and M ⊆ X be a
linear manifold. Then a linear map T : M → Y is closed if xn → x and
Txn → y together imply that x ∈ M and Tx = y. This is equivalent to
saying that the graph G(T ) = { (x, Tx) : x ∈ M } is a closed subspace of
X⊕Y.

2.8. Theorem. [The Closed Graph Theorem] If X and Y are
Banach spaces and T : X → Y is a closed linear map that is defined every-
where, then T is continuous.

An alternative formulation reads:

If X and Y are Banach spaces, T : X → Y is linear, {xn}∞n=1 ⊆ X, and
if limn→∞ xn = 0 and limn→∞ Txn = b together imply that b = 0, then T is
continuous.

2.9. Theorem. [The Banach-Steinhaus Theorem, also known
as the Uniform Boundedness Principle] Suppose X and Y are Banach
spaces and F ⊆ B(X,Y). Suppose that for all x ∈ X, Kx := supT∈F ‖Tx‖ <
∞. Then K := supT∈F ‖T‖ <∞.

2.10. Corollary. Let {Tn}∞n=1 be a sequence of bounded linear oper-
ators in B(X,Y) such that Tx = limn→∞ Tnx exists for all x ∈ X. Then
supn≥1 ‖Tn‖ <∞ and T ∈ B(X,Y).

2.11. Theorem. [The Banach-Alaoglu Theorem] Let X be a
Banach space. Then the unit ball X∗1 of X∗ is compact in the weak∗-topology.

2.12. Of course, this is but a brief outline of some of the major results
and definitions which will be relevant to our study of Operator Algebras. For
more information, the reader is encouraged to consult the texts of Dunford
and Schwarz [DS57], of Bollobás [Bol90], and of Pryce [Pry73], to name
but three.





CHAPTER 2

Banach Algebras

For be a man’s intellectual superiority what it will, it can never
assume the practical, available supremacy over other men, with-
out the aid of some sort of external arts and entrenchments, al-
ways, in themselves, more or less paltry and base. This it is, that
for ever keeps God’s true princes of the Empire from the world’s
hustings; and leaves the highest honors that this air can give, to
those men who become famous more through their infinite inferior-
ity to the choice hidden handful of the Divine inert, than through
their undoubted superiority over the dead level of the mass. Such
large virtue lurks in these small things when extreme political su-
perstitions invest them, that in some royal instances even to idiot
imbecility they have imparted potency.

Herman Melville: Moby Dick

1. Basic theory

1.1. Definition. A Banach algebra A is a Banach space together
with a norm compatible algebra structure, namely: for all x, y ∈ A, ‖xy‖ ≤
‖x‖ ‖y‖. If A has a multiplicative unit (denoted by e or 1), we say that the
algebra A is unital. In this case, ‖e‖ = ‖e2‖ ≤ ‖e‖2, and so e 6= 0 implies
that ‖e‖ ≥ 1. By scaling the norm, we assume that ‖e‖ = 1.

1.2. Example. The set (C(X), ‖ · ‖∞) of continuous functions on a
compact Hausdorff space X introduced in Example 1.1.4 becomes a Banach
algebra under pointwise multiplication of functions. That is, for f, g ∈
(C(X), ‖ · ‖∞), we set

(fg)(x) = f(x)g(x) for all x ∈ X.

1.3. Example. The set (C0(X), ‖ · ‖∞) of continuous functions van-
ishing at infinity on a locally compact Hausdorff space as introduced in
Example 1.1.5 also becomes a Banach algebra under pointwise multiplica-
tion of functions. Note that this algebra is not unital unless X is compact.
In particular, if X = N with the discrete topology, then (C0(X), ‖ · ‖∞) = c0
is a Banach algebra under component-wise multiplication.

7



8 2. BANACH ALGEBRAS

1.4. Example. Let D = {z ∈ C : |z| ≤ 1 } and let Do be the interior of
D. Also, let A(D) = {f ∈ C(D) : f is analytic on Do}. Then (A(D), ‖ · ‖∞)
is a Banach algebra under pointwise multiplication of functions, called the
disk algebra.

The map
τ : A(D) → C(T)

f 7→ f |T
is an isometric embedding, by the Maximum Modulus Principle.

It is often useful to identify the disk algebra with its image under this
embedding. In this case we have A(D) = {f ∈ C(T) : f can be analytically
continued to Do}.

In general, given a compact subset X ⊆ C, we let

A(X) = {f ∈ C(X) : f is analytic on int (X) }
R(X) = {f ∈ C(X) : f is a rational function

with poles outside of X }−‖ ‖

P(X) = {f ∈ C(X) : f is a polynomial }−‖ ‖

Each of these is a closed subalgebra of C(X) under the inherited norm.
Clearly P(X) ⊆ R(X) ⊆ A(X) ⊆ C(X), and it is often an interesting and
important problem to decide when the inclusions reduce to equalities. This
is the case, for instance, when X = [0, 1].

1.5. Example. Let G be a locally compact abelian group, and let ν
denote Haar measure on G. Then

L1(G, ν) = {f : G→ C :
∫

G
|f(x)| dν(x) <∞}.

For f, g ∈ L1(G, ν), x ∈ G, we define the product of f and g via convolution:

(f ∗ g)(x) =
∫

G
f(xy−1) g(y) dν(y).

We also define ‖f‖1 =
∫
G |f(x)| dν(x).

This is called the group algebra of G. It is a standard result (see section
4.3.7) that f ∗ g = g ∗ f and that ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1.

Writing `1(Z) = L1(Z, ν) where ν represents counting measure, we ob-
tain:

(f ∗ g)(n) =
∑

k∈Z f(n− k)g(k)
‖f‖1 =

∑
k∈Z |f(k)|.

As we shall see in Chapter Four, `1(Z) can be identified with the Wiener
algebra

AC(T) = {f ∈ C(T) : f(eiθ) =
∑
n∈Z

ane
inθ,

∑
n∈Z

|an| <∞},

where an = 1
2π

∫ 2π
0 f(eiθ)e−inθ dθ.
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1.6. Example. The set L∞(X, Ω, ν) is a Banach algebra under point-
wise multiplication.

1.7. Example. The set Cb(Ω) of continuous, bounded functions on a
locally compact space Ω is a Banach algebra under the supremum norm and
pointwise multiplication.

1.8. Remark. The above examples are all abelian. The following
need not be.

1.9. Example. Let X be a Banach space. Then the Banach space
B(X) from Example 1.1.12 is a Banach algebra, using the operator norm and
composition of linear maps as our product. To verify this, we need only verify
that the operator norm is submultiplicative, that is, that ‖AB‖ ≤ ‖A‖ ‖B‖
for all operators A and B. But

‖AB‖ = sup{‖ABx‖ : ‖x‖ = 1}
≤ sup{‖A‖ ‖Bx‖ : ‖x‖ = 1}
≤ sup{‖A‖ ‖B‖ ‖x‖ : ‖x‖ = 1}
= ‖A‖ ‖B‖.

In particular, Mn can be identified with B(Cn) by first fixing an or-
thonormal basis {e1, e2, . . . , en} for Cn, and then identifying a linear map in
B(Cn) with its matrix representation with respect to this fixed basis.

It is easy to verify that any closed subalgebra of B(X) (or indeed, of any
Banach algebra) is itself a Banach algebra.

1.10. Example. Let X be a Banach space, and let T ∈ B(X). Then

Alg(T ) = {p(T ) : p a polynomial over C }−‖ ‖

is a Banach algebra, called the algebra generated by T . The norm under
consideration is the operator norm.

1.11. Example. Let Tn denote the set of upper triangular n × n
matrices in Mn, equipped with the operator norm. Then Tn is a Banach
subalgebra of Mn. After fixing an orthonormal basis for the underlying
Hilbert space as in Example 1.9, Tn can be viewed as a Banach subalgebra
of B(Cn). In fact, it is the largest subalgebra of B(Cn) which leaves each of
the subspaces Hk = span{e1, e2, . . . , ek}, 1 ≤ k ≤ n invariant.

More generally, given a Banach space X and a collection L of closed
subspaces {Lα}α∈Λ of X, then

Alg(L) = {T ∈ B(X) : TLα ⊆ Lα for all Lα ∈ L}
is a Banach algebra. This is closed because if limn→∞ Tn = T , then x ∈ Lα

implies Tx = limn→∞ Tnx ∈ Lα for each α.
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1.12. Example. The space H∞(T, µ) defined in Example 1.1.8 is a
Banach algebra under pointwise multiplication of functions.

1.13. Example. Let H be a Hilbert space and let K(H) denote the
set of compact operators acting on H. (See Chapter 3.) Then K(H) is
a Banach subalgebra of B(H). In fact, as we shall see, K(H) is a closed,
two-sided ideal of B(H).

1.14. Example. Let (Aα, ‖ · ‖α)α∈Λ denote a family of Banach alge-
bras indexed by a set Λ. Then

A = {(aα)α∈Λ : aα ∈ Aα, α ∈ Λ, sup
α
‖aα‖ <∞}

is a Banach algebra when equipped with the norm

‖(aα)α‖ = sup
α
‖aα‖.

1.15. Example. Consider the Hilbert space H2 = H2(T, µ) of Exam-
ple 1.1.8. Let P denote the orthogonal projection of L2(T, µ) onto H2(T, µ).
Define the Toeplitz algebra on H2 to be the set of operators in B(H2) of the
form

Tφ : f 7→ P (φ f), φ ∈ C(T).
This is a Banach subalgebra of B(H2).

1.16. Proposition. Let K be a closed ideal in a Banach algebra A.
Then the quotient space A/K is a Banach algebra with respect to the quotient
norm.
Proof. That A/K is a Banach space follows from Example 1. 1.10. Let π
denote the canonical map from A to A/K. We must show that

‖π(x)π(y)‖ ≤ ‖π(x)‖ ‖π(y)‖
for all x, y ∈ A.

Suppose ε > 0. By definition of the quotient norm, we can find m,n ∈ K
such that ‖π(x)‖+ ε ≥ ‖x+m‖ and ‖π(y)‖+ ε ≥ ‖y + n‖. Then

‖π(x)π(y)‖ = ‖π(x+m)π(y + n)‖
≤ ‖π((x+m) (y + n))‖
≤ ‖(x+m) (y + n)‖
≤ ‖(x+m)‖ ‖(y + n)‖
≤ (‖π(x)‖+ ε) (‖π(y)‖+ ε).

Letting ε→ 0, we obtain the desired result.
2

Recall from Example 1.13 our claim that the set K(H) of compact oper-
ators is a closed, two-sided ideal of B(H). Using this and the above Propo-
sition, we obtain the following important example.
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1.17. Example. Let H be a Hilbert space. Then the quotient algebra
A(H) = B(H)/K(H) is a Banach algebra, known as the Calkin algebra.
The canonical map from B(H) to A(H) is denoted by π.

1.18. Remark. In general, if a Banach algebra A does not have an
identity element, it is possible to append one as follows:

Consider the algebra A+ = A⊕ C 1 with multiplication given by

(a, λ) (b, ν) = (ab+ aν + bλ, λν).

We define a norm on A+ via ‖(a, λ1)‖ = ‖a‖+ |λ|. Then we have

‖(a, λ) (b, ν)‖ = ‖ab+ aν + bλ‖+ |λν|
≤ ‖a‖ ‖b‖+ ‖a‖ |ν|+ ‖b‖ |λ|+ |λ| |ν|
= (‖a‖+ |λ|) (‖b‖+ |ν|)
= (‖(a, λ)‖) (‖(b, ν)‖)

It is clear that the embedding of A into A+ is linear and isometric, and
that A sits inside of A+ as a closed ideal. It should be added, however, that
this construction is not always natural. The group algebra L1(R, ν) of the
real numbers with Lebesgue measure ν is not unital. On the other hand, the
most natural candidate for a multiplicative identity here might be the Dirac
delta function (corresponding to a discrete measure with mass one at 0 and
zero elsewhere), which clearly does not lie in the algebra. Similarly, C0(R)
is another much studied non-unital algebra. In this case, there is more than
one way to embed this algebra into a unital Banach algebra. For instance,
one may want to consider the one-point compactification, or the Stone-C̆ech
compactifications of the reals. Each of these induces an imbedding of C0(R)
into the corresponding unital Banach algebra of continuous functions on
these compactifications.

1.19. Proposition. Every Banach algebra A embeds isometrically
into B(X) for some Banach space X. Here, A need not have a unit.
Proof. Consider the map

A → B(A+)
a 7→ La

where La(x, λ) = (a, 0) (x, λ) is the left regular representation of A.
Then

‖La‖ = sup
(x,λ) 6=(0,0)

‖(a, 0) (x, λ)‖
‖(x, λ)‖

≤ ‖(a, 0)‖ = ‖a‖

and
‖La‖ ≥ ‖(a, 0) (0, 1)‖ = ‖a‖,

so that ‖La‖ = ‖a‖. In particular, the map is isometric. That La Lb = Lab

and that αLa + βLb = Lαa+βb are easily verified.
2
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1.20. Theorem. The set A−1 of invertible elements of a unital Banach
algebra A is open in the norm topology.

Proof. If ‖a‖ < 1, then the element b =
∑∞

n=0 a
n exists in A since the

defining series is absolutely convergent. As such,

(1− a) b = (1− a)

(
lim

k→∞

k∑
n=0

an

)

=

(
lim

k→∞

k∑
n=0

an

)
−

(
lim

k→∞

k+1∑
n=1

an

)
= lim

k→∞
1− ak+1

= 1

=

(
lim

k→∞

k∑
n=0

an

)
−

(
lim

k→∞

k+1∑
n=1

an

)

=

(
lim

k→∞

k∑
n=0

an

)
(1− a)

= b (1− a),

so that the open ball of radius 1 centred at the identity is contained in the
set of invertible elements of A.

Now if d ∈ A−1 and ‖a‖ < ‖d−1‖−1, then (d − a) = d (1 − d−1a) and
‖d−1a‖ < 1 so that

(d− a)−1 = (1− d−1a)−1d−1

exists. This means that the open ball of radius ‖d−1‖−1 centred at d is again
contained in A−1. Thus A−1 is open.

2

1.21. Corollary. If A is a unital Banach algebra, then the map τ :
a 7→ a−1 is a homeomorphism of A−1 onto itself. It follows that A−1 is a
topological group.

Proof. That multiplication is continuous inA−1 follows from the fact that it
is jointly continuous in A. It remains therefore to show that τ is continuous
- as it is clearly a bijection which is equal to its own inverse.
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Let us first show that τ is continuous at 1. If ‖b‖ < 1, then we have just
seen that (1− b) is invertible and

‖1− (1− b)−1‖ = ‖1−
∞∑

n=0

bn‖

= ‖
∞∑

n=1

bn‖

≤
∞∑

n=1

‖b‖n

= ‖b‖/ (1− ‖b‖).

Thus as ‖b‖ → 0 (i.e. as b→ 0 and hence (1−b) → 1), we get (1−b)−1 → 1,
implying that the map τ : a 7→ a−1 is continuous at 1, as claimed.

If a ∈ A−1 and an → a, then an a
−1 → a a−1 = 1, and also a−1 an →

a−1 a = 1, so that a−1
n → a−1.

2

1.22. Proposition. Let G be a locally connected topological group,
and let G0 be the connected component of the identity in G. Then G0 is an
open and closed normal subgroup of G, the cosets of G0 are the components
of G, and G/G0 is a discrete group.
Proof. A component of a topological space is always closed. If g ∈ G, then
G locally connected implies that there exists an open connected neighbour-
hood Og of g which clearly lies in the connected component Cg of g. This
shows that Cg is open and therefore components of G are both open and
closed.

Let f ∈ G. Then the map Lf−1 : h 7→ f−1h is a homeomorphism of G,
and so f−1G0 is open, closed and connected. If, furthermore, f ∈ G0 and
g ∈ G0, then f−1G0 is a connected set containing 1 and f−1g, and therefore
f−1g ∈ G0, implying thatG0 is a subgroup ofG. Since the map Rf : h 7→ h f
is also a homeomorphism ofG, it follows that f−1G0 f = Lf−1(Rf (G0)) is an
open, closed and connected subset of G containing 1, so that f−1G0 f = G0,
and therefore G0 is normal.

Since f−1G0 is open, closed and connected for all f ∈ G, the cosets of G0

are precisely the components of G. Finally, since the cosets are components,
it follows that G/G0 is discrete.

2

1.23. Definition. Let A be a unital Banach algebra. Let A−1
0 denote

the connected component of the identity in A−1. Then the abstract index
group of A, denoted ΛA, is the group A−1/A−1

0 . The abstract index is
the canonical homomorphism from A−1 to ΛA.
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1.24. Remark. It follows from Proposition 1.22 that the abstract
index group of a Banach algebra A is well-defined, that ΛA is discrete, and
that the components of A−1 are the cosets of A0 in ΛA.

1.25. Definition. Let A be a Banach algebra and a ∈ A. If A is
unital, then the spectrum of a relative to A is the set

σA(a) = {λ ∈ C : a− λ1 is not invertible in A}.

If A is not unital, then σA(a) is set to be σA+(a) ∪ {0}. When the algebra
A is understood, we generally write σ(a). The resolvent of a is the set
ρ(a) = C\σ(a).

1.26. Corollary. Let A be a unital Banach algebra, and let a ∈ A.
Then ρ(a) is open and σ(a) is compact.
Proof. Clearly ρ(a) = {λ ∈ C : (a − λ1) is invertible } is open, since A−1

is. Indeed, if a−λ01 is invertible in A, then λ ∈ ρ(a) for all λ ∈ C such that
|λ− λ0| < ‖(a− λ0)−1‖−1. Thus σ(a) is closed.

If |λ| > ‖a‖, then λ1−a = λ (1−λ−1a) and ‖λ−1a‖ < 1, and so (1−λ−1a)
is invertible. This implies

(λ1− a)−1 = λ−1 (1− λ−1a)−1.

Thus σ(a) is contained in the disk D‖a‖({0}) of radius ‖a‖ centred at the
origin. Since it both closed and bounded, σ(a) is compact.

2

1.27. Definition. Let X be a Banach space and U ⊆ C be an open
set. Then a function f : U → X is said to be weakly analytic if the map
z 7→ x∗(f(z)) is analytic for all x∗ ∈ X∗.

1.28. Theorem. [Liouville’s Theorem] Every bounded, weakly
entire function into a Banach space X is constant.
Proof. For each linear functional x∗ ∈ X∗, x∗ ◦ f is a bounded, entire
function into the complex plane. By the complex-valued version of Liou-
ville’s Theorem, it must therefore be constant. Now by the Hahn-Banach
Theorem, X∗ separates the points of X. So if there exist z1, z2 ∈ C such
that f(z1) 6= f(z2), then there must exist x∗ ∈ X∗ such that x∗(f(z1)) 6=
x∗(f(z2)). This contradiction implies that f is constant.

2

1.29. Definition. Let A be a unital Banach algebra and let a ∈ A.
The map

R(·, a) : ρ(a) → A
λ 7→ (λ1− a)−1

is called the resolvent function of a.
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1.30. Proposition. The Common Denominator Formula. Let
a ∈ A, a unital Banach algebra. Then if µ, λ ∈ ρ(a), we have

R(λ, a)−R(µ, a) = (µ− λ)R(λ, a)R(µ, a).

Proof. The proof is transparent if we consider t ∈ C and consider the
corresponding complex-valued equation:

1
λ− t

− 1
µ− t

=
(µ− t)− (λ− t)
(λ− t) (µ− t)

=
(µ− λ)

(λ− t) (µ− t)
.

In terms of Banach algebra, we have:

R(λ, a) = R(λ, a)R(µ, a) (µ− a)
R(µ, a) = R(µ, a)R(λ, a) (λ− a).

Noting that R(λ, a) and R(µ, a) clearly commute, we obtain the desired
equation by simply subtracting the second equation from the first.

2

We shall return to this formula when establishing the holomorphic func-
tional calculus in the next section.

1.31. Proposition. If a ∈ A, a unital Banach algebra, then R(·, a) is
analytic on ρ(a).
Proof. Let λ0 ∈ ρ(a). Then

lim
λ→λ0

R(λ, a)−R(λ0, a)
λ− λ0

= lim
λ→λ0

(λ0 − λ)R(λ, a)R(λ0, a)
λ− λ0

= −R(λ0, a)2

since inversion is continuous on ρ(a). Thus the limit of the Newton quotient
exists, and so R(·, a) is analytic.

2

1.32. Corollary. [Gelfand] If a ∈ A, a Banach algebra, then σ(a) is
non-empty.
Proof. We may assume that A is unital, for otherwise 0 ∈ σ(a) and we are
done. Similarly, if a = 0, then 0 ∈ σ(a). If ρ(a) = C, then clearly R(·, a) is
entire. Now for |λ| > ‖a‖, we have

(λ− a)−1 =
(
λ(1− λ−1a)

)−1

= λ−1
∞∑

n=0

(λ−1a)n

=
∞∑

n=0

λ−n−1an
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so that if |λ| ≥ 2‖a‖, then

‖(λ− a)−1‖ ≤
∞∑

n=0

‖a‖n

(2‖a‖)n+1
≤ 1
‖a‖

.

That is, ‖R(λ, a)‖ ≤ ‖a‖−1 for all λ ≥ 2‖a‖.
Clearly there exists M <∞ such that

max
|λ|≤2‖a‖

‖R(λ, a)‖ ≤M

since R(·, a) is a continuous function on this compact set. The conclusion is
that R(·, a) is a bounded, entire function. By Theorem 1.28, the resolvent
function must be constant. This obvious contradiction implies that σ(a) is
non-empty.

2

Recall that a division algebra is an algebra in which each non-zero
element is invertible.

1.33. Theorem. [Gelfand-Mazur] If A is a Banach algebra and
a division algebra, then there is a unique isometric isomorphism of A onto
C.
Proof. If b ∈ A, then σ(b) is non-empty by Corollary 1.32. Let β ∈ σ(b).
Then β1− b is not invertible, and since A is a division algebra, we conclude
that β1 = b; that is to say, that σ(b) is a singleton.

Given a ∈ A, σ(a) is a singleton, say {λa}. The complex-valued map φ :
a 7→ λa is an algebra isomorphism. Moreover, ‖a‖ = ‖λa1‖ = |λa| = ‖φ(a)‖,
so the map is isometric as well.

If φ0 : A → C were another such map, then φ0(a) ∈ σ(a), implying that
φ0(a) = φ(a).

2

1.34. Definition. Let a ∈ A, a Banach algebra. The spectral radius
of a is

spr(a) = sup{|λ| : λ ∈ σ(a)}.

1.35. Lemma. The Spectral Mapping Theorem - polynomial
version. Let a ∈ A, a unital Banach algebra, and suppose p ∈ C [z] is a
polynomial. Then

σ(p(a)) = p(σ(a)) := {p(λ) : λ ∈ σ(a)}.

Proof. Let α ∈ C. Then for some γ ∈ C,

p(z)− α = γ (z − β1) (z − β2) · · · (z − βn)

and so
p(a)− α = γ (a− β1) (a− β2) · · · (a− βn).
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Thus (as all of the terms (a− βi) commute),

α ∈ σ(p(a)) ⇐⇒ βi ∈ σ(a) for some 1 ≤ i ≤ n

⇐⇒ p(z)− α = 0 for some z ∈ σ(a)
⇐⇒ α ∈ p(σ(a)).

2

1.36. Theorem. [Beurling : The Spectral Radius Formula] If
a ∈ A, a Banach algebra, then

spr(a) = lim
n→∞

‖an‖1/n.

Proof. First observe that if A is not unital, then we can always embed it
isometrically into a unital Banach algebra A+. Since both the left and right
hand sides of the above equation remain unchanged when a is considered as
an element of A+, we may (and do) assume that A is already unital.

Now σ(an) = (σ(a))n, and so spr(an) = (spr(a))n. Moreover, for all
b ∈ A, the proof of Corollary 1.26 shows that spr(b) ≤ ‖b‖. Thus

spr(a) = (spr(an))1/n ≤ ‖an‖1/n for all n ≥ 1.

This tells us that spr(a) ≤ infn≥1 ‖an‖1/n.
On the other hand, R(·, a) is analytic on ρ(a) and hence is analytic on

{λ ∈ C : |λ| > spr(a)}. Furthermore, if |λ| > ‖a‖, then

R(λ, a) = (λ− a)−1

= λ−1(1− λ−1a)−1

=
∞∑

n=0

an/λn+1.

Let φ ∈ A∗. Then φ ◦R(·, a) is an analytic, complex-valued function,

[φ ◦R(·, a)](λ) =
∞∑

n=0

φ(an)/λn+1

and this Laurent expansion is still valid for {λ ∈ C : |λ| > ‖a‖}, since
the series for R(·, a) is absolutely convergent on this set, and applying φ
introduces at most a factor of ‖φ‖ to the absolutely convergent sum. Since
[φ ◦R(·, a)] is analytic on {λ ∈ C : |λ| > spr (a)}, the complex-valued series
converges on this larger set.

From this it follows that the sequence {φ(an)/λn+1}∞n=1 converges to
0 as n tends to infinity for all φ ∈ A∗, so therefore is bounded for all
φ ∈ A∗. It is now a consequence of the Uniform Boundedness Principle that
{an/λn+1}∞n=1 is bounded in norm, say by Mλ > 0, for each λ ∈ C satisfying
|λ| > spr(a). That is:

‖an‖ ≤Mλ|λn+1|
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for all |λ| > spr(a). But then, for all |λ| > spr(a),

lim sup
n≥1

‖an‖1/n ≤ lim sup
n≥1

M
1/n
λ |λn+1/n| = |λ|.

Combining this estimate with the above yields spr(a) = limn→∞ ‖an‖1/n.

2

Never kiss a gift horse on the mouth.
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2. The functional calculus

2.1. Integration in a Banach space. Let α ≤ β ∈ R and let X be
a Banach space. An X-valued step function f is a function on [α, β] for
which there exists a partition P = {α = α0 < α1 < . . . < αn = β} of [α, β]
so that

(1) f(t) = ck, αk−1 < t ≤ αk, 1 ≤ k ≤ n

for some ck ∈ X, 1 ≤ k ≤ n, and f(α0) = c1. Given an X-valued step
function f , a partition P satisfying (1) will be referred to as an admissible
partition for f .

Denote by S = S([α, β],X) the linear manifold of X-valued step functions
in the Banach space L∞([α, β],X). For each f ∈ S, define∫ β

α
f =

n∑
k=1

(αk − αk−1)ck

whenever P = {α = α0 < α1 < . . . < αn = β} is an admissible partition for
f . We remark that this sum is easily seen to be independent of the choice
of admissible partitions, and so

∫ β
α f is well-defined. Moreover, ‖

∫ β
α f‖ ≤

(β − α)‖f‖∞. It follows that the map

Φ : S → X

f 7→
∫ β
α f

is continuous.
We may therefore extend Φ to the closure S in L∞([α, β],X) and continue

to write
∫ β
α f or

∫ β
α f(t) dt for f ∈ S. Clearly we still have

‖
∫ β

α
f‖ ≤ (β − α)‖f‖∞

for all f ∈ S.
If T ∈ B(X,Y) for some Banach space Y, then it is easy to check that

T ◦ f ∈ S([α, β],Y) for all f ∈ S, and

T

(∫ β

α
f

)
=
∫ β

α
T ◦ f.

2.2. Proposition. Let f ∈ C([α, β],X) and let ε > 0. Then f ∈ S and
there exists δ > 0 such that for every partition P = {α = α0 < α1 < . . . <
αn = β} of [α, β] such that ‖P‖ := max1≤k≤n(αk − αk−1) < δ, and for all
t1, t2, . . . , tn satisfying αk−1 ≤ tk ≤ αk, 1 ≤ k ≤ n, the following statements
hold:

(1) there exists g ∈ S([α, β],X) with g(t) = f(tk), (αk−1 ≤ t < αk, 1 ≤
k ≤ n) and ‖f − g‖ ≤ ε.

(2) ‖
∫ β
α f −

∑n
k=1(αk − αk−1)f(tk)‖ ≤ (β − α)ε.
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Proof. Since f is continuous on the compact set [α, β], it is uniformly
continuous there, and so we can choose δ > 0 such that |a − b| < δ implies
that ‖f(a)− f(b)‖ < ε.

Let P be any partition of [α, β] with ‖P‖ < δ, and choose {tk}n
k=1 such

that αk−1 ≤ tk < αk, 1 ≤ k ≤ n. Let g(α0) = f(t1), and for 1 ≤ k ≤ n, let
g(t) = f(tk), αk−1 < t ≤ αk.

(1) Now

‖f − g‖∞ = sup
t∈[α,β]

‖f(t)− g(t)‖

= max
1≤k≤n

sup
t∈(αk−1,αk]

‖f(t)− g(t)‖

= max
1≤k≤n

sup
t∈(αk−1,αk]

‖f(t)− f(tk)‖

< ε.

(2) Secondly,

‖
∫ β

α
f −

n∑
k=1

(αk − αk−1)f(tk)‖ = ‖
∫ β

α
f −

∫ β

α
g‖

= ‖
∫ β

α
f − g‖

≤
∫ β

α
‖f − g‖∞

≤ (β − α)ε.

2

We remark in passing that a minor adaptation of the above proof shows
that piecewise continuous functions also lie in S.

2.3. With α ≤ β ∈ R as above, we define a curve in X to be a
continuous function τ : [α, β] → X. The interval [α, β] is referred to as the
parameter interval of the curve, and we denote the image of τ in X by
τ∗. The point τ(α) is then called the initial point of the curve, while τ(β)
is referred to as the final point.

A contour in X is a piecewise continuously differentiable curve. That
is, there exists a partition P = {α = α0 < α1 < . . . < αn = β} of [α, β] such
that τ |[αi−1,αi] is continuously differentiable, 1 ≤ i ≤ n. If τ(α) = τ(β), we
say that the contour τ is closed.

Suppose that τ is a contour in C, and that f : τ∗ → X is a continuous
function. We can then think of τ as a parametrization of τ∗. We shall define
the integral of f over τ as

(2)
∫

τ∗
f(z) dz =

∫ β

α
f(τ(x))τ ′(x) dx.
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Note that the integral on the right hand side exists by the comment following
Proposition 2.2.

Suppose next that γ : [α1, β1] → [α, β] is a continuously differentiable
bijection with γ(α1) = α and γ(β1) = β. Let τ1 = τ ◦ γ. Then∫

τ∗1

f(z) dz =
∫ β1

α1

f(τ1(x))τ ′1(x) dx

=
∫ β1

α1

f(τ(γ(x))τ ′(γ(x))γ′(x) dx

=
∫ β

α
f(τ(y))τ ′(y) dy

=
∫

τ∗
f(z) dz,

and so the integral is seen to be independent of the parametrization of the
contour. Any two such contours τ1 and τ2 for which∫

τ∗1

f(z) dz =
∫

τ∗2

f(z) dz

for all continuous functions f ∈ C(τ∗1 = τ∗2 ) will be considered equivalent.
The notion of equivalence of contours allows us to manipulate vector-

valued integrals in the standard way. For instance, suppose that the final
point of τ1 equals the initial point of τ2, and suppose f ∈ C(τ∗1 ∪ τ∗2 ). We
can “concatenate” the two contours into one longer contour τ satisfying∫

τ∗
f(z) dz =

∫
τ∗1

f(z) dz +
∫

τ∗2

f(z) dz.

Moreover, equation (2) shows that

‖
∫

τ∗
f(z) dz‖ = ‖

∫ β

α
f(τ(x))τ ′(x) dx‖

≤ ‖f‖∞ ‖
∫ β

α
τ ′(x) dx‖

= ‖f‖∞ ‖τ∗‖,

where ‖f‖∞ = max{‖f(x)‖ : x ∈ τ∗}, while ‖τ∗‖ = ‖
∫ β
α τ ′(x) dx‖ is (by

definition) the length of τ∗. Note that this length is finite as τ ′ is piecewise
continuous.

Finally, observe that as before, if T ∈ B(X,Y) for some Banach space
Y, then

T

(∫
τ∗
f(z) dz

)
=
∫

τ∗
(T ◦ f)(z) dz.
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2.4. Our present goal is to make sense of expressions of the form f(a),
where a ∈ A, a Banach algebra, and f is a function. An important question
in this regard is to find the largest set of functions for which f(a) makes
sense. Clearly if p(z) =

∑n
k=0 ckz

k is polynomial over the complex numbers,
then

p(a) =
n∑

k=0

ck a
k

can be defined in any unital Banach algebra which contains a. (If we also
stipulate that c0 = 0, then p(a) makes sense even if the algebra is not unital.)

Suppose now that the algebra A is unital, that p and q are polynomials
over C, and that 0 6∈ q(σ(a)). Then q(z) = β(Πm

k=1(z−λk)), where λk 6∈ σ(a)
for 1 ≤ k ≤ m, so we can define r(z) = p(z)/q(z) as an analytic function on
some neighbourhood of σ(a) and

r(a) = p(a)β−1 (Πm
k=1(a− λk)−1).

The question remains: can we do better than rational functions? For
general Banach algebras A and arbitrary elements a ∈ A, we are now in a
position to develop an analytic functional calculus: that is, we shall make
sense of f(a) whenever f is a function which is analytic on some neighbour-
hood of σ(a).

This is definitely not the only possible functional calculus that exists.
For example, later we shall see that if A is a C∗-algebra and a ∈ A is normal,
then one can develop a continuous functional calculus. As another example,
if T ∈ B(H) is a contraction, then an H∞ functional calculus is possible.

Recall from Complex Analysis the following:

2.5. Definition. If Γ is a finite system of closed contours in C and
λ 6∈ Γ, then the index or winding number of Γ with respect to λ is

IndΓ(λ) =
1

2πi

∫
Γ

1
(z − λ)

dz,

and represents the number of times that Γ wraps around λ in the positive
(i.e. counterclockwise) direction.

2.6. Theorem. [Cauchy’s Theorem] Let f be analytic on an open
set U ⊆ C, and let z0 ∈ U . Let Γ be a finite system of closed contours in U
such that z0 6∈ Γ, IndΓ(z0) = 1, and {z ∈ C : IndΓ(z) 6= 0} ⊆ U . Then

f(z0) =
1

2πi

∫
Γ

f(z)
(z − z0)

dz.

Furthermore, ∫
Γ
f(z) dz = 0.
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2.7. Remarks.

• We shall say that a complex valued function f is analytic on a
compact subset K of C if f is analytic on some open subset U of
C which contains K.

• Let U ⊆ C be open and K ⊆ U be compact. Then there exists a
finite system of contours Γ ⊆ U such that
(1) IndΓ(λ) ⊆ {0, 1};
(2) IndΓ(λ) = 1 for all λ ∈ K;
(3) {z ∈ C : IndΓ(z) 6= 0} ⊆ U .

The existence of such a system Γ is a relatively standard result from
Complex Analysis, and follows from the Jordan Curve Theorem. A
proof can be found in [Con78], although (to quote Conway himself
[Con85]), “some details are missing”.

In practice, the idea is to cover K by open disks of sufficiently
small radius so as to ensure that their closures still lie in U . Since
K is presumed to be compact, there will exist a finite subcover V
by these disks. Modulo some technicalities, the boundary of V will
then yield the desired system Γ of contours.

In fact, with a bit more work, one can even assume that Γ
consists of a finite system of infinitely differentiable curves [Con85],
Proposition 4.4.

2.8. The Riesz-Dunford Functional Calculus. Let a ∈ A, a unital
Banach algebra, and fix U be an open subset of C such that σ(a) ⊆ U . Set

F(a) = {f : U → C : f is analytic}.

Choose a system Γ ⊆ U of closed contours such that

(1) IndΓ(λ) = 1 for all λ ∈ σ(a);
(2) {z ∈ C : IndΓ(z) 6= 0} ⊆ U .

We define

f(a) =
1

2πi

∫
Γ
f(z) (z − a)−1 dz.

The first question we must ask is whether or not this definition makes
sense. As stated, the definition appears to depend upon the choice of the
system Γ and of U . The following Theorem addresses this issue.

2.9. Theorem. [The Riesz-Dunford Functional Calculus, 1]
With the above setting, f(a) is well-defined (i.e. independent of the choice
of curves Γ), and for f, g ∈ F(a), h ∈ F(f(a)), and λ ∈ C,

(i) (f + g)(a) = f(a) + g(a);
(ii) (λf)(a) = λ(f(a));
(iii) (fg)(a) = f(a) g(a);
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Proof. First note that if U1 and U2 are two open sets containing σ(a), then
so is U := U1 ∩ U2. If Γ1 (resp. Γ2) is an eligible system of contours in U1

(resp. U2), then it suffices to show that the integral along each of Γ1 and Γ2

agrees with the integral along an eligible system of contours Γ contained in
U . By symmetry, it suffices to show that the integral along Γ1 agrees with
the integral along Γ. Since U ⊆ U1, this implies that the problem reduces
to the case where Γ1 and Γ2 sit inside the same open set U .

Let Γ1 and Γ2 be two eligible systems of contours. We must show that

b =
1

2πi

∫
Γ1

f(z)(z − a)−1 dz − 1
2πi

∫
Γ2

f(z)(z − a)−1 dz = 0.

By the Corollary to the Hahn-Banach Theorem [Cor. 1. 2.2], it suffices
to show that x∗(b) = 0 for all x∗ ∈ A∗. Now

x∗(b) =
1

2πi

∫
Γ1−Γ2

f(z)x∗(z − a)−1 dz.

Also, f(z) is analytic on U , R(z, a) = (z − a)−1 is analytic on ρ(a) ⊇
Γ1, Γ2 and so x∗((z − a)−1) is analytic on ρ(a) for all x∗ ∈ A∗. So the
integrand is analytic on the open set U ∩ ρ(a). To apply Cauchy’s Theorem
above, we need only verify the index conditions.

If λ 6∈ U , then we have IndΓ1(λ) = IndΓ2(λ) = 0, and therefore

IndΓ1−Γ2(λ) = IndΓ1(λ)− IndΓ2(λ) = 0.

If λ ∈ σ(a), then IndΓ1(λ) = IndΓ2(λ) = 1, therefore IndΓ1−Γ2(λ) = 0.

Thus {z ∈ C : IndΓ1−Γ2(λ) 6= 0} ⊆ U ∩ ρ(a) and so Cauchy’s Theorem
applies, namely:

x∗(b) =
1

2πi

∫
Γ1−Γ2

f(z)x∗(z − a)−1 dz = 0 for all x∗ ∈ A∗.

Thus b = 0 and so f(a) is indeed well-defined.

(i) (f + g)(a) = f(a) + g(a):
This follows for the linearity of the integral, and is left as an

exercise.
(ii) (λf)(a) = λ(f(a)):

Again, this follows from the linearity of the integral.
(iii) (fg)(a) = f(a) g(a):

Now f and g are both analytic on some open set U ⊇ σ(a).
Choose two systems of contours Γ1 and Γ2 such that
(a) {z ∈ C : IndΓi(z) 6= 0} ⊆ U, i = 1, 2;
(b) IndΓi(z) = 1 for all z ∈ σ(a), i = 1, 2;
(c) IndΓ1(z) = 1 for all z ∈ Γ2.
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To get part (c), we choose Γ2 first and then choose Γ1 to lie
“outside” of Γ2. Then

f(a) g(a) =
1

2πi

∫
Γ1

f(z)(z − a)−1 dz
1

2πi

∫
Γ2

g(w)(w − a)−1 dw

= (
1

2πi
)2
∫

Γ1

∫
Γ2

f(z)g(w)(z − a)−1(w − a)−1 dw dz

= (
1

2πi
)2
∫

Γ1

∫
Γ2

f(z)g(w)(
1

w − z
)[(z − a)−1 − (w − a)−1] dz dw

= (
1

2πi
)2
∫

Γ1

f(z)(z − a)−1

∫
Γ2

g(w)(w − z)−1 dw dz −(3)

(
1

2πi
)2
∫

Γ2

g(w)(w − a)−1

∫
Γ1

f(z)(w − z)−1 dz dw

=
1

2πi

∫
Γ2

g(w)(w − a)−1f(w) dw

= (fg)(a).

where the first integral in equation (3) is zero since z lies “outside”
of Γ2 and g is analytic.

2

2.10. Remark. Let a be an element of a unital Banach algebra A
and let U be an open set in the complex plane such that σ(a) ⊆ U . Let

H(U) = {f : U → C : f is analytic }.

From (i), (ii) and (iii) above, we conclude that the map:

Φ : H(U) → A
f 7→ f(a)

is an algebra homomorphism. Moreover, for all a ∈ A and f, g ∈ H(U), we
have f(a)g(a) = g(a)f(a) since f(z)g(z) = g(z)f(z).

2.11. Proposition. Suppose A is a unital Banach algebra and that
a ∈ A. Let U ⊆ C be an open set containing σ(a), and let {fn}∞n=0 be a
sequence of analytic functions on U converging uniformly to f on compact
subsets of U . Then f is also analytic on U and

lim
n→∞

‖fn(a)− f(a)‖ = 0.

Proof. Choose an open set V with boundary Γ consisting of a finite number
of piecewise smooth curves such that σ(a) ⊆ V ⊆ V ⊆ U .

Since {fn}∞n=0 converges uniformly on compact subsets of U , f is analytic
on U . Thus f ∈ H(U) and {fn}∞n=0 converges uniformly to f on Γ. It follows



26 2. BANACH ALGEBRAS

that

‖fn(a)− f(a)‖ = ‖(1/2πi)
∫

Γ
[fn(z)− f(z)](z − a)−1 dz‖

≤ (1/2π)K ‖Γ‖ ‖fn − f‖Γ,

where K = sup{‖(z − a)−1‖ : z ∈ Γ}, ‖Γ‖ represents the arclength of the
contour, and ‖fn − f‖Γ = sup{|fn(z) − f(z)| : z ∈ Γ}. Since both K and
‖Γ‖ are fixed and ‖fn − f‖Γ tends to zero as n→∞, we obtain the desired
conclusion.

2

2.12. Theorem. [The Riesz-Dunford Functional Calculus, 2]
Let A be a unital Banach algebra and a ∈ A. If f(z) =

∑∞
n=0 cnz

n converges
to a function analytic in a neighbourhood of σ(a), then f(a) =

∑∞
n=0 cna

n.
Proof. Suppose f(z) =

∑∞
n=0 cnz

n converges in DR({0}) ⊇ σ(a). Then
consider the curve Γ = {reiθ : 0 ≤ θ ≤ 2π} for some r, spr(a) < r ≤ R and
consider

f(a) =
1

2πi

∫
Γ

( ∞∑
n=0

cnz
n

)
(z − a)−1 dz

=
1

2πi

∞∑
n=0

cn

∫
Γ
zn (z − a)−1 dz(4)

=
∞∑

n=0

cnz
n(a),

where z(a) = 1
2πi

∫
Γ z(z − a)−1 dz is the identity function evaluated at a.

Note that (4) uses the uniform convergence of the series on Γ.
But

z(a) =
1

2πi

∫
Γ
z(z − a)−1 dz

=
1

2πi

∫
Γ

∞∑
n=0

z−nan dz

=
∞∑

n=0

an 1
2πi

∫
Γ
z−n dz(5)

=
∞∑

n=0

an(δn1)(6)

= a.

Here (5) uses the uniform convergence of the series when |z| = r > spr(a),
and (6) uses the Residue Theorem. We can now apply induction on part
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(iii) of Theorem 2.9 to get zn(a) = (z(a))n = an, and so

f(a) =
∞∑

n=0

cna
n,

as desired.
2

2.13. Corollary. [Dunford: The Spectral Mapping Theorem]
Let a ∈ A, a unital Banach algebra and suppose that f is analytic on σ(a).
Then

σ(f(a)) = f(σ(a)).

Proof. If λ 6∈ f(σ(a)), then g(z) = (λ− f(z))−1 is analytic on σ(a). From
the functional calculus,

g(a) (λ− f(a)) = (g(z) (λ− f(z))) (a)
= 1(a)
= 1
= (λ− f(a)) g(a),

since everything commutes. Thus λ 6∈ σ(f(a)).
If λ ∈ f(σ(a)), then λ− f(z) has a zero on σ(a), say at z0. As such,

λ− f(z) = (z0 − z)g(z)

for some function g which is analytic on σ(a). Via the functional calculus,
we obtain

λ− f(a) = (z0 − a)g(a),
and since (z0 − a) is not invertible and (z0 − a) commutes with g(a), we
conclude that λ− f(a) is not invertible either. Thus λ ∈ σ(f(a)).

Combining the two results, f(σ(a)) = σ(f(a)).
2

2.14. Theorem. [The Riesz-Dunford Functional Calculus, 3]
Suppose that A is a unital Banach algebra, and that g is a complex-valued
function which is analytic on σ(a) while f is a complex-valued function which
is analytic on g(σ(a)). Then (f ◦ g)(a) = f(g(a)).
Proof. Let V be an open neighbourhood of g(σ(a)) upon which f is analytic
and consider U = g−1(V ), an open neighbourhood of σ(a). Let Γ1 be a
system of closed contours in U such that

(a) IndΓ1(λ) = 1 for all λ ∈ σ(a);
(b) IndΓ1(λ) 6= 0 implies that λ ∈ U .

Let Γ2 be a system of closed contours in V such that
(A) IndΓ2(β) = 1 for all β ∈ g(σ(a));
(B) IndΓ2(β) = 1 for all β ∈ g(Γ1);
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(C) IndΓ1(β) 6= 0 implies that β ∈ V .
(One can view Γ2 as lying “outside” of g(Γ1) in V .)

Then

(f ◦ g)(a) =
1

2πi

∫
Γ1

(f ◦ g)(z)(z − a)−1 dz

=
1

2πi

∫
Γ1

f(g(z))(z − a)−1 dz

=
1

2πi

∫
Γ1

1
2πi

∫
Γ2

f(w)(w − g(z))−1 dw (z − a)−1 dz

=
1

2πi

∫
Γ2

1
2πi

∫
Γ1

(w − g(z))−1(z − a)−1 dz dw

=
1

2πi

∫
Γ2

f(w)(w − g(a))−1 dw

= f(g(a)).

2

2.15. Corollary. [The Riesz Decomposition Theorem] Let a ∈
A, a unital Banach algebra, and suppose that ∆ is a non-trivial, relatively
closed and open subset of σ(a).

(i) There exists a non-trivial idempotent E(∆) in A which commutes
with a;

(ii) If A ⊆ B(X) for some Banach space X, then E(∆)X and (I −
E(∆))X are complementary subspaces invariant under a.

(iii) Let a∆ = a|E(∆)X. Then σ(a∆) = ∆. Moreover, for any function
f which is analytic on σ(a), we have f(a∆) = f(a)|E(∆)X.

Proof.
(i) Consider an analytic function g such that g ≡ 1 on ∆ and g ≡ 0 on

σ(a) \∆. Let E(∆) = g(a). Then g2 = g and so E2(∆) = g2(a) =
g(a) = E(∆) is an idempotent. Note that E(∆) 6= 0 since 1 ∈
σ(g(a)) = g(σ(a)). Similarly, E(∆) 6= I as 0 ∈ σ(g(a)) = g(σ(a)).

Since zg(z) = g(z)z, E(∆) commutes with a.
(ii) Let X be a Banach space and assume that A ⊆ B(X). Then

E(∆)X = ker (I −E(∆)) is closed, as is (I −E(∆))X = ker E(∆).
Clearly

X = E(∆)X + (I − E(∆))X.

Moreover, if y ∈ E(∆)X ∩ (I − E(∆))X, then

y = E(∆)y = E(∆) (I − E(∆))y = 0.

Thus E(∆)X and (I − E(∆))X are complementary. Finally, let
x ∈ E(∆)X. Then ax = aE(∆)x = E(∆)ax ∈ E(∆)X. Therefore
E(∆)X is invariant under a, as is (I − E(∆))X.
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(iii) First we show that σ(a∆) ⊆ ∆.
If λ 6∈ ∆, let

h(z) =
{

(λ− z)−1 for z in a neighbourhood of ∆
0 for z in a neighbourhood of σ(a) \∆.

Then h(z)(λ − z) = g(z). Thus h(a)(λ − a) = g(a) = E(∆).
Now h(a) leaves E(∆)X and (I − E(∆))X invariant (since h(a)
commutes with g(a)). If Rλ := h(a)|E(∆)X, then

Rλ(λ− a∆) = (λ− a∆)Rλ = IE(∆)X,

so that λ ∈ ρ(a∆), i.e. σ(a∆) ⊆ ∆.
Suppose now that λ ∈ ∆∩ρ(a∆), so that for some b ∈ B(E(∆)X),

we have

b (λ− a∆) = (λ− a∆) b = IE(∆)X.

Let

k(z) =
{

(λ− z)−1 for z in a neighbourhood of σ(a) \∆
0 for z in a neighbourhood of ∆.

Then

k(a)(λ− a) = (λ− a)k(a) = I − E(∆).

Define r = k(a) + bE(∆). Then

r (λ− a) = k(a) (λ− a) + bE(∆) (λ− a)
= (I − E(∆)) + b (λ− a∆)E(∆)
= (I − E(∆)) + E(∆)
= I.

Similarly, (λ − a) r = I, and so λ ∈ ρ(a), a contradiction. We
conclude that σ(a∆) = ∆.

Finally, suppose that f is analytic on σ(a). Then for an eligible
system Γ of contours we obtain

f(a∆) =
1

2πi

∫
Γ
f(λ)(λ− a∆)−1 dλ

=
1

2πi

∫
Γ
f(λ)(λ− a)−1|E(∆)X dλ

=
1

2πi

(∫
Γ
f(λ)(λ− a)−1 dλ

)
|E(∆)X

= f(a)|E(∆)X.

2

Meanwhile, back at the Sado-masochist club . . .
“This is going to hurt me more than it will hurt you.”
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3. The spectrum

3.1. Spectrum relative to a subalgebra. Suppose that A and B are
Banach algebras with 1 ∈ A ⊆ B. For a ∈ A, we have have two notions of
spectrum, namely:

σA(a) = {λ ∈ C : (λ1− a)−1 6∈ A}

and
σB(a) = {λ ∈ C : (λ1− a)−1 6∈ B}.

In general, it is clear that σB(a) ⊆ σA(a). Our present intention is to exhibit
a closure relation between the two spectra.

3.2. Example. Let B = C(T), where T = {z ∈ C : |z| = 1} is the unit
circle in the complex plane. Let A = A(D) be the disk algebra defined in
Example 1.4. By the same Example, A ⊆ B.

Let f be the identity function f(z) = z, so that clearly f ∈ A. Then
‖f‖ = 1, so that σA(f), σB(f) ⊆ D. Now if |λ| < 1, then the function
gλ(z) = 1

λ−z 6∈ A(D), and so λ ∈ σA(f). Since the spectrum of an element
is always compact and hence closed, σA(f) = D.

In contrast, gλ ∈ B = C(T), so that σB(f) ⊆ T. If |λ| = 1, then gλ is
clearly not continuous on the circle, so that λ ∈ σB(f). We conclude that
σB(f) = T.

This example proves to be prototypical of the phenomenon we wish to
explore.

3.3. Definition. Let A be a Banach algebra. An element a ∈ A is said
to be a right (resp. left; joint) topological divisor of zero if there exists
a sequence {xn}∞n=1 ⊆ A, ‖xn‖ = 1 for all n ≥ 1 such that limn xna = 0
(resp. limn axn = 0; limn ‖xna‖+ ‖axn‖ = 0).

3.4. Theorem. Let A be a unital Banach algebra and let a ∈ ∂(A−1).
Then a is a joint topological divisor of zero.
Proof. Since a ∈ ∂(A−1), there exists a sequence {bn} ⊆ A−1 such that
limn bn = a. Now we claim that {‖b−1

n ‖}∞n=1 is unbounded, for if ‖b−1
n ‖ ≤M

for some M > 0 and for all n ≥ 1, then

‖b−1
n − b−1

m ‖ = ‖b−1
n (bm − bn)b−1

m ‖
≤ M2 ‖bm − bn‖.

Thus {b−1
n }∞n=1 is a Cauchy sequence. Let c = limn b

−1
n . Then by the

continuity of inversion, c = a−1 and so a ∈ A−1. But A−1 is open, which
contradicts the fact that a ∈ ∂(A−1).

Next, by choosing a suitable subsequence of {bn}∞n=1 and reindexing if
necessary, we may assume that ‖b−1

n ‖ ≥ n, n ≥ 1. Let xn = b−1
n /‖b−1

n ‖ for
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each n, and

‖axn‖ = ‖(a− bn)xn + bnxn‖
≤ ‖(a− bn)xn‖+ ‖b−1

n ‖−1.

Thus limn axn = 0, and similarly, limn xna = 0.
2

3.5. Corollary. Let A be a Banach algebra and a ∈ A. If λ ∈ ∂(σ(a)),
then (a− λ) is a joint topological divisor of 0.
Proof. Immediate.

2

3.6. Proposition. Let A be a Banach algebra and suppose that a ∈ A
is a joint topological divisor of 0 in A. Then 0 ∈ σA(a).
Proof. Suppose that there exists b = a−1 ∈ A. Take {xn}∞n=1 ⊆ A, ‖xn‖ =
1 for all n ≥ 1, such that limn axn = 0. Then

‖xn‖ = ‖b a xn‖ ≤ ‖b‖ ‖a xn‖

so that limn ‖xn‖ = 0, a contradiction.
2

We note that if a ∈ A is a joint topological divisor of 0 in A, and if B is
a Banach algebra containing A, then a is a joint topological divisor of 0 in
B, and so 0 ∈ σB(a) as well.

3.7. Proposition. Let A and B be Banach algebras and suppose a ∈
A ⊆ B. Then

(i) σB(a) ⊆ σA(a); and
(ii) ∂(σA(a)) ⊆ σB(a).

Proof.

(i) Immediate.
(ii) If λ ∈ ∂(σA(a)), then a − λ is a topological divisor of 0 in A and

so a− λ is not invertible in B, by Proposition 3.6.
2

3.8. Remark. The conclusion of Proposition 3.7 is that the most that
can happen to the spectrum of an element a when passing to a subalgebra
that contains a is that we “fill in” the “holes” of the spectrum, that is, the
bounded components of the resolvent of a in the larger algebra.
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3.9. Theorem. Let B be a Banach algebra and a ∈ B. Let Ω be a sub-
set of ρB(a) which has non-empty intersection with each bounded component
of ρB(a). Finally, let A be the smallest closed subalgebra of B containing
1, a, and (λ− a)−1 for each λ ∈ Ω. Then σA(a) = σB(a).
Proof. Choose φ ∈ B∗ so that φ(x) = 0 for all x ∈ A. Define the function

hφ : ρB(a) → C
z 7→ φ((z − a)−1)

so that hφ is holomorphic on its domain. We shall now show that hφ ≡ 0.
Since this is true for all φ ∈ B∗ that annihilates A, we can then invoke
Corollary 1.2.4 to obtain the desired result.

Now if |z| > spr(a), then

(z − a)−1 =
∞∑

n=0

z−n−1an

converges uniformly and thus (z − a)−1 ∈ A. Hence hφ(z) ≡ 0 for all
z, |z| > spr(a). Thus hφ ≡ 0 on the unbounded component of ρB(a).

If λ ∈ Ω lies in a bounded component of ρB(a), then note that

(z − a) = (λ− a) (1− (λ− z) (λ− a)−1).

Thus if |λ− z| < ‖(λ− a)−1‖−1, we have

(z − a)−1 =
∞∑

n=0

(λ− z)n (λ− a)−n−1

which converges in norm and therefore lies in A. As such, hφ ≡ 0 on an
open neighbourhood of λ and so hφ ≡ 0 on the entire component of ρB(a)
containing λ.

Since Ω intersects every bounded component of ρB(a), hφ ≡ 0 on ρB(a).
As this is true for all φ ∈ B∗ which annihilates the closed subspace A, we
conclude that (z − a)−1 ∈ A for all z ∈ ρB(a). That is, ρA(a) = ρB(a), or
equivalently, σA(a) = σB(a).

2

It is worth pointing out that what we have shown is that A coincides
with the closed algebra generated by 1, a, and (z − a)−1 for all z ∈ ρB(a);
in other words, the algebra generated by the rational functions with poles
outside of σB(a). This algebra is often denoted by Rat(a) in the literature.

3.10. Definition. If B is a Banach algebra, then a subalgebra A of B
is said to be a maximal abelian subalgebra (or a masa) if it is commu-
tative and it is not properly contained in any commutative subalgebra of B.
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3.11. Example. We leave it to the reader to verify that if {ek}n
k=1

is an orthonormal basis for H = Cn, and if Dn denotes the set of diagonal
matrices in Mn ' B(H) (see Example 1.9) with respect to this basis, then
Dn is a masa in B(H).

3.12. Proposition. Let B be a unital Banach algebra, and suppose
that A is a maximal abelian subalgebra of A. Then σA(a) = σB(a) for all
a ∈ A.
Proof. First observe that 1 ∈ A, for otherwise the algebra generated by 1
and A is abelian and properly contains A, a contradiction.

Clearly σB(a) ⊆ σA(a). Suppose that λ ∈ ρB(a). Then for all c ∈ A,
c (a− λ1) = (a− λ1) c. If we let b = (a− λ1)−1 ∈ B, then multiplying this
equation on the left and the right by b yields b c = c b for all c ∈ A. Thus
b ∈ A, as A is maximal abelian. In other words, λ ∈ ρA(a), and we are
done.

2

3.13. The upper-semicontinuity of the spectrum. We now turn
to the question of determining in what sense the map that sends an element
a of a Banach algebra A to its spectrum σ(a) ⊆ C is continuous.

To do this, we shall first define a new metric, called the Hausdorff metric
on C. Our usual notion of distance between two compact sets A and B is

dist(A,B) := inf{|a− b| : a ∈ A, b ∈ B}.

Of course, if A = {a} is a singleton , we simply write dist(a,B).
The problem (for our purposes) with this distance is the following. If

we let A = {0} and B = D, the closed unit disk, then dist(A,B) = 0. We
are looking for a notion of distance that indicates how far two subsets of C
are from being identical.

3.14. Definition. Given two compact subsets A and B of C, we define
the Hausdorff distance between A and B to be

dH(A,B) = max{sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)}.

We remark that the Hausdorff distance between {0} and D is 1.

3.15. Definition. Let X and Y be topological spaces and let Φ : X →
P(Y ) be a function, where P(Y ) denotes the power set of Y . The mapping
Φ is said to be upper-semicontinuous if for every x0 ∈ X and every
neighbourhood U of Φ(x0) in Y , there exists a neighbourhood V of x0 such
that Φ(x) ⊆ U for all x ∈ V .
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3.16. Theorem. [The upper-semicontinuity of the spectrum]
Let A be a Banach algebra. Then the mapping

Φ : A → P(C)
a 7→ σ(a)

is upper-semicontinuous.
Proof. We must show that if U is an open set in C containing σ(a), then
there exists δ > 0 such that ‖x− a‖ < δ implies σ(x) ⊆ U .

Suppose otherwise. Then by choosing δn = 1/n, n ≥ 1, we can find
xn ∈ A with ‖xn − a‖ < δn and λn ∈ σ(xn) ∩ (C \ U). Since |λn| ≤
spr(xn) ≤ ‖xn‖ ≤ ‖a‖ + 1/n ≤ ‖a‖ + 1, we know that {λn}n is bounded,
and so by the Bolzano-Weierstraß Theorem (by dropping to a subsequence
if necessary), we may assume that λ = limn λn exists.

Clearly λ /∈ U as λn /∈ U, n ≥ 1, and C \U is closed. Thus λ− a ∈ A−1.
Since λ−a = limn→∞ λn−xn and A−1 is open, we must have λn−xn ∈ A−1

for some n ≥ 1, a contradiction.
This completes the proof.

2

It is worth noting that the map Φ above need not in general be continu-
ous. For example, it is possible to find a sequence (Qn)∞n=1 of Hilbert space
operators such that σ(Qn) = {0} for each n ≥ 1, converging to an operator
T ∈ B(H) with σ(T ) = {z ∈ C : |z| ≤ 1}.

The above theorem, while basic, is of extreme importance in the theory
of approximation of Hilbert space operators. While this result in itself is
sufficient for a large number of applications, sometimes we require a stronger
result; one which implies the upper-semicontinuity of the “parts” or compo-
nents of the spectrum.

The theorem we have in mind is due to Newburgh (see Theorem 3.18
below), and as a corollary we obtain a class of elements for which the spec-
trum is continuous, as opposed to just semi-continuous. We begin with the
following proposition.

3.17. Proposition. Let a ∈ A, a unital Banach algebra, and let
{an}∞n=1 ⊆ A be a sequence such that a = limn an. Let U ⊇ σ(a) be open
and suppose

(i) σ(an) ⊆ U for all n ≥ 1;
(ii) f : U → C is analytic.

Then limn f(an) = f(a).
Note: Condition (i) can always be obtained simply by applying Theo-
rem 3.16 and dropping to an appropriate subsequence.
Proof. Let V ⊆ C be an open subset satisfying σ(a) ⊆ V ⊆ V ⊆ U .
Without loss of generality, we may assume σ(an) ⊆ V for all n ≥ 1. Let Γ
be a finite system of closed contours satisfying
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(a) IndΓ(λ) = 1 for all λ ∈ V ;
(b) {z ∈ C : IndΓ(z) 6= 0} ⊆ U .

Then f(a), f(an) are all well-defined. Moreover,

‖f(a)− f(an)‖ = ‖ 1
2πi

∫
Γ
f(z)(z − a)−1 − f(z)(z − an)−1 dz‖

=
1

2π
‖
∫

Γ
f(z)

(
(z − a)−1 − (z − an)−1

)
dz‖

≤ 1
2π
‖Γ‖ ‖f‖Γ sup

z∈Γ
‖(z − a)−1 − (z − an)−1‖,

where ‖Γ‖ denotes the arclength of Γ, and ‖f‖Γ = sup{|f(z)| : z ∈ Γ}.
Since inversion is continuous and Γ is compact, the latter quantity tends

to 0 as n tends to infinity, and so we obtain

lim
n→∞

‖f(a)− f(an)‖ = 0.

2

3.18. Theorem. [Newburgh] Let A be a unital Banach algebra
and a ∈ A. Suppose that U and V are two disjoint open sets such that
σ(a) ⊆ U ∪ V and that σ(a) ∩ U 6= ∅. Then there exists δ > 0 such that
‖x− a‖ < δ implies σ(x) ∩ U 6= ∅.
Proof. By the upper-semicontinuity of the spectrum, there exists ε > 0
such that ‖x− a‖ < ε implies σ(x) ⊆ U ∪ V . Suppose that our assertion is
false. Then there exists a sequence {xn}n ⊆ A satisfying

(a) limn→∞ xn = a; and
(b) σ(xn) ⊆ V .

Consider the function f : U∪V → C defined to be 1 on U and 0 on V . Then f
is clearly analytic on U∪V , and so by Proposition 3.17, limn ‖f(a)−f(xn)‖ =
0. But f(xn) = 0 for all n ≥ 1, and 1 ∈ f(σ(a)) = σ(f(a)). Thus f(a) 6= 0,
a contradiction. We conclude that the assertion holds.

2

It follows that if (an)n=1 is a sequence in a Banach algebra A converging
to an element a ∈ A, and if σ(an) is connected for each n ≥ 1, then σ(a) is
connected. While this is an easy consequence of Newburgh’s Theorem, it is
a useful one.

3.19. Corollary. [Newburgh] Suppose that A is a unital Banach
algebra and that σ(a) is totally disconnected. Then the map a 7→ σ(a) is
continuous at a.
Proof. Let ε > 0. Since σ(a) is totally disconnected, we can find a cover of
σ(a) consisting of disjoint open sets U1, U2, . . . , Un, each of which intersects
σ(a) non-trivially and has diameter less than ε. By the upper-semicontinuity
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of the spectrum, there exists δ1 > 0 such that ‖x− a‖ < δ1 implies σ(x) ⊆
∪n

j=1Uj .
By Newburgh’s Theorem 3.18, there exists δ2 > 0 such that ‖x−a‖ < δ2

implies that σ(x) ∩ Uj 6= ∅, 1 ≤ j ≤ n. Thus the Hausdorff distance

dH(σ(a), σ(x)) < ε

for all x ∈ A, ‖x − a‖ < min(δ1, δ2), implying that the map a 7→ σ(a) is
indeed continuous at a.

2

Nature abhors a vacuum cleaner salesman.
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Notes for Chapter Two

The examples of Banach algebras given in this Chapter are but a tiny
fraction of those which are of interest in the theory of Operator Algebras.
One particular class which we shall be examining in much greater detail is
that of C∗-algebras. Even in this subclass there is a plethora of examples,
including B(H) itself, von Neumann algebras, UHF-algebras and more gen-
erally AF-algebras, the irrational rotation algebras, Toeplitz algebras, Bunce-
Deddens algebras, and many more.

The Riesz-Dunford functional calculus made its first appearance in a
paper of Riesz [Rie11]. In his case, he studied only compact operators
acting on a Hilbert space H, and then the only functions he considered
were the characteristic functions of an isolated point of the spectrum of the
given operator. Indeed, alongside a number of related results by a number
of authors, it was Dunford who presented the work in its most complete
form. Recently, Conway and Morrel [CM87] and again Conway, Herrero
and Morrel [CHM89] have considered what might be termed a “converse”
to the Riesz-Dunford functional calculus.

As we have seen, in the Riesz-Dunford functional calculus, one begins
with an element a of a unital Banach algebra A and considers the class
F(a) of functions f which are analytic on some open neighbourhood of the
spectrum of a. One then obtains an algebra homomorphism

τ : F(a) → A
f 7→ f(a).

In the Conway, Herrero and Morrel approach, one begins with a subset
∆ of the complex plane C, and the class S(∆) of operators T acting on a
separable Hilbert space H and satisfying σ(T ) ⊆ ∆.

The aim of their program is to determine f(S(∆)) = {f(T ) : T ∈ S(∆)},
where f : ∆ → C is a fixed analytic function. As an example, suppose ∆ = D
so that S(∆) contains an appropriate scalar multiple of every bounded linear
operator on H. If f(z) = z2, then Cf(S(∆)) coincides with the set of all
operators possessing a square root. However, as noted in the Conway and
Morrel paper [CM87], this proves beyond the scope of present day operator
theory, even for such simple functions as f(z) = zp or f(z) = ez. Because of
this, they study the norm closure in B(H) of the set S(∆). This allows them
to employ the elaborate machinery of the Similarity Theorem for Hilbert
space operators, developed by Apostol, Herrero, and Voiculescu [AFHV84].
This theorem and its many consequences detail the structure of the closure
of many similarity invariant subsets of B(H). In particular, much of the
analysis may be applied to f(S(∆)), which is itself similarity invariant.

Examples of results found in [CHM89] are:
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• If f(S(∆)) = B(H), then f(S(∆)) = B(H).
• If ∆ = C and f(z) = z sin z or f(z) = Π∞

n=1(1 − a/n2), then
f(B(H)) = B(H).

• Let ∆ = {z ∈ C : z 6= 2} and f(z) = z2(2−z). If U is the unilateral
forward shift operator (cf. Definition 3.10), then U⊕U ∈ f(S(∆)),
but U /∈ f(S(∆)). On the other hand, U ⊕ 0 ∈ f(S(∆)).

Analysis of the spectrum and the functional calculus are key ingredients
in Single Operator Theory, where one is often interested in studying a class
of operators which may or may not possess an algebraic structure. For
instance, on may begin with the set of algebraic operators on H,

Alg(H) = {T ∈ B(H) : p(T ) = 0 for some polynomial p}.
The description of the closure of this set was obtained by Dan Voiculescu
[Voi74] in terms of spectral conditions. More precisely, he showed that

Alg(H) = {T ∈ B(H) : dim ker(T − λ) = codim ran(T − λ) ∀λ ∈ ρsF(T )}
Here, the ρsF(T ) denotes the semi-Fredholm domain of T . It is defined as
the set of complex numbers for which the range of T is closed, and at least
one of dim kerT or codim ranT is finite.

Another important notion of relative spectrum is that of the spectrum
of the image of an element in a quotient algebra. As we have seen in Propo-
sition 1.16, if K is a closed ideal of a Banach algebra A, then A/K is a
Banach algebra. Letting π denote the canonical projection map, it is clear
that if a ∈ A, then σA/K(π(a)) ⊆ σA(a).

One particular instance of quotient algebras deserves special mention.
Recall from Example 1.17 that the quotient algebra Q(H) of B(H) by K(H)
is referred to as the Calkin algebra. If T ∈ B(H), and π is the canonical
homomorphism from B(H) to Q(H), then the spectrum of π(T ) is called the
essential spectrum of T , and is often denoted by σe(T ). In this connection,
two of the most important results concerning the spectrum are:

Theorem. [Putnam-Schechter] Let H be a Hilbert space and T ∈ B(H).
Suppose λ ∈ ∂(σ(T )). Then either λ is isolated, or λ ∈ σe(T ).

Corollary. Let T ∈ B(H). Then σ(T ) = σe(T ) ∪ Ω, where Ω consists
of some bounded components of the resolvent of π(T ), and a sequence of
isolated points in ρ(π(T )) converging to σe(T ).

Proofs of the above results appear in Appendix A.

There are other results concerning the continuity of the spectrum and
of the spectral radius of Banach algebra elements. In particular, Mur-
phy [Mur81] has shown the following:

Suppose that K ⊆ C is compact, and A is a unital Banach algebra. De-
fine α(K) = sup{infλ∈C |λ| : C a component of K} and r(K) = supλ∈K |λ|.
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Then α(K) ≤ r(K). Let D be a diagonal operator on B(`2(N)); that is, if
{en}∞n=1 denotes an orthonormal basis for `2(N), then Den = dnen for some
bounded sequence {dn}∞n=1 of complex numbers.

Proposition. [Murphy] The following statements are equivalent:
(i) Every element of every unital Banach algebra A with spectrum K

is a point of continuity of the function a 7→ σA(a);
(ii) α(K) = r(K);
(iii) D is a point of continuity of the function T 7→ σB(H)(T ).

As for the spectral radius, let

K0 = {λ ∈ K : the component of λ in K is {λ}}.
Thus K = K0 if and only if K0 is totally disconnected.

Proposition. [Murphy] The following statements are equivalent:
(i) Every element of every unital Banach algebra A with spectrum K

is a point of continuity of the function a 7→ sprA(a);
(ii) K = K0;
(iii) D is a point of continuity of the function T 7→ sprB(H)(T );
(iv) For each ε > 0 and for each λ ∈ K, B(λ, ε) = {µ ∈ C : |µ−λ| < ε}

contains a component of K.





CHAPTER 3

Operator Algebras

Mediocrity knows nothing higher than itself, but talent instantly
recognizes genius

Arthur Conan Doyle

1. The algebra of Banach space operators

1.1. As we have already seen there are myriads of examples of Banach
algebras. We begin our study with a very important subclass, namely the
class of operator algebras. We shall divide our analysis into the study of
operators on general Banach spaces, and later we shall turn our attention to
Hilbert space operators. The loss of generality in specifying the underlying
space is made up for in the strength of the results we can obtain. We begin
with a definition.

1.2. Definition. Let X be a Banach space. Then B(X) consists of
those linear maps T : X → X which are continuous in the norm topology.
Given T ∈ B(X), we define the norm of T to be

‖T‖ = sup{‖Tx‖ : ‖x‖ = 1}.

It follows immediately from the definition that ‖Tx‖ ≤ ‖T‖ ‖x‖ for all
x ∈ X, and that ‖T‖ is the smallest non-negative number with this property.

1.3. Remark. We assume that the reader is familiar with the fact
that B(X) is a Banach space. To verify that it is indeed a Banach algebra,
we need only verify that the operator norm is submultiplicative, that is, that
‖AB‖ ≤ ‖A‖ ‖B‖ for all operators A and B.

But

‖AB‖ = sup{‖ABx‖ : ‖x‖ = 1}
≤ sup{‖A‖ ‖Bx‖ : ‖x‖ = 1}
≤ sup{‖A‖ ‖B‖ ‖x‖ : ‖x‖ = 1}
= ‖A‖ ‖B‖.

Since B(X) is a Banach algebra, all of the results from Chapter Two
apply. In particular, for T ∈ B(X), the spectrum of T is a non-empty,
compact subset of C. The function R(λ, T ) = (λI − T )−1 is analytic on

41
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ρ(T ), and we can (and do!) define the operator f(T ) when f is analytic on
a neighbourhood of σ(T ).

1.4. Proposition. Let X and Y be Banach spaces, and T ∈ B(X,Y).
The following are equivalent:

(i) T is invertible.
(ii) T is a bijection.
(iii) T is bounded below and has dense range.

Proof.

(i) ⇒ (iii) Suppose T is invertible. Let x ∈ X. Then x = T−1Tx, and
so ‖x‖ ≤ ‖T−1‖ ‖Tx‖, i.e. ‖Tx‖ ≥ ‖T−1‖−1 ‖x‖ and T is bounded
below. Since T is onto, its range is trivially dense.

(iii) ⇒ (ii) Suppose T is bounded below by, say, δ > 0. We shall first
show that in this case, the range of T is closed.

Indeed, suppose that there exists a sequence yn = Txn, n ≥ 1
and y such that limn→∞ yn = y. Then δ‖xm − xn‖ ≤ ‖ym − yn‖,
forcing {xn}∞n=1 to be a Cauchy sequence. Let x = limn→∞ xn. By
the continuity of T , we have Tx = limn→∞ Txn = limn→∞ yn = y.
We have shown that y ∈ ranT , and hence that ranT is closed.

It follows that if T has dense range, as per our hypothesis, then
T is surjective.

As well, suppose that x ∈ ker T . Then δ‖x‖ ≤ ‖Tx‖ = 0,
forcing x to be zero, and T to be injective.

(ii) ⇒ (i) Suppose that T is a bijection. The Open Mapping Theorem
2.5 then implies that the inverse image map T−1 is continuous, and
thus that T is invertible.

2

In general, for T ∈ B(X), there are many subclassifications of the spec-
trum of T . Condition (ii) above leads to the following obvious ones.

1.5. Definition. Let X be a Banach space and T ∈ B(X). Then the
point spectrum of T is

σp(T ) = {λ ∈ C : T − λI is not injective}.

These are the eigenvalues of T . The approximate point spectrum of T
is

σa(T ) = {λ ∈ C : T − λI is not bounded below}.

The compression spectrum is

σc(T ) = {λ ∈ C : T − λI does not have dense range}.
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1.6. Remarks.
• If dim X <∞, then σp(T ) = σa(T ) = σc(T ) = σ(T ).
• If λ ∈ σa(T ), then for all n ≥ 1, there exists 0 6= xn ∈ X such that
‖(T − λI)xn‖ ≤ 1

n‖xn‖. Let yn = xn/‖xn‖. Then ‖yn‖ = 1 for all
n ≥ 1, and (T − λI)yn → 0.

• σ(T ) = σa(T ) ∪ σc(T ) and in general, σp(T ) ⊆ σa(T ).

1.7. Example. Let X = C([0, 1]). Let f ∈ X, and consider the
bounded linear operator Mf given by

Mf : C([0, 1]) → C([0, 1])
g 7→ fg.

Mf is referred to as “multiplication by f”. We leave it to the reader to
verify that (i) λI −Mf = Mλ1−f for all λ ∈ C, and (ii) ‖Mf‖ = ‖f‖.
Claim: σ(Mf ) = ranf = f([0, 1]).

For if λ 6∈ f([0, 1]), then h = (λ1−f)−1 is continuous and Mh(λI−Mf ) =
MhMλ1−f = Mh(λ1−f) = M1 = I = (λI−Mf )Mh. In particular, λ 6∈ σ(Mf ).

Now suppose λ = f(t0) for some t0 ∈ [0, 1]. Take

gn(t) =
{

0 if |t− t0| > 1
n ,

1− n|t− t0| if t ∈ [t0 − 1
n , t0 + 1

n ].

Let ε > 0 and choose δ > 0 such that |f(t) − λ| < ε for all t ∈
(t0 − δ, t0 + δ). Then, when 1

n < δ,

‖Mλ1−fgn‖ = ‖(λ1− f)gn‖
≤ sup

|t−t0|< 1
n

|λgn(t)− f(t)gn(t)|

≤ sup
|t−t0|<δ

|λ1− f(t)| |gn(t)|

≤ ε‖gn(t)‖∞
= ε.

Since ‖gn‖∞ = 1 for n ≥ 1, we see that λI −Mf is not bounded below.
In other words, λ ∈ σa(Mf ).

Moreover, if λ = f(t0) for some t0 ∈ [0, 1], then

‖1− (λI −Mf )g‖ = ‖1− (λ1− f)g‖
≥ |1(t0)− (λ− f(t0))g(t0)|
= 1.



44 3. OPERATOR ALGEBRAS

Thus the range of λI −Mf is not dense; i.e. λ ∈ σc(Mf ).

Suppose now that λ ∈ σp(Mf ). Then (λI −Mf )g = Mλ1−fg = 0 for
some non-zero continuous function g. It follows that

(λ− f(t))g(t) = 0 for all t ∈ [0, 1].

Since g 6= 0, we can choose t0 ∈ [0, 1] such that g(t0) 6= 0. Since g is
continuous, there exists an open neighbourhood U of t0 such that g(t) 6= 0
for all t ∈ U . But then λ − f(t) = 0 for all t ∈ U . We conclude that if
λ ∈ σp(Mf ), then f must be constant on some interval. We leave it to the
reader to check that the converse is also true.

In particular, if we choose f(x) = x for all x ∈ [0, 1] and write Mx for
Mf (as is usually done), then we see that

Mx : C([0, 1]) → C([0, 1])

has no eigenvalues!

1.8. Example. Let X = C([0, 1]), and consider V ∈ B(X) given by

(V f)(x) =
∫ 1

0
k(x, y)f(y)dy,

where

k(x, y) =
{

0 if x < y,
1 if x ≥ y.

Then (V f)(x) =
∫ x
0 f(y)dy. This is an example of a Volterra operator. The

function k(x, y) is referred to as the kernel of the integral operator. This
should not be confused with the notion of a null space, also referred to as a
kernel.

We wish to determine the spectrum of V . Now

(V 2f)(x) = (V (V f))(x)

=
∫ 1

0
k(x, t) (V f)(t)dt

=
∫ 1

0
k(x, t)

∫ 1

0
k(t, y) f(y)dy dt

=
∫ 1

0
f(y)

∫ 1

0
k(x, t) k(t, y)dt dy

=
∫ 1

0
f(y) k2(x, y)dy,
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where k2(x, y) =
∫ 1
0 k(x, t) k(t, y)dt is a new kernel. Note that

|k2(x, y)| = |
∫ 1

0
k(x, t) k(t, y)dt|

= |
∫ x

y
k(x, t) k(t, y)dt|

= (x− y) for x > y,

while for x < y, k2(x, y) = 0.
In general, since x− y < 1− 0 = 1, we get

(V nf)(x) =
∫ 1

0
f(y) kn(x, y)dy

kn(x, y) =
∫ 1

0
k(x, t) kn−1(t, y)dt

|kn(x, y)| ≤ 1
(n− 1)!

(x− y)n−1 ≤ 1
(n− 1)!

.

Thus if we take ‖f‖ ≤ 1, then

‖V n‖ = sup
‖f‖=1

‖V nf‖

= sup
‖f‖=1

‖
∫ 1

0
f(y) kn(x, y)dy‖

≤ sup
‖f‖=1

‖f‖ ‖kn(x, y)‖

≤ 1/(n− 1)!.

Thus spr (V ) = limn→∞ ‖V n‖
1
n ≤ limn→∞(1/n!)

1
n = 0. In particular,

σ(V ) = {0}.
Now let fn(x) = xn, 0 ≤ x ≤ 1. Then ‖fn‖∞ = 1. Also,

(V fn)(x) =
∫ x

0
fn(y)dy

=
∫ x

0
yndy

=
yn+1

(n+ 1)
|x0

=
xn+1

n+ 1
.

As such, ‖V fn‖ = 1
n+1 , and so V is not bounded below. Hence 0 ∈ σa(V ).

Also, let f ∈ C([0, 1]) be arbitrary. Then (V f)(0) = 0, and so

‖1− V f‖∞ ≥ |1(0)− V f(0)| = 1.

Thus 0 ∈ σc(V ). It is a standard result that 0 6∈ σp(V ).
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1.9. Definition. Let X and Y be Banach spaces. Let T ∈ B(X,Y).
We shall now define an operator T ∗ ∈ B(Y∗,X∗), called the Banach space
adjoint of T .

First, for x∗ ∈ X∗, we adopt the notation < x, x∗ >= x∗(x). Then for
y∗ ∈ Y∗, define T ∗ so that

< x, T ∗(y∗) > = < Tx, y∗ > .

That is, (T ∗y∗)(x) = y∗(Tx) for all x ∈ X, y∗ ∈ Y∗. It is not hard to verify
that T ∗ is linear.

1.10. Proposition. Let X, Y, Z be Banach spaces, S, T ∈ B(X,Y),
and let R ∈ B(Y,Z). Then

(i) for all α, β ∈ C, we have (αS + β T )∗ = αS∗ + β T ∗;
(ii) (R ◦ T )∗ = T ∗ ◦R∗.

Proof. Let x ∈ X, y∗ ∈ Y∗, and z∗ ∈ Z∗. Then
(i)

< x, (αS + β T )∗y∗ > = < (αS + β T )x, y∗ >
= y∗((αS + β T )x)
= α y∗(Sx) + β y∗(Tx)
= α < Sx, y∗ > +β < Tx, y∗ >

= α < x, S∗y∗ > +β < x, T ∗y∗ > .

Since this is true for all x ∈ X and y∗ ∈ Y∗, we conclude that
(αS + β T )∗ = αS∗ + β T ∗.

(ii)

< x, (R ◦ T )∗z∗ > = < (R ◦ T )x, z∗ >
= < R(Tx), z∗ >
= < Tx, R∗z∗ >

= < x, T ∗(R∗z∗) >
= < T ∗ ◦R∗z∗ > .

Again, this shows that (R ◦ T )∗ = T ∗ ◦R∗.
2

1.11. Theorem. Let T ∈ B(X,Y), where X and Y are Banach spaces.
Then ‖T ∗‖ = ‖T‖.
Proof.

For any y∗ ∈ Y∗, we have

‖T ∗y∗‖ = sup{|T ∗y∗(x)| : x ∈ X, ‖x‖ = 1}
= sup{|y∗(Tx)| : x ∈ X, ‖x‖ = 1}
≤ sup{‖y∗‖ ‖Tx‖ : x ∈ X, ‖x‖ = 1}
= ‖y∗‖ ‖T‖.
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Thus we see that ‖T ∗‖ ≤ ‖T‖.
Next, let x ∈ X. By the Hahn-Banach Theorem, we can choose y∗ ∈ Y∗

such that y∗(Tx) = ‖Tx‖ and ‖y∗‖ = 1. Then

‖Tx‖ = y∗(Tx)
= < Tx, y∗ >

= < x, T ∗y∗ >

= (T ∗y∗)(x)
≤ ‖T ∗y∗‖ ‖x‖
≤ ‖T ∗‖‖x‖.

Thus ‖T‖ ≤ ‖T ∗‖.
Combining this with the previous estimate, we have that ‖T ∗‖ = ‖T‖.

2

1.12. Proposition. Let X = Cn and A ∈ B(X) ' Mn. Then the
matrix of the Banach space adjoint A∗ of A with respect to the dual basis
coincides with At, the transpose of A.
Proof. Recall that X∗ ' X. We then let {ei}n

i=1 be a basis for X and let
{fj}n

j=1 be the corresponding dual basis; that is, fj(ei) = δij , where δij is
the Dirac delta function. Let x ∈ X. Define λj = fj(x).

Writing the matrix of A ∈ B(X) as [aij ], we have

Aej = [aij ]



0
0
.
.
0
1
0
.
.
0


=



a1j

a2j

.

.
aj−1 j

ajj

aj+1 j

.

.
anj


=

n∑
k=1

akjek.

Thus aij = fi(Aej).
Now A∗ ∈ B(X∗) ' Mn, and so we can also write the matrix for A∗ with

respect to {fj}n
j=1. As above, we have

A∗fj =
n∑

k=1

αkjfk.

Thus
αij = (A∗fj)(ei) = fj(Aei) = aji.

In particular, the matrix for A∗ with respect to {fj}n
j=1 is simply the trans-

pose of the matrix for A with respect to {ej}n
j=1.

2
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1.13. Proposition. Let X and Y be Banach spaces and let T ∈
B(X,Y). Then T is invertible if and only if T ∗ is invertible.
Proof. First assume that T is invertible, i.e., that T−1 ∈ B(Y,X). Then
IX∗ = (IX)∗ = (T−1 ◦ T )∗ = T ∗ ◦ (T−1)∗.

Also, IY∗ = (IY)∗ = (T ◦T−1)∗ = (T−1)∗ ◦T ∗. Thus T ∗ is invertible and
(T ∗)−1 = (T−1)∗.

Now assume that T ∗ is invertible. Then ranT is dense, for otherwise by
the Hahn-Banach Theorem we can take y∗ ∈ Y∗ such that ‖y∗‖ = 1 and
y∗|

(ranT )
= 0. Then

(T ∗y∗)(x) = y∗(Tx) = 0

for all x ∈ X. Thus T ∗y∗ = 0 but y∗ 6= 0, implying that T ∗ is not injective,
a contradiction.

Moreover, T is bounded below. For consider: T ∗ invertible implies that
T ∗∗ = (T ∗)∗ is invertible from above. Thus T ∗∗ is bounded below. Recall
that X embeds isometrically isomorphically into X∗∗ via the map

X ' X̂ ⊆ X∗∗

x 7→ x̂

where x̂(x∗) = x∗(x) for all x∗ ∈ X∗. (Recall that T ∈ B(X,Y) and that
T ∗∗ ∈ B(X∗∗,Y∗∗).)

Now T ∗∗(x̂) ∈ Y∗∗, and

((T ∗)∗(x̂))(y∗) = x̂(T ∗y∗)
= (T ∗y∗)(x)
= y∗(Tx) for all y∗ ∈ Y∗.

Thus

sup{|(T ∗∗x̂)(y∗)| : y∗ ∈ Y∗, ‖y∗‖ = 1} = sup{|y∗(Tx)| : y∗ ∈ Y∗, ‖y∗‖ = 1}.

In other words, ‖T ∗∗x̂‖ = ‖Tx‖. Since T ∗∗ is bounded below, say by δ > 0,

δ‖x‖ = δ‖x̂‖ ≤ ‖T ∗∗x̂‖ = ‖Tx‖.

In other words, T is also bounded below.

Finally, T bounded below and ranT dense together imply that T is
invertible, by Proposition 1.4.

2

1.14. Corollary. Let X be a Banach space and T ∈ B(X). Then
σ(T ) = σ(T ∗).
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1.15. Definition. Let X and Y be Banach spaces, and T ∈ B(X,Y).
Let B1 denote the unit ball of X, so that B1 = {x ∈ X : ‖x‖ ≤ 1}. Then T is
said to be compact if T (B1) is compact in Y. The set of compact operators
from X to Y is denoted by K(X,Y), and if Y = X, we simply write K(X).

Recall that a subset K of a metric space L is said to be totally bounded
if for every ε > 0 there exists a finite cover {Bε(yi)}n

i=1 of K with yi ∈ K, 1 ≤
i ≤ n, where Bε(yi) = {z ∈ L : dist (z, yi) < ε}..

1.16. Proposition. Let X and Y be Banach spaces, and T ∈ B(X,Y).
The following are equivalent:

(i) T is compact;
(ii) T (F ) is compact in Y for all bounded subsets F of X;
(iii) If {xn}∞n=1 is a bounded sequence in X, then {Txn}∞n=1 has a con-

vergent subsequence;
(iv) T (B1) is totally bounded.

Proof. Exercise.
2

1.17. Theorem. Let X and Y be Banach spaces. Then K(X,Y) is a
closed subspace of B(X,Y).
Proof. Let α, β ∈ C and let K1, K2 ∈ K(X,Y). Let {xn}∞n=1 be a
bounded sequence in X. Then K1 generates a convergent subsequence,
say {K1(xn(j))}∞j=1. Similarly, K2 generates a convergent subsequence from
{xn(j)}∞j=1, say {K2(xn(j(i)))}∞i=1.

Then {(αK1+βK2)(xn(j(i)))}∞i=1 is a convergent subsequence in Y. From
part (iii) of Proposition 1.16, αK1 + βK2 ∈ K(X,Y).

Now we show that K(X,Y) is closed. Suppose Kn ∈ K(X,Y) for n ≥ 1
and limn→∞Kn = K ∈ B(X,Y). Letting B1 denote the unit ball of X, we
show that K(B1) is totally bounded. First let ε > 0, and choose N > 0 such
that ‖KN −K‖ < ε/3.

Since KN (B1) is totally bounded, we can find {yi = KN (xi)}M
i=1 such

that {Bε/3(yi)}M
i=1 is a finite cover of KN (B1). Thus for all x ∈ B1, ‖KN (x)−

KN (xj)‖ < ε/3 for some 1 ≤ j = j(x) ≤M . Then

‖K(x)−K(xj)‖ = ‖K(x)−KN (x) +KN (x)−KN (xj) +
KN (xj)−K(xj)‖

≤ ‖K −KN‖ ‖x‖+ ‖KN (x)−KN (xj)‖+
‖KN −K‖ ‖xj‖

≤ (ε/3) + (ε/3) + (ε/3)
= ε.

Thus K(B1) is totally bounded and so K ∈ K(X,Y).
2
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1.18. Theorem. Let W, X, Y, and Z be Banach spaces. Suppose
R ∈ B(W,X), K ∈ K(X,Y), and T ∈ B(Y,Z). Then TK ∈ K(X,Z) and
KR ∈ K(W,Y).
Proof. Let B1 denote the unit ball of X. Then

T ◦K(B1) = T (K(B1))

⊆ T (K(B1)).

Since K(B1) is compact and T is continuous, T ◦K(B1) is a closed subset
of the compact set T (K(B1)) = T (K(B1)), and so it is compact as well.
Thus TK ∈ K(X,Z).

Now if D1 is the unit ball of W, then

KR(D1) = K(R(D1));

but R(D1) is bounded since R is, and so by Proposition 1.16, KR(D1) is
compact. Thus KR ∈ K(W,Y).

2

1.19. Corollary. If X is a Banach space, then K(X) is a closed, two-
sided ideal of B(X).

“For every auction, there is an equal and opposite re-auction.”
Karl Marx
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2. The Fredholm Alternative

2.1. In this section we shall study compact operators acting on Ba-
nach spaces, and see to what extent their behaviour mirrors that of finite
dimensional matrices.

2.2. Proposition. Let X and Y be Banach spaces and assume that
K ∈ K(X,Y). Then K(X) is closed in Y if and only if dim K(X) is finite.
Proof. K(X) is easily seen to be a submanifold of Y. Since finite dimen-
sional manifolds are always closed, we find that dim K(X) < ∞ implies
K(X) is closed.

Now assume that K(X) is closed. Then K(X) is a Banach space and the
map

K0 : X → K(X)
x 7→ Kx

is a surjection. By the Open Mapping Theorem, 2.5, it is also an open
map. In particular, if B1 = {x ∈ X : ‖x‖ ≤ 1} is the unit ball of X, then
K0(intB1) is open in K(X) and 0 ∈ K0(intB1). Let G be an open ball in
K(X) centred at 0 and contained in K0(intB1). Then K0(B1) = K(B1) is
compact, hence closed, and also contains G. Thus G is compact in K(X)
and so dim K(X) is finite.

2

2.3. Definition. Let X and Y be Banach spaces. Then F ∈ B(X,Y) is
said to be finite rank if dim F (X) is finite. The set of finite rank operators
from X to Y is denoted by F(X,Y).

2.4. Proposition. Let X and Y be Banach spaces. Then F(X,Y) ⊆
K(X,Y).
Proof. Suppose F ∈ F(X,Y). Let B1(X) = {x ∈ X : ‖x‖ ≤ 1}. Then
FB1(X) is closed and bounded in ranF , but ranF is finite dimensional in
Y, as F is finite rank. Thus FB1(X) is compact in ranF , and thus compact
in Y as well, showing that F is compact.

2

2.5. Proposition. Let X be a Banach space. Then K(X) = B(X) if
and only if X is finite dimensional.
Proof. If dim X < ∞, then B(X) = F(X) ⊆ K(X) ⊆ B(X), and equality
follows.

If K(X) = B(X), then I ∈ K(X), so I(B1) = I(B1) = B1 is compact. In
particular, X is finite dimensional.

2

For the remainder of this section, unless explicitly stated otherwise, X
will denote an infinite dimensional Banach space.
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2.6. Theorem. Let X and Y be Banach spaces and suppose K ∈
K(X,Y). Then K∗ ∈ K(Y∗,X∗).
Proof. Let ε > 0 and let B1 denote the closed unit ball of X. Then K(B1)
is totally bounded, so we can find x1, x2, . . . , xn ∈ B1 such that if x ∈ B1,
then ‖Kx−Kxi‖ < ε/3 for some 1 ≤ i ≤ n. Let

R : Y∗ → Cn

φ 7→ (φ(K(x1)), φ(K(x2)), . . . , φ(K(xn))).

Then R ∈ F(Y∗,Cn) ⊆ K(Y∗,Cn), and so R(D1) is totally bounded, where
D1 is the unit ball of Y∗. Thus we can find g1, g2, . . . , gm ∈ D1 such that if
g ∈ D1, then ‖Rg −Rgj‖ < ε/3 for some 1 ≤ j ≤ m. Now

‖Rg −Rgj‖ = max
1≤i≤n

|g(K(xi))− gj(K(xi))|

= max
1≤i≤n

|K∗(g)(xi)−K∗(gj)(xi)|.

Suppose x ∈ B1. Then ‖Kx − Kxi‖ < ε/3 for some 1 ≤ i ≤ n, and
|K∗(g)(xi)−K∗(gj)(xi)| < ε/3 for some 1 ≤ j ≤ m, so

|K∗(g)(x)−K∗(gj)(x)| ≤ |K∗(g)(x)−K∗(g)(xi)|+
|K∗(g)(xi)−K∗(gj)(xi)|+

|K∗(gj)(xi)−K∗(gj)(x)|
≤ ‖g‖ ‖Kx−Kxi‖+ ε/3 + ‖gj‖ ‖Kx−Kxi‖
< ε/3 + ε/3 + ε/3 = ε.

Thus ‖K∗g−K∗gj‖ ≤ ε and so K∗(D1) is totally bounded. We conclude
that K∗ ∈ K(Y∗,X∗).

2

2.7. Lemma. Let X be a Banach space and M be a finite dimen-
sional subspace of X. Then there exists a closed subspace N of X such that
M ⊕ N = X.
Proof. Let {ei}n

i=1 be a basis for M and let {fi}n
i=1 be the dual basis to

{ei}n
i=1 (cf. Proposition 1.12). Then we can extend {fi}n

i=1 to {φi}n
i=1 ⊆ X∗

by the Hahn-Banach Theorem. We then let N = ∩n
i=1 ker φi. It remains to

check that N is the desired space. Clearly it is closed.
If x ∈ X, then let λi = φi(x), 1 ≤ i ≤ n, and set y =

∑n
i=1 λiei ∈ M.

Let z = x − y so that x = y + z. Then φi(z) = φi(x) − φi(y) = λi − λi =
0, 1 ≤ i ≤ n. Hence z ∈ N, which shows that X = M + N.

If x ∈ M ∩N, write x =
∑n

i=1 λiei. Since x ∈ N, we have 0 = φj(x) =∑n
i=1 λiφj(ei) =

∑n
i=1 λiδij = λj , 1 ≤ j ≤ n. Thus x = 0; that is, M ∩N =

{0}, and so X = M⊕N.

2
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2.8. Proposition. Let X be a Banach space, and K ∈ K(X). Suppose
0 6= λ ∈ C. Then

(i) M = ker (λI −K) is finite dimensional;
(ii) R = ran (λI −K) is a closed subspace of X;
(iii) dim (X/R) = dim ker (λI −K∗) <∞.

Proof.
(i) Clearly M is a closed subspace of X, and hence a Banach space

itself. Consider
K0 : M → X

x 7→ Kx (= λx).

Then K0 is compact. Moreover, K0(M) = M is closed. By Propo-
sition 2.2, M is finite dimensional.

(ii) From above, M is closed and finite dimensional, and so we can find
N ⊆ X, a closed subspace such that X = M⊕N. Consider

T : N → X
y 7→ (λI −K)y,

(i.e. T = (λI −K)|N).
We claim that T is bounded below, for otherwise, there exists

a sequence {yn}∞n=1 of norm one vectors such that limn→∞ Tyn =
limn→∞(λI −K)yn = 0.

Moreover, sinceK is compact, there exists a subsequence {yn(j)}∞j=1

such that limj→∞Kyn(j) = z ∈ X exists. But then

lim
j→∞

(λI −K)yn(j) = lim
j→∞

λyn(j) − lim
j→∞

Kyn(j)

= lim
j→∞

λyn(j) − z

= 0,

and so λ−1z = limj→∞ yn(j). Moreover, z ∈ N, since N is closed.
Then

(λI −K)λ−1z = λ(λ−1z)−K(λ−1)z
= z −K( lim

j→∞
yn(j))

= z − z

= 0,

so that λ−1z and hence z ∈ ker (λI − K) = M. But z ∈ M ∩ N
implies z = 0, i.e.

0 = ‖λ−1z‖ = lim
j→∞

yn(j).

This contradicts the fact that ‖yn(j)‖ = 1 for all j ≥ 1. The
conclusion must be that T is bounded below.

As in the proof of Proposition 1.4, we find that ranT is closed.
But ranT = ran (λI −K), so that the latter is closed as well.
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(iii) First note that

τ ∈ ker (λI −K∗) ⇐⇒ (λI −K∗)(τ)x = 0 for all x ∈ X

⇐⇒ τ((λI −K)x) = 0 for all x ∈ X

⇐⇒ τ |R = 0.

We define the map

Φ : ker (λI −K∗) → (X/R)∗

τ 7→ Φ(τ),

where Φ(τ)(x+ R) := τ(x).
If x+ R = y + R, then

Φ(τ)(x+ R)− Φ(τ)(y + R) = τ(x)− τ(y)
= τ(x− y) (but x− y ∈ R)
= 0,

so that Φ(τ) is well-defined.
We wish to show that Φ is an isomorphism of ker (λI−K∗) onto

(X/R)∗. Since K is compact implies that K∗ is compact, using (i)
above forK∗ will then imply that ker (λI−K∗) is finite dimensional,
so that (X/R)∗ will be as well.

Suppose 0 6= τ ∈ ker (λI−K∗). Then, since τ |R = 0 and τ 6= 0,
we can find x ∈ X\R such that τ(x) 6= 0. Then Φ(τ)(x + R) =
τ(x) 6= 0, so that Φ(τ) 6= 0. In particular, Φ is injective.

If φ ∈ (X/R)∗ and π : X → (X/R) is the canonical map, then
define φ ∈ X∗ via φ = φ ◦ π. Clearly φ|R = 0, so that φ ∈ ker (λI −
K∗). Finally,

Φ(φ)(x+ R) = φ(x)

= φ(π(x))

= φ(x+ R)

so that Φ(φ) = φ, and hence Φ is surjective. Thus Φ is an isomor-
phism, and so from above, we conclude that

dim (X/R) = dim (X/R)∗ = dim (λI −K∗)

is finite.
2

2.9. Remark. The above proof actually shows that if X and Y are
Banach spaces, T ∈ B(X,Y), and ranT is closed, then

ker T ∗ ' (Y/ranT )∗.

Compactness was only used to show that this was finite in the case we
were considering.
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2.10. Let X be a Banach space and T ∈ B(X). Then associated to T
are two linearly ordered sequences of linear manifolds:

Ca = {ker Tn}∞n=1 and Cd = {ranTn}∞n=1.

Definition. Let X be a Banach space and T ∈ B(X). If ker Tn 6= ker Tn+1

for all n ≥ 0, then T is said to have infinite ascent, and we write ascT =
∞. Otherwise, we set ascT = p, where p is the least non-negative integer
such that ker T p = ker Tn, n ≥ p.

If ranTn 6= ranTn+1 for all n ≥ 0, then T is said to have infinite
descent, and we write descT = ∞. Otherwise, we set descT = q, where q
is the least non-negative integer such that ranT q = ranTn, n ≥ q.

2.11. Lemma. Let X be a Banach space and K ∈ K(X). Suppose
we can find {λn}∞n=1 ⊆ C and a sequence {Vn}∞n=1 of closed subspaces of X
satisfying:

(i) Vn ⊂ Vn+1 for all n ≥ 1, where ′′ ⊂′′ denotes proper containment;
(ii) KVn ⊆ Vn for all n ≥ 1;
(iii) (K − λn)Vn ⊆ Vn−1, for all n ≥ 1.

Then limn→∞ λn = 0. Moreover, the same conclusion holds if {Wn}∞n=1 is
a sequence of closed subspaces of X satisfying:

(iv) Wn ⊃Wn+1 for all n ≥ 1, where ′′ ⊃′′ denotes proper containment;
(v) KWn ⊆Wn for all n ≥ 1;
(vi) (K − λn)Wn ⊆Wn+1, for all n ≥ 1.

Proof. Let zn ∈ Vn/Vn−1, ‖zn‖ = 1/2 and choose xn ∈ Vn such that
xn = zn. Since ‖zn‖ = inf{‖xn +y‖ : y ∈ Vn−1}, we can find yn ∈ Vn−1 such
that if we let wn = xn + yn, then wn = zn and 1/2 ≤ ‖wn‖ < 1.

Then wn ∈ Vn, so (K −λn)wn ∈ Vn−1. That is, Kwn = λnwn + vn−1 for
some vn−1 ∈ Vn−1.

If m < n,

‖Kwn −Kwm‖ = ‖λnwn + (vn−1 − λmwm − vm−1)‖
≥ inf{‖λnwn + y‖ : y ∈ Vn−1}
= |λn| ‖wn‖
= |λn|/2.

Suppose limn→∞ λn 6= 0. Find {λn(j)}∞j=1 such that inf{|λn(j)| : j ≥
1} = δ > 0. Then {Kwn(j)}∞j=1 has no convergent subsequence, although
{wn(j)}∞j=1 is bounded. This contradicts the compactness of K. Thus
limn→∞ λn = 0.

The second statement is proven in a similar fashion.

2
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2.12. Lemma. Let X be a Banach space, K ∈ K(X), and 0 6= λ ∈ C.
Then ran (λI −K)n is closed for all n ≥ 0.
Proof. Exercise.

2

2.13. Theorem. Let K be a compact operator on a Banach space X
and suppose 0 6= λ ∈ C. Then (λI−K) has finite ascent and finite descent.
Proof. Suppose that (K − λI) has infinite ascent. Then we can apply
Lemma 2.11 with λn = λ for all n ≥ 1 and Vn = ker (K − λI)n, n ≥ 1 to
conclude that limn→∞ λn = λ = 0, a contradiction. Thus (K−λI) has finite
ascent.

Similarly, if (K − λI) has infinite descent, then putting λn = λ and
putting Wn = ran (K − λI)n for all n ≥ 1 again implies that limn→∞ λn =
λ = 0, a contradiction. Thus (K − λI) has finite descent.

2

2.14. Theorem. [The Fredholm Alternative] Let X be a Banach
space and let K ∈ K(X). Suppose 0 6= λ ∈ C. Then (λI −K) is injective if
and only if it is surjective.
Proof. First assume that (λI −K) is surjective, and suppose that it is not
injective. Let Vn = ker(λI −K)n for each n ≥ 1. Each (λI −K)n is onto.
Let 0 6= y ∈ ker (λI −K) and let x ∈ X such that y = (λI −K)nx. Then
x ∈ Vn+1 but x 6∈ Vi, 1 ≤ i ≤ n. That is, Vn is a proper subset of Vn+1 for
all n ≥ 1. But (λI−K) has finite ascent, by Theorem 2.13, a contradiction.
Thus (λI −K) is injective.

Now assume that (λI − K) is injective. Let M = ran (λI − K). By
Proposition 2.8, M is closed. Consider the operator

R : X → M
x 7→ (λI −K)x.

Then R is bijective and so by Proposition 1.4, R is invertible. Moreover,
R∗ : M∗ → X∗ is invertible, and hence surjective.

Take x∗ ∈ X∗ and choose m∗ ∈ M∗ such that R∗m∗ = m∗ ◦ R = x∗.
We can extend m∗ to a functional x∗m ∈ X∗ by the Hahn-Banach Theorem.
Then for all x ∈ X,

((λI −K)∗x∗m)(x) = x∗m((λI −K)x)
= (m∗ ◦R)x
= x∗(x).

Thus (λI−K)∗x∗m = x∗, showing that (λI−K)∗ is surjective. From the first
half of the proof, it follows that (λI −K)∗ is injective, and hence invertible.
But then (λI −K) is invertible, and therefore surjective.

2
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2.15. Corollary. Let X be an infinite dimensional Banach space and
K ∈ K(X). Then σ(K) = {0} ∪ σp(K).
Note that 0 ∈ σ(K) since K lies in a proper ideal, and hence can not be
invertible.

Recall that eigenvectors corresponding to distinct eigenvalues of a linear
operator T ∈ B(X) are linearly independent.

2.16. Theorem. Let X be an infinite dimensional Banach space and
K ∈ K(X). Then for all ε > 0, σ(K) ∩ {z ∈ C : |z| > ε} is finite. In
other words, σ(K) is a sequence of eigenvalues of finite multiplicity, and
this sequence must converge to 0.
Proof. Let ε > 0. Suppose σ(K) ∩ {z ∈ C : |z| > ε} ⊇ {λn}∞n=1 with
λi 6= λj , 1 ≤ i 6= j < ∞. Let {vn}∞n=1 be eigenvectors corresponding to
{λn}∞n=1 and for each n ≥ 1, let Vn = span1≤k≤n{vk}.

Then {Vn}∞n=1 and {λn}∞n=1 satisfy the conditions of Lemma 2.11. We
conclude that limn→∞ λn = 0, a contradiction.

Thus σ(K) = {0} ∪ {λn}r
n=1, where r is either finite or ℵ0. Moreover,

each λn is an eigenvalue of K, and limn→∞ λn = 0 when r is not finite.
2

2.17. Definition. Let X and Y be Banach spaces. An operator T ∈
B(X,Y) is said to be Fredholm if:

(i) ranT is closed;
(ii) nulT = dim ker T is finite; and
(iii) nulT ∗ = codim ranT is finite.
Given T ∈ B(X,Y) a Fredholm operator, we define the Fredholm index

of T as follows:
ind T = nulT − nulT ∗.

2.18. Example. Let X be a Banach space, K ∈ K(X) and 0 6= λ ∈ C.
Then λI −K is Fredholm.

In fact, we shall now show that ind (λI −K) = 0. We shall then return
to Fredholm operators when we study K(H), the set of compact operators
on a Hilbert space H.

2.19. Example. Let H be a separable Hilbert space with orthonormal
basis {en}∞n=1. Define an operator U ∈ B(H) via Uen = en+1 for all n ≥ 1.
(We extend this definition by linearity and continuity to all of H. U is
referred to as the unilateral forward shift. Then U is an isometry with range
equal to the span of {en}∞n=2. As such, the range of U is closed, the nullity
of U is zero, and the codimension of the range of U is 1. Hence U is a
Fredholm operator of index −1. We shall return to this example later.
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2.20. Lemma. Let X be a Banach space and M be a finite codimen-
sional subspace of X. Then there exists a finite dimensional subspace N of
X such that X = M⊕N. Moreover, dim N = dim (X/M).
Proof. Let {x1, x2, . . . , xn} be a basis for X/M, and choose {x1, x2, . . . , xn} ⊆
X such that π(xj) = xj , 1 ≤ j ≤ n, where π : X → X/M is the canonical
map.

Let N = span{x1, x2, . . . , xn} = span{x1, x2, . . . , xn}. If z ∈ M ∩ N,
then z ∈ N so that z =

∑n
i=1 λixi. But z ∈ M and so z = 0 =

∑n
i=1 λixi.

Thus λi = 0 for all i and hence z = 0. In other words, M ∩N = {0}.
Now let x ∈ X. Then x =

∑n
i=1 λixi and so x =

∑n
i=1 λixi + y for some

y ∈ M. Therefore X = M + N, so that X = M⊕N.
2

2.21. Remark. If X and Y are Banach spaces and T ∈ B(X,Y) is
Fredholm, then there exists a closed subspace N of Y such that

Y = ranT ⊕N.

Moreover, dim N = codim ran T <∞.

2.22. Theorem. Let X be a Banach space, K ∈ K(X), and 0 6= λ ∈ C.
Then

ind (λI −K) = 0.

Proof. Let M = ker (λI −K). Then dim M < ∞ and so M has a closed
complement N ⊆ X such that M ⊕ N = X. Let R = ran (λI − K). Then
R is closed and finite codimensional, so by Lemma 2.20, R has a closed
complement S ⊆ X satisfying R⊕S = X. Let n = min(dim M,dim S).

Choose φ1, φ2, . . . , φn linearly independent in (X/N)∗. Let π : X → X/N
be the canonical map and define φi = φi ◦ π so that φi ∈ X∗, 1 ≤ i ≤ n.
Choose {fi}n

i=1 linearly independent in S. We shall define Q ∈ K(X) via
Qx =

∑n
i=1 φi(x)fi, x ∈ X. Then

K −Q ∈ K(X) and (λI − (K −Q)) = (λI −K) +Q

is either surjective (if n = dim S), or injective (if n = dim M). In either
case, by the Fredholm Alternative , it is bijective.

We conclude that dim M = dim S, so that nul (λI −K) = codim (λI −
K), or equivalently,

ind (λI −K) = 0.
2

2.23. We conclude this section by showing that although not all finite
codimensional subspaces of a Banach space are closed, nevertheless, this is
true for operator ranges. In particular, this means that in order to know
if an operator T is Fredholm, one need only verify that the nullity and the
codimension of the range are finite.
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2.24. Proposition. Let X and Y be Banach spaces and let T ∈
B(X,Y). Suppose that N is a closed subspace such that ranT ⊕N is closed
in Y. Then ranT is closed.
Proof. Define a norm on the space (X/ ker T )×N by ‖(x, n)‖ = ‖x‖+‖n‖.
Let T0 denote the operator

T0 : (X/ ker T )×N → ranT ⊕N
(x, n) 7→ Tx+ n.

It is easy to check that T0 is well-defined, continuous, injective and that
ranT0 is ranT ⊕N. Since ranT ⊕N is closed, T0 is invertible. This means
that we can find δ > 0 such that ‖Tx+n‖ ≥ δ ‖(x, n)‖. That is, ‖Tx+n‖ ≥
δ (‖x‖+ ‖n‖).

If n = 0, we get ‖Tx‖ ≥ δ ‖x‖, and so the restriction T1 of T0 to
(X/ ker T ) is bounded below. But then ranT1 = ranT is closed, as pointed
out in Proposition 1.4.

2

2.25. Corollary. If X is a Banach space, T ∈ B(X), and X/ranT is
finite dimensional, then ranT is closed.
Proof. By Lemma 2.20, there exists a finite dimensional (and therefore
closed) subspace of X such that ranT ⊕N = X. Since X is obviously closed,
we may now apply the above Proposition 2.24 to conclude that ranT is
closed, as desired.

2

“You are what you eat.”
J. Dahmer (also attributed to A. Meiwes)
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3. The algebra of Hilbert space operators

3.1. We now consider the special case where the Banach space under
consideration is in fact a Hilbert space, which we shall always denote by H.
The inner product on H will be denoted by (·, ·).

All of the results from the previous section of course apply to Hilbert
space operators. On the other hand, the identification of a Hilbert space
with its dual (an anti-isomorphism) allows us to consider a new version of
adjoints, based on the Riesz Representation Theorem.

3.2. Theorem. [The Riesz Representation Theorem] Let H be
a Hilbert space and φ ∈ H∗. Then there exists a vector y ∈ H such that
φ(x) = (x, y) for all x ∈ H.

3.3. Theorem. Let H be a Hilbert space and let T ∈ B(H). Then there
exists a unique operator T ∗ ∈ B(H), called the Hilbert space adjoint of
T , satisfying

(Tx, y) = (x, T ∗y)

for all x, y ∈ H.
Proof. Fix y ∈ H. Then the map

φy : H → C
x 7→ (Tx, y)

is a linear functional and so there exists a vector zy ∈ H such that

φy(x) = (Tx, y) = (x, zy)

for all x ∈ H. Define a map T ∗ : H → H by T ∗y = zy. We leave it to the
reader to verify that T ∗ is in fact linear, and we concentrate on showing that
it is bounded.

To see that T ∗ is bounded, consider the following. Let y ∈ H, ‖y‖ = 1.
Then (Tx, y) = (x, T ∗y) for all x ∈ H, so

‖T ∗y‖2 = (T ∗y, T ∗y)
= (T T ∗y, y)
≤ ‖T‖ ‖T ∗y‖ ‖y‖.

Thus ‖T ∗y‖ ≤ ‖T‖, and so ‖T ∗‖ ≤ ‖T‖.
T ∗ is unique, for if there exists A ∈ B(H) such that (Tx, y) = (x, T ∗y) =

(x,Ay) for all x, y ∈ H, then (x, (T ∗ − A)y) = 0 for all x, y ∈ H, and so
(T ∗ −A)y = 0 for all y ∈ H, i.e. T ∗ = A.

2
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3.4. Corollary. Let T ∈ B(H), where H is a Hilbert space. Then
(T ∗)∗ = T . It follows that ‖T‖ = ‖T ∗‖.
Proof. For all x, y ∈ H, we get

(x, (T ∗)∗y) = (T ∗x, y)

= (y, T ∗x)

= (Ty, x)
= (x, Ty),

and so (T ∗)∗ = T . Applying Theorem 3.3, we get

‖T‖ = ‖(T ∗)∗‖ ≤ ‖T ∗‖ ≤ ‖T‖,

and so ‖T‖ = ‖T ∗‖.
2

3.5. Proposition. Let H be a Hilbert space and T ∈ B(H). Then
σ(T ) = σ(T ∗)∗ := {λ : λ ∈ σ(T )}.
Proof. If λ 6∈ σ(T ), let R = (λ− T )−1. For all x, y ∈ H,

(x, y) = (R(λ− T )x, y)
= ((λ− Tx,R∗y)
= (x, (λ− T )∗R∗y).

Thus (λ−T )∗R∗ = I, and similarly, R∗ (λ−T )∗ = I. But (λ−T )∗ = λ−T ∗,
so that R∗ = (λ− T ∗)−1 = [(λ− T )∗]−1. Thus ρ(T )∗ ⊆ ρ(T ∗).

Moreover, ρ(T ∗)∗ ⊆ ρ(T ∗∗) = ρ(T ). In other words, ρ(T ∗) ⊆ ρ(T )∗. We
conclude that σ(T ) = σ(T ∗)∗.

2

3.6. Remark. The above proof also shows that for a Hilbert space H
and A,B ∈ B(H), we have (AB)∗ = B∗A∗. The adjoint operator

∗ : B(H) → B(H)

is an example of an involution on a Banach algebra. Namely, for all α, β ∈ C
and A,B ∈ B(H), we obtain

(i) (αA)∗ = αA∗;
(ii) (A+B)∗ = A∗ +B∗; and
(iii) (AB)∗ = B∗A∗.
(iv) (A∗)∗ = A.

Involutions will appear again in our study of C*-algebras.
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3.7. Proposition. Let H = Cn and T ∈ B(H) ' Mn. Then the
matrix of T ∗ with respect to any orthonormal basis is the conjugate transpose
of that of T .
Proof. Let {ei}n

i=1 be an orthonormal basis for H. With respect to this
basis, T has a matrix [tij ]1≤i,j≤n and T ∗ has a matrix [rij ]1≤i,j≤n.

But tij = (Tej , ei) = (ej , T ∗ei) = (T ∗ei, ej) = rij , completing the proof.

2

3.8. Proposition. Let H be a Hilbert space and T ∈ B(H). Then
(ranT )⊥ = ker T ∗. In particular, therefore:

(i) ranT = (ker T ∗)⊥;
(ii) for λ ∈ C, λ ∈ σc(T ) if and only if λ ∈ σp(T ∗);
(iii) ranT is not dense in H if and only if ker T ∗ 6= 0.

Proof. Let y ∈ H. Then

y ∈ ker T ∗ ⇐⇒ for all x ∈ H, 0 = (x, T ∗y)
⇐⇒ for all x ∈ H, 0 = (Tx, y)

⇐⇒ y ∈ (ranT )⊥.

2

3.9. Example. Let H be a Hilbert space with orthomormal basis
{en}∞n=1. Define the operator S ∈ B(H) by first setting Sen+1 = en for all
n ≥ 1 and Se1 = 0, and then extending S by linearity and continuity to all
of H.

S is then called the unilateral (backward) shift, and with respect to the
above basis for H, the matrix for S is:

0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
0 0 0 0 1 . . .

0
. . . . . . . . . . . . . . .

 .
It is easily verified that ‖S‖ = 1. As for the spectral radius of S, note

that ‖Sn‖ ≤ ‖S‖n ≤ 1, while ‖Snen+1‖ = ‖e1‖ = 1, so that ‖Sn‖ ≥ 1.
Hence spr (S) = limn→∞ ‖Sn‖

1
n = 1.

Let λ ∈ C, |λ| = 1. Consider (λI − S). Let xn = (1/
√
n)
∑n

i=1 λ
iei.

Then ‖xn‖ = 1 for all n ≥ 1, and

‖(λI − S)xn‖ = ‖(1/
√
n)λn+1en‖ = 1/

√
n.

Letting n tend to ∞ yields λ ∈ σa(S).
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Now let λ ∈ C, 0 < |λ| < 1, and y =
∑∞

i=1 λ
iei. Then

(λI − S)y =
∞∑
i=1

λi+1ei −
∞∑
i=1

λi+1ei

= 0.

As for λ = 0, e1 lies in the kernel of S, and hence of 0− S. Hence σp(S) ⊇
{z ∈ C : |z| < 1}. In particular, λ ∈ σc(S∗), i.e. σc(S∗) ⊇ {z ∈ C : |z| < 1}.
Note: An easy calculation which is left as an exercise shows that S∗en =
en+1, n ≥ 1, and hence

S∗ =


0 0 0 0 0 . . .
1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 0 1 0 0 . . .

0
. . . . . . . . . . . . . . .

 .
Clearly, ranS = H, so ker S∗ = {0}. In fact, S∗ is an isometry! Finally,

σ(S) = {z ∈ C : |z| ≤ 1} = σ(S∗). Indeed, S∗ = U , where U is the operator
we defined in Example 2.19.

3.10. Definition. Given an infinite dimensional, separable Hilbert
space H with orthonormal basis {en}∞n=1, a unilateral (forward) weighted
shift W on H is an operator satisfying Wen = wnen+1, n ≥ 1, where
{wn}∞n=1 ∈ `∞(N) is called the sequence of weights of W . The adjoint of
a unilateral forward weighted shift is referred to as a unilateral backward
weighted shift.

A bilateral weighted shift is an operator V ∈ B(H) such that V fn =
V fn+1 for all n ∈ Z, where {fn}n∈Z is an orthonormal basis for H and
{vn}n∈Z ∈ `∞(Z).

Weighted shifts are of interest because they provide one of the few
tractable classes of operators which exhibit a reasonably wide variety of
phenomena typical of more general operators. As such, they are an excel-
lent test case for conjectures about general operators.

In the case where all of the weights are constant and equal to 1, the
shift in question is referred to as the forward (backward, bilateral) shift.
The terms unilateral shift and unweighted shift are also used, it usually
being clear from the context whether the shift is forward or backward.

3.11. Definition. Let H be a Hilbert space, and N ∈ B(H). Then
(i) If N = N∗, N is said to be self-adjoint, or hermitian;
(ii) if N = N∗ and (Nx, x) ≥ 0 for all x ∈ H, then N is said to be

positive;
(iii) if N N∗ = N∗N , then N is said to be normal;
(iv) if N∗ = N−1, then N is said to be unitary; observe that all unitary

operators are automatically normal.
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(v) if N = N∗ = N2, then N is called an (orthogonal) projection.

3.12. Remark. Suppose that U ∈ B(H) is unitary. Since U is invert-
ible, it must be bijective. Moreover, given x and y in H, we find that

(Ux,Uy) = (U∗ Ux, y) = (U−1Ux, y) = (Ix, y) = (x, y).

In particular, unitaries preserve inner products, and therefore preserve both
angles and lengths. Indeed, they serve as the isomorphisms in the category
of Hilbert spaces.

3.13. Example. Let H be a Hilbert space and let B denote the un-
weighted bilateral shift. It is straightforward to verify that B is unitary.
On the other hand, if S denotes the backward shift, then S S∗ − S∗ S = P ,
where P is a rank one projection. Thus S is not normal.

3.14. Example. LetH = L2([0, 1], dx) and define, for f ∈ L∞([0, 1], dx),
the operator

Mf : H → H
g 7→ fg.

Then

(Mfg, h) =
∫ 1

0
(Mfg)hdx

=
∫ 1

0
(gf)hdx

=
∫ 1

0
g(fh)

= (g,Mfh)

= (g, (Mf )∗h).

Thus M∗
f = Mf . We leave it as an exercise for the reader to verify that

Mf is always normal.
Mf will be self-adjoint precisely if Mf = Mf , and it is readily seen that

this happens if and only if f = f ; namely if f is real-valued.
Mf will be positive if and only if (Mfg, g) ≥ 0 for all g ∈ H. But this

happens precisely when ∫ 1

0
f(x) |g(x)|2dx ≥ 0

for all g ∈ L2([0, 1], dx), which in turn is equivalent to the condition that
f(x) ≥ 0 almost everywhere in [0, 1].

Finally, Mf will be unitary if Mf = Mf
−1, which is equivalent to f =

f−1. In other words, |f(x)| = 1 almost everywhere in [0, 1].
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3.15. Example. Let H = `2(N) and let D = diag {dn}∞n=1, where
{dn}∞n=1 ∈ `∞(N). Suppose that {en}∞n=1 is the standard orthonormal basis
for H, and that Den = dn en for all n ≥ 1. Then ‖D‖ = supn≥1 |dn|. Then
D∗ = diag {dn}∞n=1, and it is not hard to check that D is normal. In fact, D
can be thought of as a multiplication operator on an L2-space with respect
to counting measure.

Furthermore, σp(D) = {dn}∞n=1, while σa(D) = σ(D) = {dn}∞n=1. Fi-
nally, σc(D) = σp(D∗) = {dn}∞n=1.

Again, D is self-adjoint precisely when dn ∈ R for all n ≥ 1, D is positive
if and only if dn ≥ 0 for all n ≥ 1, and D is unitary if and only if |dn| = 1
for all n ≥ 1.

3.16. Lemma. Let H be a Hilbert space and N ∈ B(H). If N is
normal, then ‖Nx‖ = ‖N∗x‖ for all x ∈ H. In particular, therefore,
ker N = ker N∗.
Proof. Let x ∈ H. Then

‖Nx‖2 = (Nx,Nx)
= (N∗Nx, x)
= (N N∗x, x)
= (N∗x,N∗x)
= ‖N∗x‖2.

That is, ‖Nx‖ = ‖N∗x‖.
2

3.17. Proposition. Let H be a Hilbert space and N ∈ B(H). If N is
normal, then σ(N) = σa(N).
Proof. Clearly σa(N) ⊆ σ(N) = σa(N) ∪ σc(N). Assume λ ∈ σc(N).
Then λ ∈ σp(N∗), by Proposition 3.8. Let 0 6= x ∈ ker (N∗ − λ). Then
x ∈ ker (N∗ − λ)∗ = ker (N − λI) by the above Lemma. This means that
λ ∈ σp(N) ⊆ σa(N). We conclude that σ(N) ⊆ σa(N).

2

Meanwhile, back at the Skywalker’s dinner table...
“Use the fork, Luke.”
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4. The spectral theorem for compact normal operators

4.1. The set of compact operators acting on a Hilbert space is more
tractable in general than the set of compact operators acting on an arbitrary
Banach space. One of the reasons for this is the characterization given below.
Recall that the set of finite rank operators acting on a Banach space X is
denoted by F(X).

4.2. Theorem. Let H be a Hilbert space and let K ∈ B(H). The
following are equivalent:

(i) K is compact;
(ii) K∗ is compact;
(iii) There exists a sequence {Fn}∞n=1 ⊆ F(H) such that K = limn→∞ Fn.

Proof.
(i) ⇒ (iii) Let B1 denote the unit ball of H, and let ε > 0. Since

K(B1) is compact, it must be separable (i.e. it is totally bounded).
Thus M = ranK is a separable subspace of H, and thus possesses
an orthonormal basis {en}∞n=1.

Let Pn denote the orthogonal projection ofH onto span {ek}n
k=1.

Set Fn = PnK, noting that each Fn is finite rank. We now show
that K = limn→∞ Fn.

Let x ∈ H and consider y = Kx ∈ M, so that limn→∞ ‖Pny −
y‖ = 0. Thus limn→∞ ‖Fnx − Kx‖ = limn→∞ ‖Pny − y‖ = 0.
Since K is compact, K(B1) is totally bounded, so we can choose
{xk}m

k=1 ⊆ B1 such that K(B1) ⊆ ∪m
k=1B(Kxk, ε/3), where given

z ∈ H and δ > 0, B(z, δ) = {w ∈ H : ‖w − z‖ < δ}.
If ‖x‖ ≤ 1, choose i such that ‖Kxi − Kx‖ < ε/3. Then for

any n > 0,

‖Kx − Fnx‖
≤ ‖Kx−Kxi‖+ ‖Kxi − Fnxi‖+ ‖Fnxi − Fnx‖
< ε/3 + ‖Kxi − Fnxi‖+ ‖Pn‖ ‖Kxi −Kx‖
< 2ε/3 + ‖Kxi − Fnxi‖.

Choose N > 0 such that ‖Kxi−Fnxi‖ < ε/3, 1 ≤ i ≤ m for all
n > N . Then ‖Kx− Fnx‖ ≤ 2ε/3 + ε/3 = ε. Thus ‖K − Fn‖ < 3
for all n > N . Since ε > 0 was arbitrary, K = limn→∞ Fn.

(iii) ⇒ (ii) Suppose K = limn→∞ Fn, where Fn is finite rank for all n ≥
1. Note that F ∗n is also finite rank (why?), and that ‖K∗ − F ∗n‖ =
‖K−Fn‖ for all n ≥ 1, which clearly implies that K∗ = limn→∞ F ∗n ,
and hence that K∗ is compact.

(ii) ⇒(i) Since K compact implies K∗ is compact from above, we
deduce thatK∗ compact implies (K∗)∗ = K is compact, completing
the proof.

2
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We can restate the above Theorem more succinctly by saying that K(H)
is the norm closure of the set of finite rank operators on H. This is an
extraordinarily useful result.

4.3. Remark. Contained in the above proof is the following interest-
ing observation. If K is a compact operator acting on a separable Hilbert
space H, then for any sequence {Pn}∞n=1 of finite rank projections tending
strongly (i.e. pointwise) to the identity, ‖K − PnK‖ tends to zero. By
considering adjoints, we find that ‖K −KPn‖ also tends to zero.

Let ε > 0, and choose N > 0 such that n ≥ N implies ‖K−KPn‖ < ε/2
and ‖K − PnK‖ < ε/2. Then for all n ≥ N we get

‖K − PnKPn‖ ≤ ‖K −KPn‖+ ‖KPn − PnKPn‖
≤ ‖K −KPn‖+ ‖K − PnK‖ ‖Pn‖
< ε/2 + ε/2 = ε.

It follows that if H has an orthonormal basis indexed by the natural
numbers, say {en}∞n=1, then the matrix for K with respect to this basis
comes within ε of the matrix for PNKPN . In other words, K “virtually
lives” on the “top left-hand corner”.

Alternatively, if H has an orthonormal basis indexed by the integers, say
{fn}n∈Z, and we let Pn denote the orthogonal projection onto span {ek}n

k=−n,
then the matrix for K with respect to this basis can be arbitrarily well es-
timated by a sufficiently large but finite “central block”.

4.4. Example. Let H be a separable Hilbert space with orthonormal
basis {en}∞n=1. Let {dn}∞n=1 be a bounded sequence and consider the diagonal
operator D ∈ B(H) defined locally by Den = dnen and extended to all of H
by linearity and continuity.

Then D ∈ K(H) if and only if limn→∞ dn = 0.

4.5. Example. Let H = L2([0, 1], dx), and consider the function
k(x, t) ∈ L2([0, 1] × [0, 1], dm), where dm represents Lebesgue planar mea-
sure. Then we define a Volterra operator

V : L2([0, 1], dx) → L2([0, 1], dx)
(V f)(x) =

∫ 1
0 f(t) k(x, t) dt.

(The classical Volterra operator has k(x, t) = 1 if x ≥ t, and k(x, t) = 0
if x < t.)
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Now for f ∈ L2([0, 1], dx) we have

‖V f‖2 =
∫ 1

0
|V f(x)|2dx

=
∫ 1

0

∣∣∣∣∫ 1

0
f(t) k(x, t)dt

∣∣∣∣2 dx
≤

∫ 1

0

(∫ 1

0
|f(t) k(x, t)|dt

)2

dx

≤
∫ 1

0
‖f‖2

2

∫ 1

0
|k(x, t)|2dtdx by the Cauchy-Schwartz Inequality

= ‖f‖2
2 ‖k‖2

2,

so that ‖V ‖ ≤ ‖k‖2.

Let A denote the algebra of continuous functions on [0, 1]× [0, 1] which
can be resolved as g(x, t) =

∑n
i=1 ui(x)wi(t). Then A is an algebra which

separates points, contains the constant functions, and is closed under com-
plex conjugation. By the Stone-Weierstraß Theorem, given ε > 0 and h ∈
C([0, 1]× [0, 1]), there exists g ∈ A such that ‖h− g‖2 ≤ ‖h− g‖∞ < ε. But
since C([0, 1]× [0, 1]) is dense (in the L2-topology) in L2([0, 1]× [0, 1], dm),
A must also be dense (in the L2-topology) in L2([0, 1]× [0, 1], dm).

Let ε > 0. For k as above, choose g ∈ A such that ‖k − g‖2 < ε. Define

V0 : L2([0, 1], dx) → L2([0, 1], dx)
V0f(x) =

∫ 1
0 f(t) g(x, t)dt.

From above, we find that ‖V − V0‖ ≤ ‖k − g‖2 < ε.
To see that V0 is finite rank, consider the following; first, g(x, t) =∑n

i=1 ui(x)wi(t). If we set M = span 1≤i≤n{ui}, then M is a finite di-
mensional subspace of L2([0, 1], dx). Moreover,

V0f(x) =
∫ 1

0
f(t) g(x, t)dt

=
n∑

i=1

(∫ 1

0
f(t)wi(t)dt

)
ui(x),

so that V0f ∈M.
Thus V can be approximated arbitrarily well by elements of the form

V0 ∈ F(L2([0, 1], dx), and so V is compact.

4.6. Definition. Let X be a Banach space and T ∈ B(X). Then T
is said to be quasinilpotent if σ(T ) = 0. By the spectral mapping the-
orem 2.13, it is easily seen that every nilpotent operator is automatically
quasinilpotent.



4. THE SPECTRAL THEOREM FOR COMPACT NORMAL OPERATORS 69

4.7. Example. Let V denote the classical Volterra operator defined
in Example 4.5 above. We shall show that V is quasinilpotent. (Note that
we have seen that the Volterra operator acting in B(C[0, 1]) is quasinilpotent
in Example 1.8.)

Since V ∈ K(H), we know that σ(V ) = {0} ∪ σp(V ). Suppose 0 6= λ ∈
σp(V ), and that f ∈ ker (λ− V ). Then

|λ| |f(x)| =
∣∣∣∣∫ x

0
f(t)dt

∣∣∣∣
≤

∫ x

0
|f(t)|dt

≤
∫ 1

0
|f(t)|dt

≤ ‖f‖2 ‖1‖2

= ‖f‖2.

Then for 0 ≤ x ≤ 1,

|f(x)| ≤ (1/|λ|)
∫ x

0
|f(t1)|dt1

≤ (1/|λ|)
∫ x

0
(1/|λ|)

∫ t1

0
|f(t2)|dt2dt1

≤ . . .

≤ (1/|λ|n+1)
∫ x

0

∫ t1

0
. . .

∫ tn

0
|f(tn+1)|dtn+1dtn . . . dt1

≤ (1/|λ|n+1)
∫ x

0

∫ t1

0
. . .

∫ tn

0
(‖f‖2/|λ|)dtn+1dtn . . . dt1

= (1/|λ|n+2) ‖f‖2

∫ x

0

∫ t1

0
. . .

∫ tn

0
1 dtn+1dtn . . . dt1

≤ (1/|λ|n+2) ‖f‖2 x
n+1/(n+ 1)! for all n ≥ 1.

Thus f(x) = 0 for all x ∈ [0, 1], and hence f = 0. But then λ 6∈ σp(V ).
Therefore σ(V ) = {0}, and so V is quasinilpotent as claimed.

4.8. Definition. Let H be a Hilbert space, M be a subspace of H, and
suppose that T ∈ B(H). Recall that M is called invariant for T provided
that TM⊆M. We say that M is reducing for T if M is invariant both
for T and for T ∗.

4.9. Notation. Let H be a Hilbert space and M be a subspace of H.
By P (M) we shall denote the orthogonal projection of H onto M.
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4.10. Proposition. Let H be a Hilbert space, T ∈ B(H), and M be a
subspace of H. Then M is reducing for T if and only if both M and M⊥

are invariant for T . When this is the case, we can write

T = T1 ⊕ T2 =
[
T1 0
0 T2

]
with respect to the decomposition H = M⊕M⊥. Furthermore, T is compact
if and only if both T1 and T2 are compact, and T is normal if and only if T1

and T2 are.
Proof. First suppose thatM is reducing for T . Then (I−P (M))T P (M) =
0. Since T ∗M ⊆ M, we also get (I − P (M))T ∗ P (M) = 0, and so after
taking adjoints, P (M)T (I−P (M)) = 0. (Note that P (M) is self-adjoint.)
It follows that both M and M⊥ are invariant for T .

Now suppose that M and M⊥ are invariant for T , so that

(I − P (M))T P (M) = 0 = P (M)T (I − P (M)).

By taking adjoints once more, (I−P (M))T ∗ P (M) = 0, and so M is reduc-
ing for T . The matrix form for T follows directly from these observations.

If T1 and T2 are compact, then they are limits of finite rank operators
Fn and Gn respectively, from which we conclude that T is a limit of the
finite rank operators Fn ⊕Gn. Thus T is compact.

If T is compact, then the compression of T to any subspace is compact,
and so both T1 and T2 are compact.

We leave it as an exercise to the reader to show that T ∗ = T ∗1 ⊕ T ∗2 .
Given this, it is easy to see that T is normal if and only if 0 = [T, T ∗] =
[T1, T

∗
1 ] ⊕ [T2, T

∗
2 ], which is equivalent to the simultaneous normality of T1

and T2.
2

4.11. Proposition. Let H be a Hilbert space and N ∈ B(H) be nor-
mal. Then ker N = ker N∗ is reducing for N .
Proof. That ker N = ker N∗ is the second half of Lemma 3.16. Now let
x ∈ ker N . Then N2x = N(Nx) = 0, and NN∗x = N∗Nx = 0. Thus
ker N is invariant for both N and N∗, and hence is reducing for N .

2

4.12. Proposition. Let H be a Hilbert space and N ∈ B(H). If N is
normal and λ 6= µ ∈ σp(N), then ker (N−λI) is orthogonal to ker (N−µI).
Proof. Let x ∈ ker (N − λI) and y ∈ ker (N − µI). Then

λ(x, y) = (Nx, y) = (x,N∗y) = (x, µy) = µ(x, y).

Thus (λ− µ)(x, y) = 0. Since λ− µ 6= 0, we must have x ⊥ y.
2
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4.13. Proposition. Let H be a Hilbert space and N ∈ B(H). If N is
normal, then spr (N) = ‖N‖.
Proof. Consider first:

‖N2‖ = sup
‖x‖=1

‖N2x‖

= sup
‖x‖=1

‖N∗Nx‖

≥ sup
‖x‖=1

|(N∗Nx, x)|

= sup
‖x‖=1

(Nx,Nx)

= sup
‖x‖=1

‖Nx‖2

= ‖N‖2.

By induction, ‖N2n‖ ≥ ‖N‖2n
for all n ≥ 1. The reverse inequality

follows immediately from the submultiplicativity of the norm in a Banach
algebra. Thus ‖N2n‖ = ‖N‖2n

for all n ≥ 1. By Beurling’s Spectral Radius
Formula, Theorem 2.1.36,

spr (N) = lim
n→∞

‖N2n‖1/2n
= ‖N‖.

2

4.14. Corollary. Let H be a Hilbert space and N ∈ B(H). If N is
normal and σ(N) = {λ}, then N = λI.
Proof. Now σ(N − λI) = {0} by the Spectral Mapping Theorem. Since
N − λI is also normal, ‖N − λI‖ = spr (N − λI) = 0.

2

4.15. Lemma. Let H be a Hilbert space and N ∈ B(H). Suppose N is
compact and normal and that {λi}n

i=1 ⊆ σp(N). Let M = ⊕n
i=1 ker (N−λiI).

Then M is a reducing subspace for N and if N1 = (I − P (M))N |M⊥ ∈
B(M⊥), then σp(N1) = σp(N)\{λi}n

i=1.
Proof.

That M is reducing for N follows from the fact that each ker (N − λiI)
is reducing for N , 1 ≤ i ≤ n. Now N1 is both compact and normal by
Proposition 4.10.

Suppose λ ∈ ρ(N). Then (N1−λI)−1 = (I −P (M))(N −λI)−1|M⊥ , so
that λ ∈ ρ(N1).

Let λ ∈ {λi}n
i=1. Then ker (N − λI) ⊆ M by definition. Thus N1 − λI

is injective, so that λ 6∈ σp(N1). If λ ∈ σp(N)\{λi}n
i=1, then ker (N − λI) is

orthogonal to M, so there exists 0 6= x ∈ ker (N−λI) and then (N1−λI)x =
(N − λI)x = 0. Hence λ ∈ σp(N1).

We now have σp(N)\{λi}n
i=1 ⊆ σp(N1) ⊆ σ(N)\{λi}n

i=1.
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Finally, if λ ∈ σp(N1), then there exists 0 6= x ∈ M⊥ such that (N1 −
λI)x = 0. But then (N − λI)x = 0, so that λ ∈ σp(N), completing the
proof.

2

4.16. Proposition. Let H be a Hilbert space and N ∈ B(H). Sup-
pose N is compact and normal and that σp(N) = {λi}n

i=1. Then H =
⊕∞n=1 ker (N − λnI).
Proof. Let M = ⊕∞n=1 ker (N − λnI). As above, M is reducing for N .
Let N1 = P (M⊥)N |M⊥ , viewed as an element of B(M⊥). Then σp(N1)
is empty, for if λ ∈ σp(N1), then as in the previous lemma, we see that
λ ∈ σp(N), and hence ker (N1 − λI) ⊆ ker (N − λI) ⊆M, a contradiction.

Since N1 is compact, σ(N1) = {0}, but 0 6∈ σp(N1) implies that N1 is
injective. On the other hand, N1 is also normal, so ‖N1‖ = spr (N1) = 0,
and hence N1 = 0. Since it is injective, we are forced to conclude that
M⊥ = {0}, completing the proof.

2

.

4.17. Theorem. The spectral theorem for compact normal
operators. Let H be a Hilbert space and N ∈ B(H) be a compact, nor-
mal operator. Suppose {λk}∞k=1 are the distinct eigenvalues of N and that
P (Mk) is the orthogonal projection of H onto Mk = ker (N − λkI). Then
P (Mk)P (Mj) = 0 = P (Mj)P (Mk) if j 6= k, and

N =
∞∑

k=1

λkP (Mk),

where the series converges in the norm topology in B(H).
Proof. That P (Mk)P (Mj) = 0 = P (Mj)P (Mk) if j 6= k is simply the
statement that Mk is orthogonal to Mj for j 6= k, and this we saw in
Proposition 4.12.

Recall also that limk→∞ λk = 0, by Theorem 2.16.
Consider n > 0, and N−

∑n
k=1 λkP (Mk). If x ∈Mj for some 1 ≤ j ≤ n,

then

(N −
∞∑

k=1

λkP (Mk))x = Nx− λjx = 0.

Thus ⊕n
k=1Mk ⊆ ker (N −

∑∞
k=1 λkP (Mk)). If x is orthogonal to ⊕Mk,

then P (Mk)x = 0, 1 ≤ k ≤ n, so that (N −
∑∞

k=1 λkP (Mk))x = Nx.

Moreover, ⊕n
k=1Mk reduces N , so we let Nn = P ((⊕n

k=1Mk)⊥)N |⊕n
k=1Mk

⊥ .

Then ‖N −
∑∞

k=1 λkP (Mk)‖ = ‖Nn‖. Also, Nn is compact and normal
by Proposition 4.10, and from Lemma 4.15,

σp(Nn) = {λn+1, λn+2, λn+3, . . .}.
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Thus ‖Nn‖ = spr (Nn) = supk>n |λk|. In particular, limn→∞ ‖Nn‖ = 0, so
that

lim
n→∞

n∑
k=1

λkP (Mk) =
∞∑

k=1

λkP (Mk) = N.

2

4.18. Corollary. Let H be a Hilbert space and N ∈ B(H) be a com-
pact, normal operator. Then there exists an orthonormal basis {eα}α∈Λ for
H such that each eα is an eigenvector for N .
Proof. Let {λn}∞n=1 be the set of eigenvalues of N . For each n ≥ 1, choose
an orthonormal basis {e(n,β)}β∈Λn for ker (N − λnI). (Note that if λn 6= 0,
then the cardinality of Λn is finite.) Then each e(n,β), β ∈ Λn, n ≥ 1 is an
eigenvector for N corresponding to λn, the e(n,β)’s are all orthogonal since
all of the ker (N−λnI)’s are. Finally, span{e(n,β)}β∈Λn, n≥1 = ⊕∞n=1 ker (N−
λnI) = H by Proposition 4.16. Let {eα}α∈Λ = {e(n,β)}β∈Λn, n≥1.

2

4.19. Corollary. Let H be a Hilbert space and let N ∈ B(H). Then N
is compact and normal if and only if there exist an orthonormal set {fn}∞n=1

and a sequence of scalars {βn}∞n=1 such that
(i) limn→∞ βn = 0;
(ii) Nfn = βnfn, n ≥ 1;
(iii) Nx = 0 if x ∈ H, x orthogonal to span{fn}∞n=1.

Proof. Suppose the sets {fn}∞n=1 and {β}∞n=1 as above exist. Then N is
seen to be compact, using the arguments of Theorem 4.2.

Now if N is normal and compact, let {eα}α∈Λ be an orthonormal basis
for H consisting of eigenvectors of N , the existence of which is guaranteed
by the preceding Corollary. Let {fn}∞n=1 be the subset of {eα}α∈Λ comprised
of those vectors whose corresponding eigenvalues {βn}n≥1 are different from
zero. That {fn}n≥1 is at most countable follows from the fact that σp(N) is
countable, and nul (N − λnI) <∞ for all 0 6= λn ∈ σp(N).

ClearlyNfn = βnfn for all n ≥ 1, and limn→∞ βn = 0 from the argument
above combined with the fact that σp(N) is a sequence tending to zero when
N is compact. Finally, (span{fn}∞n=1)⊥ = ker (N−0I) = ker N , from which
condition (iii) also follows.

2

A rolling Stone gathers no satisfaction.
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5. Fredholm theory in Hilbert space

5.1. The notion of a Fredholm operator was introduced in Section Two
of this Chapter, where it was shown that if K is a compact operator acting
on a Banach space X and if λ is a non-zero scalar, then λI−K is Fredholm of
index zero. We now wish to consider Fredholm operators acting on a Hilbert
space. We shall establish the fact that the Fredholm operators are precisely
the operators which are invertible modulo the compact operators, and that
the index function serves to classify components of the set of invertible
elements in the Calkin algebra .

5.2. Recall from Definition 2.17 that an operator T acting on a Hilbert
space H is said to be Fredholm if

(i) ranT is closed;
(ii) nulT is finite; and
(iii) codim ranT is finite.

As before, when T is Fredholm we may define the Fredholm index of T
to be

indT = nulT − codim ranT.

From Remark 2.9, we see that when T is Fredholm, we may replace
codim ranT by nulT t, where T t now denotes the Banach space adjoint of
T , as opposed to the Hilbert space adjoint of T , which we denote by T ∗.
The distinction is important, since it is not a priori obvious that we may
replace codim ranT by nulT ∗. On the other hand, since ranT is closed, we
obtain the decomposition H = ranT ⊕ (ranT )⊥, and so

codim ranT = dim (H/ranT ) = dim (ranT )⊥.

Since (ranT )⊥ = ker T ∗, it follows that nulT ∗ = codim ranT = nulT t, and
so, as in the Banach space setting, we retrieve the equation

indT = nulT − nulT ∗.

5.3. Example. Let H be a separable Hilbert space and let {en}∞n=1

be an orthonormal basis for H. Let S ∈ B(H) denote the unilateral shift
operator acting on this basis as defined in Example 3.9. That is, Sen+1 = en
if n ≥ 1, and Se1 = 0.

Then ranS = H, so that ranS is closed. Also, ker S = span{e1}, so that
nulS = 1. Finally, ker S∗ = {0}, so that nulS∗ = 0. Thus S is Fredholm
and indS = nulS − nulS∗ = 1− 0 = 1.

Note also that S∗ is Fredholm as well, and that indS∗ = nulS∗ −
nulS∗∗ = nulS∗ − nulS = −indS = 1.

Finally, Sn and (S∗)n are both Fredholm as well, and indSn = −n =
−ind (S∗)n for each n ≥ 1.
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5.4. Example. Let H be a Hilbert space and K ∈ K(H). As we have
seen, if 0 6= λ ∈ C, then λI−K is Fredholm of index zero. It follows that so
is any operator of the form T + L where T is invertible and L is compact.
Indeed, T +L = T (I − (−T−1L). The verification of the index is left to the
reader.

It follows that if S is the unilateral forward shift, then S is not of the
form T + L for any T invertible and L compact.

5.5. Proposition. Suppose H is a Hilbert space and T ∈ B(H) is
Fredholm. Then T |(ker T )⊥ is bounded below.
Proof. Suppose x, y ∈ (ker T )⊥. Then 0 = Tx − Ty = T (x − y) implies
x− y ∈ ker T and hence x = y. In particular, the map

T0 : (ker T )⊥ → ranT
x 7→ Tx

is a 1-1, onto map, and thus it is invertible. Let R : ranT → (ker T )⊥

denote the inverse of T0. Then for x ∈ (ker T )⊥,

‖x‖ = ‖RT0x‖ = ‖RTx‖
≤ ‖R‖ ‖Tx‖

and so ‖Tx‖ ≥ ‖R‖−1 ‖x‖.
Thus T is bounded below on (ker T )⊥, as claimed.

2

5.6. Remark. Let H be a Hilbert space. Recall from Example 1.1.17
that the Calkin algebra A(H) = B(H)/K(H) is the quotient of B(H) by the
closed, two-sided ideal of compact operators. It follows from Proposition
2.1.16 that A(H) is a Banach algebra.

5.7. Remark. Our present goal is to establish a relationship between
the set of Fredholm operators acting on a Hilbert space H, and the set of
invertible elements in the Calkin algebra. In fact, the relation we wish to
establish is equality !

We record here a couple of facts which will prove useful:

• (A(H))−1 is open in A(H).
• The involution on B(H) naturally gives rise to an involution in the

Calkin algebra. Given t ∈ A(H), t = π(T ) for some T ∈ B(H). We
then set t∗ = π(T ∗). If R ∈ B(H) and π(R) = t, then K = R−T ∈
K(H). Thus K∗ = R∗ − T ∗ ∈ K(H), and so π(R∗) = π(T ∗), from
which it follows that our involution is indeed well-defined. We
then have that A(H) and (A(H))−1 are self-adjoint. Indeed, for
t ∈ (A(H))−1, (t∗)−1 = (t−1)∗.
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5.8. Theorem. Let H be a Hilbert space, and T ∈ B(H). Then T is
Fredholm if and only if t = π(T ) is invertible in the Calkin algebra.
Proof. Suppose T is Fredholm. Then ranT is closed, nulT is finite and
nulT ∗ = codim ranT is finite. Let us once again decompose

H = ker T ⊕ (ker T )⊥

= ranT ⊕ (ranT )⊥.

As in the proof of Proposition 5.5, we see that

T0 : (ker T )⊥ → ranT
x 7→ Tx

is invertible. Let R0 : ranT → (ker T )⊥ denote the inverse of T0, and define

R ∈ B(H) via Rx =
{
R0x if x ∈ ranT
0 if x ∈ (ranT )⊥. .

Then RTx = (I−P (M))x, where M = ker T , and TRx = (I−P (N ))x,
whereN = (ranT )⊥. Since both P (M) and P (N ) are finite rank, we obtain:

π(R)π(T ) = π(RT ) = π(I) = π(TR) = π(T )π(R)

, and so t is invertible with inverse r = π(R).
Next, suppose that t = π(T ) ∈ A(H) is invertible. Then there exists

r ∈ A(H) with rt = 1 = π(I) = tr, and choosing R ∈ B(H) with π(R) = r,
we get

RT = I +K1, TR = I +K2

for some K1, K2 ∈ K(H).
Since nul (I + K1) < ∞ by Proposition 2.8, nulT < ∞. Since ranT ⊇

ran (I+K2) and codim ran (I+K2) <∞ by Proposition 2.8, codim ranT <
∞.

By Corollary 2.25, ranT is closed, and so we are done.
2

5.9. We now wish to consider some of the stability properties of Fred-
holm operators and the index function. We mention that most, if not all,
of the following results are true for Fredholm operators acting on a Ba-
nach space. On the other hand, certain arguments simplify when looking at
Hilbert spaces, and we have made use of these simplifications. For the most
general results, we refer the reader to the book of Caradus, Pfaffenberger
and Yood [CPY74].

5.10. Lemma. Let H be a Hilbert space and T ∈ B(H) be Fredholm.
If R is invertible, then

indTR = indRT = indT.

Proof. Exercise.
2
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5.11. Lemma. Let H be a Hilbert space and T ∈ B(H). If T is
Fredholm and indT = 0, then there exists a finite rank operator F such that
T + F is invertible.
Proof. As we saw in Theorem 5.8, we can decompose H in two ways,
namely:

H = ker T ⊕ (ker T )⊥

= ranT ⊕ (ranT )⊥.

Since indT = 0 by hypothesis, nulT = codim ranT . Let {ek}n
k=1 and

{fk}n
k=1 be orthonormal bases for ker T and (ranT )⊥ respective and let

F ∈ B(H) be defined via Fek = fk, 1 ≤ k ≤ n, Fz = 0 if z is orthogonal to
ker T . Then F is clearly finite rank. We claim that T + F is bijective, and
hence invertible.

If 0 6= x ∈ H, then x = x1 + x2, where x1 ∈ ker T, x2 ∈ (ker T )⊥, and
‖x1‖+ ‖x2‖ 6= 0. If x1 6= 0, then

(T + F )x = Tx+ Fx

= Tx2 + Fx1

and 0 6= Fx1 ∈ (ranT )⊥ forces (T + F )x 6= 0. If x2 6= 0, then (T + F )x =
Tx2 + Fx1 and 0 6= Tx2 ∈ (ranF )⊥ forces (T + F )x 6= 0.

In either case, we see that T + F is injective.
Now choose y ∈ H and decompose y as y = y1 +y2 where y1 ∈ ranT and

y2 ∈ (ranT )⊥. Choose x1 ∈ (ker T )⊥ such that Tx1 = y1 and x2 ∈ ker T
such that Fx2 = y2. Then

(T + F )(x1 + x2) = T (x1 + x2) + F (x1 + x2)
= Tx1 + Fx2

= y1 + y2

= y.

Thus T is surjective, and therefore bijective, completing the proof.
2

5.12. Theorem. Let H be a Hilbert space and T ∈ B(H) be Fredholm.
If K ∈ K(H), then

ind (T +K) = indT.

Proof. Suppose indT = 0. Then there exists F finite rank such that T +F
is invertible. Moreover, T + K = (T + F ) + (K − F ) and K − F ∈ K(H).
By Lemma 5.10, ind (T +K) = 0 = indT.

Suppose next that indT = n > 0. Letting S denote the forward uni-
lateral shift, ind (T ⊕ Sn) = indT + indSn = 0. If K ∈ K(H), then
K ⊕ 0 ∈ K(H⊕H), and[

T 0
0 Sn

]
+
[
K 0
0 0

]
=
[
T +K 0
0 Sn

]
.
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From above, ind ((T+K)⊕Sn) = 0 = ind (T+K)+indSn = ind (T+K)−n.
Thus ind (T +K) = n = indT .

If indT = n < 0, then indT ∗ = −n > 0. From above, for all K ∈ K(H),

ind (T ∗ +K∗) = −n = −ind (T +K),

and so ind (T +K) = n = indT.

2

5.13. Theorem. Let H be a Hilbert space and suppose that T, R ∈
B(H) are Fredholm. Then

indTR = indT + indR.

Proof. First suppose that indT = n > 0 and indR = m > 0. Let S denote
the unilateral forward shift. Then

ind
[
T 0
0 Sn

]
= 0 =

[
R 0
0 Sm

]
.

Thus there exists K ∈ K(H⊕H) such that
[
T 0
0 Sn

]
+K is invertible.

By Lemma 5.10,

0 = ind
[
R 0
0 Sm

]
= ind

([
T 0
0 Sn

]
+K

)([
R 0
0 Sm

])
,

and by Theorem 5.12, this is equal to

ind
[
T 0
0 Sn

] [
R 0
0 Sm

]
= ind

[
TR 0
0 Sn+m

]
.

Thus 0 = ind (TR)+ indSn+m = indTR+(−n−m), and so ind (TR) =
n+m = indT + indR.

The cases where n < 0 (resp. m < 0) are handled similarly using (S∗)n

(resp. (S∗)m) instead of Sn (resp. Sm), and Theorem 5.12 if necessary.

2

5.14. Notation. Let Fred(H) = π−1(A(H)−1) denote the set of Fred-
holm operators, and for each n ∈ Z, set

Fredn(H) = {T ∈ Fred(H) : indT = n}.
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5.15. Theorem. Let H be a Hilbert space. Then for each n ∈ Z,
Fredn(H) is open. In particular, therefore, ind(·) is a continuous function
on Fred(H).
Proof. Of course, since π : B(H) → A(H) is continuous, we see that
Fred(H) = π−1((A(H)−1) is open. Suppose n ∈ Z.

Let T ∈ Fredn(H). Since Fred(H) is open, there exists ε1 > 0 such
that ‖U‖ < ε1 implies T + U ∈ Fred(H). Moreover, by Theorem 5.8, there
exists R ∈ B(H) (in fact, R ∈ Fred−n(H)) such that TR = I +K for some
K ∈ K(H). Note that

(T + U)R = TR+ UR

= (I +K) + UR

= (I + UR) +K.

Now take ε2 = 1/‖R‖. If ‖U‖ < ε2, then I + UR is invertible in B(H). By
Theorem 5.12, we conclude that if ‖U‖ < min(ε1, ε2), then (T + U)R =
(I + UR) +K satisfies

ind (T + U)R = ind (I + UR) +K

= (I + UR)
= 0
= ind (T + U) + indR
= indT + indR.

Thus ind (T + U) = indT and so T + U ∈ Fredn(H). In other words,
Fredn(H) is open.

2

Monkeys can’t buy happiness.
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Notes for Chapter Three

Theorem 4.2 shows us that in a Hilbert space H, every compact operator
K is a norm limit of finite operators Fn. Since F(H) ⊆ K(H), it follows
that K(H) = F(H).

In the Banach space setting, the inclusion F(X) ⊆ K(X) remains valid.
The question of whether the reverse inclusion holds remained open for some
time, and was referred to as the Finite Approximation Problem. In 1973,
Per Enflo [Enf73] resolved this question by constructing an example of a
Banach space X and a compact operator on X which cannot be approximated
by finite rank operators.

One of the most famous open problems in Operator Theory today is the
Invariant Subspace Problem.

• Given H, a Hilbert space, and T ∈ B(H), does there exist a closed
subspace M of H such that M 6= {0}, H and TM⊆M?

Such a space is called a non-trivial invariant subspace for T . It is a standard
exercise that if T ∈ B(H) and H is not separable, then we can decompose
H = ⊕α∈ΛHα, where each Hα is a separable, reducing subspace for T .
Also, if H is finite dimensional, every operator can be upper triangularized,
and thus has invariant subspaces. As such, the proper context in which to
examine the Invariant Subspace Problem is in separable, infinite dimensional
Hilbert spaces.

While the answer is not known in general, many results have been
obtained. One of the strongest results is a generalization of a result of
Lomonosov [Lom73] from 1973.

Theorem. Let H be a Hilbert space and T ∈ B(H) be a non-scalar operator.
Suppose there exists 0 6= K ∈ K(H) such that TK = KT . Then there exists
a closed subspace M of H which is hyperinvariant for T , that is: M is a
non-trivial invariant subspace for every operator that commutes with T .

Corollary. Every compact operator on H has a non-trivial hyperinvariant
subspace.

A natural question that arises from this theorem is whether or not every
operator in B(H) commutes with a non-scalar operator which in turn com-
mutes with a non-zero compact operator. In other words, does Lomonosov’s
Theorem solve the Invariant Subspace Problem? That the answer is no was
first shown by D.H. Hadwin, E.A. Nordgren, H. Radjavi, and P. Rosenthal
[HNRR80].

Results are known for other classes of operators as well.
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Definition. An operator T ∈ B(H) is said to be subnormal if there exists
a Hilbert space K ⊇ H and a normal operator N ∈ B(K) of the form[

T N2

0 N4

]
.

An example of a subnormal operator is the forward unilateral shift U .
(We can take N to be the bilateral shift by letting N4 be the backward
unilateral shift and N2 the appropriate rank one operator. We then have
the following theorem of Scott Brown from [Bro78].

Theorem. [Brown] Every subnormal operator possesses a non-trivial
invariant subspace.

More recent results include:

Theorem. [Brown, Chevreau, Pearcy] 1987 Let H be a Hilbert space
and T ∈ B(H). Suppose that

• ‖T‖ ≤ 1; and
• σ(T ) ⊇ T = {z ∈ C : |z| = 1}.

Then T has a non-trivial invariant subspace.

The corresponding question has been answered (negatively) for Banach
spaces. In particular, in 1984, C.J. Read [Rea84] gave an example of a Ba-
nach space X and a bounded linear operator T on X such that fX and {0} are
the only closed subspaces of X which are invariant for T . In 1985 [Rea85], he
modified the construction to produce a bounded linear operator T ∈ B(`1)
such that T does not have any non-trivial invariant subspace. The question
remains open for reflexive Banach spaces.

If one considers reducing rather than invariant subspaces, then more
is known. A major result of D. Voiculescu’s [Voi76] known as his non-
commutative Weyl-von Neumann Theorem implies that given T ∈ B(H) and
ε > 0, there exist an isometric, involution preserving map ρ from C∗(π(T )),
the closed Banach algebra generated by π(T ) and π(T ∗) in the Calkin alge-
bra, into some B(Hρ), a unitary operator U ∈ B(H⊕H(∞)

ρ ) and K ∈ K(H)
with ‖K‖ < ε such that

T = U∗(T ⊕ ρ(π(T ))(∞))U +K.

It follows that every operator is a limit of operators with non-trivial reducing
subspaces.

On the other hand, P. Halmos [Hal68] has shown that the set of irre-
ducible operators (i.e. those with no non-trivial reducing subspaces) is dense
in B(H).
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The spectral theorem for compact normal operators shows that every
such operator can be diagonalized. As such, it mimicks the finite dimen-
sional result. For general normal operators on an infinite dimensional Hilbert
space, this fails miserably. For instance, if Mx is the multiplication opera-
tor acting on L2([0, 1], dx), where dx represents Lebesgue measure, then we
have seen that Mx is normal, but has no eigenvalues. It follows immediately
from this observation that Mx can not be diagonalizable. A wonderful re-
sult due known as the Weyl-von Neumann-Berg/Sikonia Theorem [Ber71]
shows that once again, the result is true up to a small compact perturbation.
More precisely,

Theorem. [The Weyl-von Neumann-Berg/Sikonia Theorem] Let H
be an infinite dimensional separable Hilbert space and N ∈ B(H) be normal.
Then, given ε > 0, there exists U ∈ B(H) unitary, K ∈ K(H) satisfying
‖K‖ < ε and D ∈ B(H) diagonal such that

T = U∗DU +K.

Moreover, D can be chosen to have the same spectrum and essential spec-
trum (see Appendix A) as T .

Using this, we are now in a position to give a very simple proof of Halmos’
result on the density of the irreducibles. This proof is due to H. Radjavi
and P. Rosenthal [RR69]. Let us agree to say that an operator D ∈ B(H)
is diagonalizable if there exists a unitary operator U such that U∗DU is
diagonal.

Theorem. Let T ∈ B(H) and ε > 0. Then there exists K ∈ K(H) with
‖K‖ < ε such that T +K is irreducible.

Proof. By the Weyl-von Neumann-Berg/Sikonia Theorem, there ex-
ists a self-adjoint operator D whose matrix is diagonal with respect to an
orthonormal basis {en}∞n=1 such that

‖D − (T ∗ − T )/2‖ < ε

4
.

Then there is a self-adjoint operator D1 diagonal with respect to {en}∞n=1

such that all of the eigenvalues of D1 are distinct and ‖D − D1‖ < ε
4 .

Now let D2 be any self-adjoint compact operator within ε/2 of (T − T ∗)/2i
whose matrix with respect to {en}∞n=1 has all entries different from 0 (such
operators exist in profusion - why?). Then the operator D1 + iD2 is within
ε of T . Also, D1 + iD2 is irreducible, since the invariant subspaces of D1 are
the subspaces spanned by subcollections of {en}∞n=1, and none of these are
invariant under D2 except {0} and H. 2



CHAPTER 4

Abelian Banach Algebras

Conceit in weakest bodies strongest works.

William Shakespeare: Hamlet

1. The Gelfand Transform

1.1. In this chapter we return to the study of abstract Banach algebras,
this time focussing our attention on those which are abelian. The reader may
refer back to Chapter Two, Section One for examples.

In any algebra, normed or otherwise, it is of interest to study the ideal
structure of the algebra. Banach algebras are no exception.

1.2. Definition. Let A be an abelian Banach algebra. An ideal I of
A is said to be modular (also called regular) if we can find an element
e ∈ A such that ex− x ∈ I for all x ∈ A.

This definition is readily seen to be equivalent to saying that the quotient
algebra A/I admits an identity element, namely e = e + I. Clearly every
proper ideal in a unital Banach algebra is modular.

Given a Banach algebra A and an ideal I of A, we shall use πI to denote
the canonical algebra map from A onto A/I. If I is understood, then we
shall write only π.

1.3. Example. Let A = C0(R), the set of complex-valued continuous
functions on R vanishing at infinity. Define M = {f ∈ A : f(x) = 0 if x ∈
[−1, 1]}. It is readily seen that A is a non-unital Banach algebra and M is
an ideal of A.

Let e ∈ A be the function e(x) =

 0 if 2 < |x|
2− |x| if 1 ≤ |x| ≤ 2
1 if |x| ≤ 1.

We leave it to the reader to verify that e is an identity for A/M, and
that M is therefore a regular ideal of A.

1.4. Proposition. Let I be a proper regular ideal of an abelian Banach
algebra A. If e is an identity modulo I, then ‖π(e)‖ ≥ 1.
Proof. First note that if I is closed, then A/I is a Banach algebra by
Proposition 1.16. But then ‖π(e)‖ ≥ 1 by the submultiplicativity of the
quotient norm.

83
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If I is not closed, then ‖π(e)‖ := infm∈I ‖e − m‖, and this defines a
seminorm on the quotient algebra.

Suppose ‖e−m‖ < 1 for some m ∈ I. Then x =
∑∞

n=1(e−m)n converges
in A. Now (e−m)x =

∑∞
n=2(e−m)n, so

x = (e−m)x+ (e−m)
= ex−mx+ e−m;

thus e = x− ex+mx−m ∈ I. Since ea− a ∈ I for all a ∈ A, we conclude
that a ∈ I for all a ∈ A, i.e. A ⊆ I, a contradiction.

Thus ‖π(e)‖ ≥ 1.

2

1.5. Definition. A proper ideal I of an algebra A is said to be max-
imal if it is not contained in any ideal of A except itself, and the entire
algebra A.

1.6. Example. Let A = C0(R), and set I = {f ∈ A : f(0) = 0}. Then
I is a maximal ideal of A.

1.7. Corollary. Let A be an abelian Banach algebra. If I is a proper
modular ideal of A, then I is contained in some maximal (modular) ideal
M of A. Furthermore, all maximal modular ideals of A are closed.
Proof. First we observe that if I is a proper modular ideal of A, and if J
is any proper ideal of A containing I, then J is also modular. Indeed, if e
is the identity modulo I, then e also serves as an identity modulo J .

Consider the set

J = {J ⊆ A : I ⊆ J and J is a proper ideal of A},

partially ordered with respect to inclusion. Choose an increasing chain C in
J, say

C = {Jα}α∈Λ.

Let J = ∪α∈ΛJα, and e ∈ A be an identity modulo I.
Then J is an ideal in A. Also, e 6∈ Jα for all α ∈ Λ, and so e 6∈ J . Thus

J is proper. Clearly J is an upper bound for C. By Zorn’s Lemma, there
exists a maximal element M in J, and I ⊆ M. Clearly e 6∈ M since e 6∈ K
for any K ∈ J. Thus M is a proper maximal ideal of A containing I.

Suppose that L is a maximal ideal of A. Then the norm closure of L
is also seen to be an ideal of A. By maximality, L = L or L = A. But
‖πLe‖ ≥ 1, and so dist (e,L) ≥ 1. Thus e 6∈ L, and L = L is closed.

2
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1.8. Proposition. Let A be a commutative, unital Banach algebra
and let a ∈ A. If a is not invertible, then a is an element of some maximal
ideal M of A.
Proof. Now aA = Aa is an ideal of A and 1 6∈ aA. Thus a ∈ aA ⊆M for
some maximal ideal M by Corollary 1.7.

2

1.9. Definition. Let A be a Banach algebra. A non-zero complex
linear functional φ : A → C is said to be multiplicative if φ(ab) = φ(a)φ(b)
for all a, b ∈ A. The set of all non-zero multiplicative linear functionals on
A is denoted by

∑
A, and is called the spectrum of A.

Note that if 1 ∈ A, then φ(1) = φ(12) = φ(1)2, and so φ(1) ∈ {0, 1}. If
φ(1) = 0, then φ(a) = φ(1a) = φ(1)φ(a) = 0 for all a ∈ A, contradicting
the fact that φ 6= 0. Thus φ(1) = 1.

1.10. Proposition. Let A be a Banach algebra and φ be a multiplica-
tive linear functional on A. Then φ is bounded; in fact, ‖φ‖ ≤ 1.
Proof. If 1 6∈ A, then we may consider

φ+ : A+ → C
(λ, a) 7→ λ+ φ(a),

which is a linear functional on A+, the unitization of A as defined in Remark
1.1.18. It is not hard to verify that φ is bounded if and only if φ+ is. As
such, we may assume that 1 ∈ A.

Let M = ker φ and a ∈ A. Then φ(a − φ(a)1) = 0, so that a =
φ(a)1+(a−φ(a)1). Write λ = φ(a) and b = (a−φ(a)1) so that λ ∈ C, b ∈M.
Then

‖φ‖ = sup{|φ(x)|
‖x‖

: ‖x‖ 6= 0}

= sup{|φ(λ+ b)|
‖λ+ b‖

: λ 6= 0, b ∈ ker φ}

= sup{ |λ|
‖λ+ b‖

: λ 6= 0, b ∈ ker φ}

= sup{ 1
‖1 + b′‖

: b′ ∈ ker φ}

= 1,

since otherwise ‖1 + b′‖ < 1 would imply that b′ is invertible, contradicting
the fact that b′ ∈M, a proper ideal of A.

2



86 4. ABELIAN BANACH ALGEBRAS

1.11. Proposition. Let A be an abelian Banach algebra. Then there
is a one-to-one correspondence between the spectrum

∑
A, and the set of

maximal modular ideals of A.
Proof. Let M be a maximal modular ideal of A. Then A/M is a unital
Banach algebra with no proper ideals. Thus every non-zero element of A/M
is invertible, by Proposition 1.8. By the Gelfand-Mazur Theorem 2.1.33,
there exists a unique isometric isomorphism τ : A/M→ C. The map

φM : A → C
a 7→ τ(πM(a))

is easily seen to be a multiplicative linear functional, and ker φM = M.
Moreover, if M1 6= M2 are two maximal modular ideals of A, then φM1 6=
φM2 , since their kernels are distinct.

Conversely, if φ ∈
∑
A, let M = ker φ. Then C ' φ(A) ' A/ker φ =

A/M, so M is a maximal regular ideal, as C is unital and has no non-trivial
ideals. Consider φM defined as above. Since the isomorphism between A/M
and C is unique, φM = φ.

2

Because of this result,
∑
A is also referred to as the maximal ideal

space of A.

1.12. Proposition. Let A be an abelian Banach algebra. Then
∑
A is

locally compact in the weak*-topology on the unit ball of A∗. If A is unital,
then

∑
A is in fact compact.

Proof. Let
∑0
A =

∑
A ∪{0}. Then

∑0
A is clearly contained in the unit ball

of A∗. Let {φα}α∈Λ be a net in
∑0
A such that weak∗-limα∈Λ φα = φ ∈ A∗.

Then for all x, y ∈ A and λ ∈ C,

φ(λx+ y) = lim
α
φα(λx+ y)

= lim
α
λφα(x) + φα(y)

= λφ(x) + φ(y)

and

φ(xy) = lim
α
φα(xy)

= lim
α
φα(x)φα(y)

= φ(x)φ(y).

Thus φ ∈
∑0
A. In particular, therefore,

∑0
A is compact, being a closed

subset of the weak*-compact unit ball of A∗. Clearly {0} is closed in
∑0
A.

Since
∑
A is an open subset of a compact set

∑0
A,
∑
A is locally compact.

If A is unital, then {0} is isolated in
∑0
A since φ(1) = 1 for all φ ∈

∑
A.

Thus
∑
A is closed in

∑0
A, and thus is weak*-compact itself.

2
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1.13. Definition. Let A be an abelian Banach algebra. Given a ∈ A,
we define the Gelfand Transform â of a as follows:

â :
∑
A → C

φ 7→ φ(a).

It is readily verified that â ∈ C(
∑
A). If ε > 0, then {φ ∈

∑
A : |â(φ)| ≥ ε }

is closed in
∑0
A =

∑
A ∪{0}, and hence it is compact. Thus â ∈ C0(

∑
A).

1.14. Theorem. [The Gelfand Transform] Let A be an abelian
Banach algebra.

(i) The map

Γ : A → C0(
∑
A)

a 7→ â

is a contractive algebra homomorphism, and
(ii) Â = ran Γ separates the points of

∑
A.

Proof.

(i) We have seen that â is continuous and vanishes at infinity. Now

‖Γ(a)‖ = ‖â‖
= sup

φ∈
P
A

|â(φ)|

= sup
φ∈

P
A

|φ(a)|

≤ ‖a‖.

Thus ‖Γ‖ ≤ 1. That Γ is indeed a homomorphism is left to the
reader.

(ii) If φ1 6= φ2 ∈
∑
A, then there exists a ∈ A such that φ1(a) 6= φ2(a).

But then â(φ1) 6= â(φ2), and so Â indeed separates the points of∑
A, as claimed.

2

1.15. Theorem. Let A be an abelian Banach algebra, and let
∑
A be

its spectrum. Let Γ : A → C0(
∑
A) be the Gelfand transform of A. Then

(i) σA(a) = ran â if 1 ∈ A;
(ii) σA(a) = ran â ∪ {0} if 1 6∈ A;
(iii) spr(a) = ‖â‖.

Proof.
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(i) If A is unital, then C0(
∑
A) = C(

∑
A). Thus

λ ∈ σA(a) ⇐⇒ (λ− a) 6∈ A−1

⇐⇒ (λ− a) lies in a maximal ideal M of A
⇐⇒ φM(λ− a) = 0 where M is a maximal ideal of A
⇐⇒ λ− φM(a) = 0 where M is a maximal ideal of A
⇐⇒ λ− â(φM) = 0 where M is a maximal ideal of A
⇐⇒ λ ∈ ran â.

(ii) By Proposition 1.10, there is a bijective correspondence between∑0
A and

∑
A+ . Moreover, σA(a) = σA+(a)∪{0}. But by (i) above,

σA+(a) = ran ˆj(a), where
ˆj(a) :

∑
A+

7→ C

ˆj(a) = ϕ(j(a))
= ϕ|A(a)
= ran â ∪ {0}.

(iii)

‖â‖ = spr(â)
= sup{|λ| : λ ∈ σ(â) = ran â}
= sup{|λ| : λ ∈ σ(â) ∪ {0}}
= sup{|λ| : λ ∈ σA(a)}
= spr (a).

2

Meanwhile, back on the Titanic . . .
“It ain’t over till the fat lady sinks.”
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2. The radical

2.1. The kernel of the Gelfand transform plays a particular role in the
study of homomorphims between Banach algebras.

2.2. Definition. Let A be an abelian Banach algebra. Then the Ja-
cobson radical of A is the kernel of the Gelfand transform . As such,

radA = ∩{ker φ : φ ∈
∑
A
}

= ∩{M : M a maximal ideal of A}.

We say that A is semisimple if radA = {0}.

2.3. Proposition. Let A be an abelian Banach algebra. Then radA =
{a ∈ A : spr(a) = 0} and the following are equivalent:

(i) A is semisimple, i.e. the Gelfand transform Γ : A → C(
∑
A) is

injective;
(ii)

∑
A separates the points of A;

(iii) the spectral radius is a norm on A.
Proof. First note that a ∈ radA if and only if Γ(a) = â = 0. But 0 = â ∈
C0(
∑
A) if and only if spr(â) = 0, i.e. if and only if spr(a) = 0.

(i) =⇒ (ii) Suppose A is semisimple. Let a1 6= a2 ∈ A. Then
0 6= a1− a2, and so spr(a1− a2) 6= 0 from above. Thus there exists
0 6= λ ∈ ran(â1 − a2). Let φ ∈

∑
A such that â1 − a2(φ) = λ. Then

â1(φ)− â2(φ) = φ(a1 − a2) = λ 6= 0, so that
∑
A separates points.

(ii) =⇒ (i) Suppose that
∑
A separates the points of A. Let a1 6=

a2 ∈ A and choose φ ∈
∑
A such that φ(a1) 6= φ(a2). Then â1(φ) 6=

â2(φ), so that â1 6= â2, and the Gelfand transform is injective.
(i) =⇒ (iii) Suppose that the Gelfand transform Γ is injective. In

general, we have ‖â‖ = spr(â) = spr(a). Then for all a, b ∈ A,
• spr(λa+ b) = ‖λ̂a+ b‖ ≤ |λ|‖â‖+ ‖b̂‖ = |λ|spr(a) + spr(b).
• spr(ab) = ‖âb‖ ≤ ‖â‖ ‖b̂‖ = spr(a) spr(b).
• spr(a) = ‖â‖ ≥ 0.
• Finally, spr(a) = 0 if and only if ‖â‖ = 0. But since Γ is

injective, this happens if and only if a = 0.
It follows that spr(·) is a norm on A.

(iii) =⇒ (i) Finally, suppose spr(·) is a norm on A. Then spr(a) = 0
implies a = 0, so that radA = {0}, and A is semisimple.

2

2.4. Theorem. Let A and B be abelian Banach algebras and suppose
B is semisimple. Let τ : A → B be an algebra homomorphism. Then τ is
continuous.
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Proof. Let φ ∈
∑
B, the maximal ideal space of B. Then φ ◦ τ is a multi-

plicative linear functional on A, and so ‖φ ◦ τ‖ = 1, implying that φ ◦ τ is
continuous.

The Closed Graph Theorem tells us that if X and Y are Banach spaces
and T : X → Y is a linear map such that limn→∞ xn = 0 and limn→∞ Txn =
y together imply y = 0, then T is continuous.

Suppose therefore that {an}∞n=1 ⊆ A, that limn→∞ an = 0 and that
limn→∞ τ(an) = b. Then for φ ∈

∑
B,

φ(b) = φ( lim
n→∞

τ(an))

= lim
n→∞

φ ◦ τ(an)

= (φ ◦ τ)( lim
n→∞

(an))

= (φ ◦ τ)(0)
= 0.

Thus b ∈ radB = {0}. By the Closed Graph Theorem, τ is continuous.
2

2.5. Definition. A Banach algebra A has uniqueness of norm if
all norms on A making it into a Banach algebra are equivalent.

2.6. Theorem. Let A be an abelian Banach algebra. If A is semisim-
ple, then A has uniqueness of norm.
Proof. With A abelian and semisimple, let ‖ · ‖1 and ‖ · ‖2 denote two
Banach algebra norms on A. Consider the natural injection

i : (A, ‖ · ‖1) → (A, ‖ · ‖2)
a 7→ a.

Then clearly i is an algebra isomorphism, and hence from Theorem 2.4,
i is continuous. By the Banach Isomorphism Theorem, i is a topological
isomorphism, and so the two norms are equivalent.

2

2.7. Corollary. Let A be a semisimple abelian Banach algebra and
α : A → A be an algebra automorphism. Then α is also a homeomorphism.
Proof. Theorem 2.4 implies that both α and α−1 are continuous.

2

Warts is hell.
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3. Examples

3.1. Depending upon the algebraA in question, the Gelfand Transform
might not yield as much information as we might otherwise hope for. Here
is an example for which

∑
A does not separate the points of A.

3.2. Example. Let n > 0 and B = Mn(C). Consider the algebra
A ⊆ M2n(C), where

A =
{[

λIn B
0 λIn

]
: B ∈ B, λ ∈ C

}
.

Then A is commutative. Let φ ∈
∑
A. Then φ(

[
I 0
0 I

]
) = 1, and so

φ(λI2n) = λ, λ ∈ C.
Also,

0 = φ(0)

= φ(
[

0 B
0 0

]2

)

= φ(
[

0 B
0 0

]
)2

and so φ(
[

0 B
0 0

]
) = 0.

Thus φ(
[
λIn B
0 λIn

]
) = λ for all λ ∈ C and B ∈ Mn. In other words,∑

A = {φ}, a singleton.

3.3. Let X be a compact, Hausdorff space. We wish to consider the
spectrum of the algebra C(X) of continuous functions on X. To do this, we
first recall a preliminary result from topology.

3.4. Proposition. Let X be a compact space and Y be a Hausdorff
space. Suppose that τ : X → Y is a bijective, continuous map. Then τ is a
homeomorphism, i.e., τ−1 is also continuous.

3.5. Theorem. Let X be a compact, Hausdorff space. Then
∑
C(X)

equipped with its weak*-topology as a subset of C(X)∗ is homeomorphic to
X with its given topology.
Proof. Let x ∈ X, and consider the map

δx : C(X) → C
f 7→ f(x).

It is easy to see that δx ∈
∑
C(X). Such maps are called evaluation func-

tionals. Note that the corresponding maximal ideal is Mx = ker δx = {f ∈
C(X) : f(x) = 0}. It is clear that given x 6= y ∈ X, δy 6= δx since C(X)
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separates the points of X. Thus the map x 7→ δx is injective. Our next goes
is to show that it is surjective.

Let M be a maximal ideal of C(X). We shall show that there exists
x ∈ X such that M = Mx, where Mx is defined as above.

Suppose that for any x ∈ X, there exists fx ∈ M such that fx(x) 6= 0.
Since f is continuous, we can find an open neighbourhood Ox of x such
that y ∈ Ox implies fx(y) 6= 0. Then the family {Ox : x ∈ X} is an open
cover of the compact space X, and as such, we can find a finite subcover
{Oxi : 1 ≤ i ≤ n}. Consider the function g :=

∑n
i=1 fxifxi ∈ M. Then

clearly g ≥ 0 and for any x ∈ X, there exists xi such that fxi(x) 6= 0. Thus
g(x) ≥ |fxi(x)|2 > 0, and so g is in fact invertible! This contradicts the
fact that M is a maximal ideal, and thus is proper. It follows that there
exists x ∈ X such that f(x) = 0 for all f ∈M. But then M⊆Mx, and so
by maximality, we conclude that M = Mx, and hence the map x 7→ δx is
surjective.

By Proposition 3.4, it remains only to show that the map x → δx is
continuous. Let {xα}α∈Λ be a net in X converging to the element x. Then
f(xα) converges to f(x) for each f ∈ C(X). But then δxα(f) converges to
δx(f) for all f ∈ C(X), and so δxα converges to δx in the weak*-topology on
C(X)∗. Thus x 7→ δx is continuous, and our result is proved.

2

3.6. Corollary. Let X be a compact, Hausdorff space. Then C(X)
has uniqueness of norm.
Proof. The Gelfand map Γ is the identity map, so it is injective, and thus
C(X) is semisimple. We now apply Theorem 2.6.

2

3.7. Let G be a locally compact abelian group equipped with a Haar
measure µ. It is well-known that if λ is any other Haar measure on G,
then λ is a positive multiple of µ. [See, for example, the book of Folland
[Fol95][Thm 2.10, 2.20].] Moreover, since G is abelian, it is unimodular,
from which it follows that dµ(x−1) = dµ(x), as measures on G. Consider
f, g ∈ L1(G,µ). Then for x ∈ G,

(f ∗ g)(x) =
∫
f(y)g(y−1x)dµ(y)

=
∫
f(xv)g(v−1)dµ(v) (v = x−1y)

=
∫
f(xz−1)g(z)dµ(z) (z = v−1)

=
∫
g(z)f(z−1x)dµ(z) (xz−1 = z−1x)

= (g ∗ f)(x).
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Thus L1(G,µ) is abelian.
To verify that the norm on L1(G,µ) is indeed a Banach algebra norm,

consider

‖f‖1 ‖g‖1 =
∫
|f(y)| ‖g‖1dy

≥
∫
|f(y)|

∫
|g(y−1x)|dx dy

≥
∫ ∫

|f(y) g(y−1x)|dx dy

=
∫ ∫

|f(y) g(y−1x)|dy dx

≥
∫
|
∫
f(y)g(y−1x)dy|dx

≥
∫
|(f ∗ g)(x)|dx

= ‖f ∗ g‖1.

3.8. Definition. Given a locally compact abelian group G, we consider
the set Ĝ of continuous homomorphisms of G into T = {z ∈ C : |z| = 1}.
Such homomorphisms are called characters of G, and Ĝ is referred to as
the dual group of G.

3.9. We leave it to the reader to verify that Ĝ is indeed a group. In
fact, Ĝ corresponds to the set of irreducible representations of G, which are
always one dimensional when G is abelian.

For the sake of convenience, let us write
∑

G for
∑

L1(G,µ), and dx for
dµ(x). Given φ ∈ Ĝ, we can define an element Φ ∈

∑
G via

Φ(f) =
∫

G
φ(x) f(x) dµ(x).

Indeed, for each f, g ∈ L1(G,µ),

Φ(f ∗ g) =
∫
φ(x) (f ∗ g)(x)dx

=
∫
φ(x)

∫
f(y) g(y−1x)dy dx

=
∫ ∫

f(y)g(z)φ(yz)dz dy (z = y−1x)

=
∫ ∫

f(y)φ(y)φ(z)g(z)dz dy

= (
∫
f(y)φ(y)dy) (φ(z)g(z)dz)

= Φ(f) Φ(g).
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If φ1 6= φ2 ∈ Ĝ, then 0 6= φ1 − φ2 ∈ C0(G) ⊆ L∞(G,µ). Thus there exists
g ∈ L1(G,µ) such that

∫
g(x)(φ1−φ2)(x)dx 6= 0. In particular, therefore, if

Φ1 (resp. Φ2) is the element of
∑

G corresponding to φ1 (resp. φ2) as above,
then Φ1(g) 6= Φ2(g), so that the map φ 7→ Φ is injective.

3.10. Theorem. Let G be a locally compact abelian group with Haar
measure µ. Then

∑
G ' Ĝ.

Proof. From above, we see that Ĝ embeds injectively into
∑

G. Next
suppose that Φ ∈

∑
G. Since Φ ∈ L1(G,µ)∗ ' L∞(G,µ), there exists

φ ∈ L∞(G,µ) such that

Φ(f) =
∫
f(x)φ(x)dx for all f ∈ L1(G,µ).

Choose f ∈ L1(G,µ) such that 0 6= Φ(f). Then for any g ∈ L1(G,µ),

Φ(f)
∫
φ(y)g(y)dy = Φ(f) Φ(g)

= Φ(f ∗ g)

=
∫ ∫

φ(x)f(xy−1)g(y)dy dx

=
∫

Φ(Lyf)g(y)dy.

Thus φ(y) = Φ(Lyf)/Φ(f) a.e. . Redefine φ(y) = Φ(Lyf)/Φ(f) for
every y, so that φ is continuous. Then

φ(xy)Φ(f) = Φ(Lxyf)
= Φ(LxLyf)
= φ(x)Φ(Lyf)
= φ(x)φ(y)Φ(f),

and hence φ(xy) = φ(x)φ(y).
Finally, φ(xn) = φ(x)n for every n ≥ 1, and φ bounded implies that

|φ(x)| ≤ 1, while φ(x−n) bounded implies that |φ(x)| = 1 for all x ∈ G.
Thus φ ∈ Ĝ, and so the map φ 7→ Φ is onto, as claimed.

The topology we consider on Ĝ is that of uniform convergence on com-
pact sets. Since Ĝ consists of continuous functions, this is the same as
pointwise convergence, under which the operations of multiplication and in-
version are clearly continuous. Although we shall not show it here, it can
be demonstrated that this topology coincides with the weak*-topology on Ĝ
inherited from L∞(G,µ).

But Ĝ ∪ {0} is the set of all homomorphisms from L1(G,µ) into C,
which is closed in the unit ball of L∞(G,µ), and hence is weak*-compact,
by Alaoglu’s Theorem. Thus Ĝ must be locally compact, as {0} is closed.

2
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3.11. Theorem.
(i) Ẑ ' T, and thus

∑
`1(Z) ' T;

(ii) R̂ ' R, and thus
∑

L1(R,dx) ' R;
(iii) T̂ ' Z, and thus

∑
L1(T,dm) ' Z, where dm represents normalised

Lebesgue measure on the unit circle.
Remark: We shall content ourselves here with the algebraic calculation,
and omit the explicit determination of the underlying topologies, which are
the natural topologies on the spaces involved.

Proof.
(i) For each α ∈ T, define φα ∈ Ẑ via φα(1) = α. Suppose φ ∈ Ẑ. If

α = φ(1), then α ∈ T, and φ(n) = φ(1)n = αn for all n ∈ Z. Thus
φ = φα. It follows that the map α 7→ φα is surjective. That it is
injective is trivial.

(ii) If φ ∈ R̂, then we have φ(0) = 1, so there exists a > 0 so that∫ a
0 φ(t)dt 6= 0. Setting B =

∫ a
0 φ(t)dt, we have

Bφ(x) =
∫ a

0
φ(t)dtφ(x) =

∫ a

0
φ(x)φ(t)dt =

∫ a

0
φ(x+ t)dt =

∫ x+a

x
φ(t)dt.

It follows that φ is differentiable and

φ′(x) = lim
h→0

φ(x+ h)− φ(x)
h

= B−1 lim
h→0

(
1
h

∫ x+a+h

x+h
φ(t)dt− 1

h

∫ x+a

x
φ(t)dt

)
= B−1 lim

h→0

(
1
h

∫ x+a+h

x+a
φ(t)dt− 1

h

∫ x+h

x
φ(t)dt

)
= B−1(φ(x+ a)− φ(x)) as φ is continuous
= B−1φ(x) (φ(a)− 1)
= cφ(x),

where c = B−1 (φ(a) − 1). Thus φ(x) = ecx, and since |φ(x)| = 1
for all x, c = 2πib for some b ∈ R.

Conversely, for any b ∈ R, φb(x) = e(2πib)x determines an ele-
ment of R̂. Clearly the map b 7→ φb is injective.

(iii) Since T ' R/Z via the identification of x ∈ R/Z with α = e(2πi)x,
the characters of T are just the characters of R that vanish on Z.
But φb(1) = 1 implies that e2πib = 1, and so b ∈ Z. Thus T̂ ' Z.

2

3.12. Definition. Let A be a Banach algebra and a ∈ A. Then a is
said to generate A if the smallest closed subalgebra of A containing a is A
itself.
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The next theorem provides some justification for the term spectrum when
referring to the set of non-zero multiplicative linear functionals on a Banach
algebra.

3.13. Theorem. Let A be a commutative unital Banach algebra and
let a be a generator for A. Then the mapping â :

∑
A 7→ σ(a) is a homeo-

morphism.
Proof. We already know that â ∈ C(

∑
A) and that ran â = σ(a). Since

both
∑
A and σ(a) are compact and Hausdorff, it suffices to show that â is

injective. We can then apply Proposition 3.4 to obtain the desired result.
Suppose that φ1, φ2 ∈

∑
A and that â(φ1) = â(φ2). Then φ1(a) = φ2(a).

Let B = {x ∈ A : φ1(x) = φ2(x)}. Since φ1, φ2 are continuous, multiplicative
and linear, B is an algebra that contains 1 and a, and B is closed. Thus
B = A and so φ1 = φ2, proving that â is injective, as required.

2

3.14. Example. Let A = A(D), the disk algebra. Now it is a classical
result that A is generated by 1 and f , where f(z) = z for all z ∈ D. (Indeed,
this is the solution to the Dirichlet Problem for the circle.) By Theorem
3.13,

∑
A is homeomorphic to σ(f). But as we have seen in Example 2.3.2,

σ(f) = {z ∈ C : |z| ≤ 1}. We conclude that
∑
A(D) = D.

3.15. Example. Let us revisit `1(Z). For a function f ∈ C(T), con-
sider the sequence {f̂(n)}n∈Z of Fourier coefficients of f given by

f̂(n) =
1

2π

∫ 2π

0
f(eiθ) e−inθdθ.

Define the Wiener algebra

AC(T) = {f ∈ C(T) : {f̂(n)}n∈Z ∈ `1(Z)},

equipped with the norm ‖f‖ =
∑

n∈Z |f̂(n)|.
Clearly AC(T) is abelian. Let f and g lie in AC(T), so that

f(θ) =
∑
n∈Z

ane
inθ and g(θ) =

∑
n∈Z

bne
inθ.

Then ˆ(fg)(n) = 1
2π

∫ 2π
0 f(θ) g(θ) e−inθ dθ. Next,

f(θ) g(θ) =

(∑
k∈Z

ake
ikθ

) (∑
n∈Z

bne
inθ

)
=

∑
k∈Z

∑
n∈Z

akbne
i(k+n)θ

=
∑
k∈Z

∑
m∈Z

akbm−ke
imθ (m = n+ k)
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Thus

ˆ(fg)(n) =
1

2π

∫ 2π

0

∑
k∈Z

∑
m∈Z

akbm−ke
i(m−n)θdθ.

If m 6= n, we get 0, and so

ˆ(fg)(n) =
1

2π

∫ 2π

0

∑
k∈Z

akbn−ke
i0dθ

=
∑
k∈Z

akbn−k

= (ab)n,

where a = (an) and b = (bn) lie in `1(Z). It follow that the map

τ : `1(Z) → AC(T)
(an) 7→

∑
n∈Z ane

inθ

is an isometric algebra isomorphism.
Suppose that φ is a non-zero multiplicative linear functional on AC(T).

If φ(eiθ) = λ, then |λ| = φ(eiθ)| ≤ ‖φ‖ ‖eiθ‖1 = 1. Also, φ(e−iθ) =
φ((eiθ)−1) = 1

λ , and | 1λ | = |φ(e−iθ)| ≤ ‖φ‖ ‖e−iθ‖1 = 1. Thus |λ| = 1.
Conversely, if |λ| = 1, then

φ(
∑
n∈Z

ane
inθ) =

∑
n∈Z

anλ
n

is an absolutely convergent, multiplicative evaluation functional, and φ(1) =
1.

We conclude again that
∑
AC(T) =

∑
Z = T. The argument with regards

to the topology follows as in Theorem 3.5. Namely, let {λα}α be a net in T
with limα λα = λ ∈ T. Let φλα , φα be the associated multiplicative linear
functionals with φαλ

(eiθ) = λα, φλ(eiθ) = λ. Then limα λα = λ implies
limα f(λα) = f(λ) for all f ∈ C(T), hence limα φλα(f) = φλ(f) for all
f ∈ AC(T). Thus limα φλα = φλ in the weak*-topology on

∑
AC(T).

As an application of this result, we obtain the following:

3.16. Theorem. [Wiener’s Tauberian Theorem] If f ∈ AC(T)

and f(z) 6= 0 for all z ∈ T, then
1
f

has an absolutely convergent Fourier

series.
Proof. By Theorem 1.15,

σ(f) = σ(f̂) = ran f̂ .
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But if φ ∈
∑
AC(T), then φ = φλ for some λ ∈ T, where φλ(f) = f(λ) is the

evaluation functional corresponding to λ. Thus

ran f̂ = {f̂(φλ) : φλ ∈
∑
AC(T)

}

= {f̂(φλ) : λ ∈ T}
= {φλ(f) : λ ∈ T}
= {f(λ) : λ ∈ T}
= ran f.

Since 0 6∈ ran f , we get 0 6∈ σAC(T)(f), so 1
f has an absolutely convergent

Fourier series.
2

3.17. Example. Let V ∈ B(L2([0, 1], dx)) denote the classical Volterra
operator as defined in Example 3.4.5. Let A = {p(V ) : p a polynomial }−‖·‖.
Then A is an abelian Banach algebra, radA = {R ∈ A : spr(R) = 0}, and
thus radA = {p(V ) : p a polynomial with p(0) = 0}−‖·‖.

Bulletin: Curiosity pleads guilty
to lesser charge of manslaughtering cat.



CHAPTER 5

C*-Algebras

There are only two truly infinite things, the universe and stupidity.
And I am unsure about the universe.

Albert Einstein

1. Definitions and Basic Theory.

1.1. In this chapter we turn our attention to an important class of
Banach algebras known as C*-algebras.

1.2. Definition. Let A be an algebra. Then an involution on A is
a map

∗ : A → A
a 7→ a∗

satisfying
(i) (a∗)∗ = a for all a ∈ A;
(ii) (αa+ βb)∗ = αa∗ + βb∗ for all a, b ∈ A, α, β ∈ C;
(iii) (ab)∗ = b∗a∗ for all a, b ∈ A.

If A carries an involution, we say that A is an involutive algebra, or a
*-algebra. A subset F of A is said to be self-adjoint if x ∈ F implies
x∗ ∈ F .

A homomorphism τ : A → B between involutive algebras is said to be
a *-homomorphism if τ respects the involution. That is, τ(a∗) = (τ(a))∗

for all a ∈ A.
Finally, a Banach *-algebra is an involutive Banach algebra A whose

involution satisfies ‖a∗‖ = ‖a‖ for all a ∈ A.

Observe that if A is a unital involutive algebra with unit eA, then for
all a ∈ A we have (e∗A a) = (a∗ eA)∗ = (a∗)∗ = a = (eA a∗)∗ = (a e∗A). Thus
eA = e∗A, since the unit must be unique.

1.3. Remark. The condition that a homomorphism τ from an invo-
lutive Banach algebra A to an involutive Banach algebra B be a *-homo-
morphism is equivalent to the condition τ(h) = τ(h)∗ whenever h = h∗. To
see this, note that if this condition is met, then given a ∈ A, we may write
a = h + i k, where h = (a + a∗)/2 and k = (a − a∗)/2i. Then h = h∗,

99
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k = k∗, and τ(a∗) = τ(h− i k) = (τ(h) + iτ(k))∗ = τ(a∗), implying that τ is
a *-homorphism. The other direction is clear.

1.4. Example. Let A = (C, | · |). Then ∗ : λ 7→ λ defines an involution
on C.

1.5. Example. Consider the disk algebra A(D). For each f ∈ A(D),
define f∗(z) = f(z) for each z ∈ D. Then the map ∗ : f 7→ f∗ defines an
involution on A(D), under which it becomes a Banach ∗-algebra.

1.6. Example. Recall from Remark 3.6 that the map that if H is a
Hilbert space, then the map that sends a continuous linear operator T to
its Hilbert space adjoint T ∗ is an involution. Thus B(H) is an involutive
Banach algebra.

Suppose dimH = 2, and identify B(H) with M2. Let S ∈ B(H) be the

invertible operator S =
[

1 1
0 1

]
. Then S−1 =

[
1 −1
0 1

]
. Consider the

map
AdS : B(H) → B(H)

T 7→ S−1 T S
.

Then AdS is a multiplicative homomorphism of B(H), but it is not a ∗-
homomorphism.

For example,

AdS

[
1− i 2− i
3− i 4− i

]
=
[
−2 −4
3− i 7− 2i

]
,

while (
AdS

[
1 + i 3 + i
2 + i 4 + i

])∗
=
[
−1 2− i
−2 6− 2i

]
.

On the other hand, if U ∈ B(H) is unitary, then it is not hard to verify
that AdU does define a ∗-automorphism.

1.7. Example. Let Tn denote the algebra of n × n upper triangu-
lar matrices, viewed as a Banach subalgebra of B(Cn) equipped with the
operator norm. We can define an involution on Tn via the map: [tij ]∗ =
[t(n+1)−j (n+1)−i].

1.8. Definition. A C*-algebra A is an involutive Banach algebra
which satisfies the C*-equation:

‖a∗a‖ = ‖a‖2 for all a ∈ A.

A norm on an involutive Banach algebra which satisfies this equation
will be called a C*-norm.



1. DEFINITIONS AND BASIC THEORY. 101

1.9. Remark. First observe that if B is an involutive Banach algebra
and ‖b∗ b‖ ≥ ‖b‖2 for all b ∈ B, then ‖b‖2 ≤ ‖b∗‖ ‖b‖, which implies that
‖b‖ ≤ ‖b∗‖. But then ‖b∗‖ ≤ ‖(b∗)∗‖ = ‖b‖, so that ‖b‖ = ‖b∗‖. Moreover,
‖b‖2 ≤ ‖b∗b‖ ≤ ‖b∗‖ ‖b‖ = ‖b‖2, showing that the norm on B is a C*-norm.

Secondly, if B is a non-zero unital C∗-algebra with unit eB, then

‖eB‖ = ‖e2B‖ = ‖e∗B eB‖ = ‖eB‖2,

and hence ‖eB‖ = 1.

1.10. Example. It is always useful to have counterexamples as well
as examples. To that end, consider the following:

(i) The disk algebra A(D) is not a C∗-algebra with the involution
f∗(z) = f(z). Indeed, if f(z) = i z + z2, then f∗(z) = −i z + z2.
Thus ‖f∗ f‖ = sup|z|=1 |z4 + z2| = 2, while ‖f‖2 ≥ |f(i)|2 = 4.

(ii) Tn is not a C∗-algebra with the involution defined in Example 1.7.
To see this, note that if E1 n denotes the standard (1, n) matrix
unit, then E∗1 n = E1 n, so that ‖E∗1 nE1 n‖ = ‖E2

1 n‖ = ‖0‖ = 0,
while ‖E1 n‖ = 1, as is readily verified.

(iii) Recall that `1(Z) is a Banach algebra, where for f, g ∈ `1(Z), we
defined the product via convolution:

(f ∗ g)(n) =
∑
k∈Z

f(n− k) g(k)

and

‖f‖1 =
∑
k∈Z

|f(k)|.

Consider the involution f∗(n) = f(−n). Let g ∈ `1(Z) be the ele-
ment defined by: g(n) = 0 if n 6∈ {0, 1, 2}; g(0) = −i = g(2), and
g(1) = 1. We leave it to the reader to verify that ‖g∗ g‖1 = 5, while
‖g‖1 = 3. Again, this is not a C∗-norm.

1.11. Example. Let X be a locally compact, Hausdorff space. Con-
sider (C0(X), ‖ · ‖∞). For f ∈ C0(X), define f∗(x) = f(x) for each x ∈ X.
Then C(X) is a C*-algebra. The details are left to the reader.

This C*-algebra is unital precisely when X is compact.

1.12. Example. Let H be a Hilbert space. As we have just recalled,
B(H) is an involutive Banach algebra using the Hilbert space adjoint as our
involution. We now check that equipped with this involution, B(H) verifies
the C*-equation.
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Let T ∈ B(H). Then ‖T ∗T‖ ≤ ‖T‖2 from above. For the reverse
inequality, observe that

‖T‖2 = sup
‖x‖=1

‖Tx‖2

= sup
‖x‖=1

< Tx, Tx >

= sup
‖x‖=1

< T ∗Tx, x >

≤ sup
‖x‖=1

‖T ∗T‖ ‖x‖2

= ‖T ∗T‖.
Thus B(H) is a C*-algebra. By considering the case where H = Cn is

finite dimensional, we find that Mn equipped with the operator norm and
Hilbert space adjoint is a C*-algebra.

1.13. Remark. Suppose that A is a C*-algebra and that B is a closed,
self-adjoint subalgebra of A. (For a subset D of an involutive Banach algebra
Q to be self-adjoint means that if d ∈ D, then d∗ ∈ D.) Then the C*-
equation is trivially satisfied for all b ∈ B, because it is already satisfied in
A, and the norm is inherited from A. It follows that B is also a C*-algebra.

In particular, if a ∈ A and A is unital, then we denote by C∗(a) the
C∗−algebra generated by a. It is the smallest unital subalgebra of A
containing a, that is, it is the intersection of all C∗-subalgebras of A con-
taining a, and it is easily seen to coincide with the closure of {p(a, a∗) :
p a polynomial in two non-commuting variables }.

When A is non-unital, C∗(a) is understood to mean the smallest C∗-
algebra of A containing a. It coincides with the closure of {p(a, a∗) :
p a polynomial in two-noncommuting variables satisfying p(0, 0) = 0}.

When we wish to emphasize the fact that C∗(a) is non-unital, or when
we wish to consider the non-unital C∗-algebra generated by a in a unital
C∗-algebra A, we shall denote it by C∗0 (a).

1.14. Example. More generally, ifA is any C∗-algebra , and if F ⊆ A,
we denote by C∗(F) the C∗-subalgebra of A generated by F . As before, it
is the intersection of all C∗-algebras of A containing F , it being understood
that it is unital when the algebra A is unital.

1.15. Example. Let H be a Hilbert space. Then K(H) is a closed,
self-adjoint subalgebra of B(H), and thus K(H) is a C*-algebra. K(H) is
not unital unless H is finite-dimensional.

1.16. Example. Let {Aα}α∈Λ be a family of C*-algebras indexed by
a set Λ. It is elementary to verify that

A = {(aα)α∈Λ : aα ∈ Aα, α ∈ Λ, sup
α
‖aα‖ <∞}
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is a C*-algebra, where the involution is given by (aα)∗ = (a∗α), and the norm
is given by ‖(aα)‖ = supα ‖aα‖.

Let K = {(aα) ∈ A : for all ε > 0, {α ∈ Λ : ‖aα‖ ≥ ε} is finite}. Then
K is a C*-algebra; in fact, K is a closed, self-adjoint ideal of A.

In particular, if {kn}∞n=1 ⊆ N, then A = ⊕∞n=1Mkn is a C*-algebra under
this norm. Setting kn = 1 for all n ≥ 1 shows that `∞ is a C*-algebra, and
that c0 is a closed, self-adjoint ideal in `∞.

1.17. Example. More generally, let µ be a finite regular Borel mea-
sure on the measure space X. Then L∞(X,µ) is a C*-algebra with the
standard norm. As in the case of C(X), the involution here is f∗(x) = f(x)
for all x ∈ X.

In fact, we can think of L∞(X,µ) as a commutative C*-subalgebra of
B(L2(X,µ)) as follows. Recall from Example 3.3.14, for each φ ∈ L∞(X,µ),
we define the multiplication operator

Mφ : L2(X,µ) → L2(X,µ)
f 7→ φ f.

Our goal is to show that the map Θ : φ 7→ Mφ is an isometric *-
monomorphism of L∞(X,µ) into B(L2(X,µ)). We then identify L∞(X,µ)
with its image under this map Θ, and use the same notation for both alge-
bras. Since Θ preserves products, the image algebra is clearly also abelian.

That Θ is a homomorphism is readily verified. Furthermore, notice that
for f ∈ L2(X,µ),

‖Mφ f‖ = (
∫

X
|φ f |2dµ)

1
2 ≤ ‖φ‖∞ ‖f‖2,

so that ‖Mφ‖ ≤ ‖φ‖∞. Meanwhile, if for each n ≥ 1 we set En = {x ∈ X :
|φ(x)| ≥ ‖φ‖∞− 1

n}, then for χEn equal to the characteristic function of En,
we have

‖MφχEn‖ = (
∫

X
|φχEn |2dµ)

1
2 ≥ (‖φ‖∞ − 1

n
) ‖χEn‖2,

so that ‖Mφ‖ = ‖φ‖∞, and thus Θ is isometric..
Finally, for f, g ∈ L2(X,µ) and φ ∈ L∞(X,µ), we have

< Mφf, g >=
∫

X
(φf)gdµ =

∫
X
f(φg)dµ =< f,Mφg >,

so that M∗
φ = Mφ. Hence Θ is a *-monomorphism.

1.18. Example. Let H be a Hilbert space and F ⊆ B(H) be a self-
adjoint family of operators on H. Consider the commutant F ′

of F defined
as:

F ′
= {T ∈ B(H) : TF = FT for all F ∈ F}.

We claim that F ′
is a C*-algebra.
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That it is an algebra is an easy exercise. If {Tn}∞n=1 ⊆ F ′
and if

limn→∞ Tn = T ∈ B(H), then for any F ∈ F , we have T F = limn→∞ Tn F =
limn→∞ F Tn = F T . Hence T ∈ F ′

, and so F ′
is closed in B(H). Finally,

if T ∈ F ′
and F ∈ F , then F ∗ ∈ F by assumption. Thus T F ∗ = F ∗ T .

Taking adjoints, we obtain T ∗ F = F T ∗, and therefore T ∗ ∈ F ′
, proving

that F ′
is a closed, self-adjoint subalgebra of B(H). By Remark 1.13. it is

a C*-algebra.

1.19. It is difficult to overstate the importance of the C*-equation. It
allows us to relate analytic information to algebraic information. For exam-
ple, consider the following Lemma, which relates the norm of an element of
a C*-algebra to its spectral radius, and its consequence, Theorem 1.21.

1.20. Lemma. Let A be a C*-algebra, and suppose h = h∗ ∈ A. Then
‖h‖ = spr (h). More generally, if a ∈ A, then ‖a‖ = (spr (a∗a))1/2.
Proof. Now ‖h‖2 = ‖h∗h‖ = ‖h2‖. By induction, we find that ‖h‖2n

=
‖h2n‖ for all n ≥ 1. Using Beurling’s Spectral Radius Formula, spr (h) =
limn→∞ ‖h2n‖1/2n

= limn→∞(‖h‖2n
)1/2n

= ‖h‖.
In general, a∗a is self-adjoint, and hence ‖a‖2 = ‖a∗a‖ = spr (a∗a).

2

1.21. Theorem. Let α : A → B be a *-isomorphism from a C*-
algebra A to a C*-algebra B. Then α is isometric. In particular, each
C*-algebra possesses a unique C*-norm.
Proof. First note that since α is a *-isomorphism, σA(a) = σB(α(a)) for all
a ∈ A. As such,

‖a‖A = [sprA(a∗a)]1/2

= [spr B(α(a)∗α(a))]1/2

= ‖α(a)‖B.

Thus α is isometric.
If A has two C*-norms ‖ · ‖1 and ‖ · ‖2, then the identity map id(a) = a

is clearly a *-isomorphism of A onto itself, and thus is isometric from above,
implying that the two norms coincide.

2

1.22. Definition. Let K be an ideal of a C*-algebra A. The annihi-
lator of K in A is the set

K⊥ = {a ∈ A : a k = 0 for all k ∈ K}.

K is said to be essential in A if its annihilator K = {0}.
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1.23. The apparent asymmetry of this definition is illusory. Suppose
A and K are as above. Let a ∈ K⊥. Given k ∈ K, a∗ k ∈ K and hence
a a∗k = 0. But then ‖a∗ k‖2 = ‖k∗ a a∗ k‖ = 0, forcing a∗ ∈ K⊥. But then
k a = (a∗ k∗)∗ = 0 for all k ∈ K. As such, K⊥ = {a ∈ A : k a = 0 for all k ∈
K}.

It is routine to verify that K⊥ is a closed subalgebra of A, and from
above, we see that K⊥ is self-adjoint, implying that K⊥ is a C*-subalgebra
of A.

1.24. Example. Let H be a complex, infinite dimensional Hilbert
space. Then K(H) is essential in B(H).

For if 0 6= T ∈ B(H), choose a non-zero vector x ∈ H such that y =
Tx 6= 0. Then 0 6= T (x⊗ x∗), and hence T 6∈ K(H)⊥.

1.25. Example. Recall that if X is a compact, Hausdorff space, then
there is a bijective correspondence between the closed subsets Y of X and
the closed ideals K of C(X). Given Y ⊆ X closed, the associated ideal KY =
{f ∈ C(X) : f(x) = 0 for all x ∈ Y }, while given an ideal K in C(X), the
correspoding closed subset of X is YK = {x ∈ X : f(x) = 0 for all f ∈ K}.

Let Y ⊆ X be closed. We claim that KY is an essential ideal of C(X) if
and only if Y is nowhere dense in X.

Suppose first that Y is nowhere dense. Let f ∈ K⊥. If x ∈ X\Y = X\Y ,
then by Urysohn’s Lemma we can find gx ∈ KY such that gx(x) 6= 0. Since
f gx = 0, we have f(x) = 0. But X\Y is dense in X and f is continuous,
and so f = 0 and KY is essential.

To prove the converse, suppose Y is not nowhere dense. Then we can
find an open set G ⊆ Y = Y . Choose y0 ∈ G. Again, by Urysohn’s Lemma,
we can find f ∈ C(X) such that f(y0) = 1 and f(x) = 0 for all x ∈ X\G. It
is routine to verify that f ∈ K⊥Y , and hence KY is not essential.

1.26. Example. Let X be a locally compact, Hausdorff space. Then
C0(X) is an essential ideal in Cb(X), the space of bounded continuous func-
tions on X with the supremum norm.

1.27. Definition. Let A be a C*-algebra. A C*-algebra B is said to
be a unitization of A if B is unital and A is *-isomorphic to an essential
ideal in B.

1.28. Example. Let H be an infinite dimensional Hilbert space and
let B ⊆ B(H) be any unital C*-algebra containing K(H). Then B is a
unitization of K(H).
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1.29. Example. Let A be a unital C*-algebra and suppose B is a
unitization of A. Let ρ : A → B be the *-monomorphic embedding of A
into B as an essential ideal. Then for each a ∈ A,

(eB − ρ(eA)) (ρ(a)) = 0,

and hence eB = ρ(eA). But ρ(A) is an ideal in B, and hence ρ(A) = B.
Thus any unitization of A is *-isomorphic to A itself.

1.30. Theorem. Every C*-algebra A possesses a unitization Ã.
Proof. If A is unital, then it serves as its own unitization. Suppose, there-
fore, that A is not unital. Consider the map:

κ : A → B(A)
a 7→ La

where La(x) = a x for all x ∈ A. Then κ is clearly a homomorphism. Denote
by Ã the subalgebra of B(A) generated by κ(A) and I, the identity operator.
While there is no obvious candidate for an involution on B(A), nevertheless
we may define one on Ã via (La + λI)∗ = La∗ + λI.

Now ‖La‖ = sup
‖x‖=1

‖Lax‖ = sup
‖x‖=1

‖a x‖ ≤ ‖a‖, so that κ is continu-

ous. In fact, ‖La‖ ≥ ‖La

(
a∗

‖a‖

)
‖ = ‖a‖, so that κ is an isometric *-

monomorphism. In particular, therefore, κ(A) is closed in B(A). Since Ã is
a finite dimensional extension of κ(A), Ã is closed as well.

Next,

‖(La + λI)∗(La + λI)‖ = sup
‖x‖=1

‖(a∗ + λ)(a+ λ)x‖

≥ sup
‖x‖=1

‖x∗(a∗ + λ)(a+ λ)x‖

= sup
‖x‖=1

‖ax+ λx‖2

= ‖La + λ‖2.

By Remark 1.9, Ã is a C*-algebra.
That κ(A) is an ideal in Ã is easily checked. Suppose (La + λI)Lb = 0

for all b ∈ A. Then for all b, x ∈ A, we have (a b + λ b)x = 0. Letting
x = (a b + λ b)∗, we find that a b = −λ b. Since b is arbitrary, this implies
that −λ−1a is a unit for A, a contradiction. This implies that κ(A) is
essential in Ã, completing the proof.

2

1.31. Two observations are in order. First, it will be useful to keep
in mind that for any x ∈ Ã, ‖x‖Ã = sup{‖x a‖A : ‖a‖A = 1}. Second, the
unitization of A above is unique in the following sense:
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If B is any unital C*-algebra containing A, then B contains an isometric
*-isomorphic copy of Ã. Indeed, if B0 is the algebra generated by A and
eB, then either eB ∈ A, in which case A = Ã ⊆ B, or B0 is a 1-dimensional
extension of A, and hence is closed in B. Since B0 is clearly self-adjoint, it
is a C*-algebra. The map:

Φ : Ã → B0

La + λI 7→ a+ λ eB

is easily seen to be a *-isomorphism, and thus is isometric, by Theorem 1.21.
B0 is our desired copy of Ã.

1.32. Example. Let X be a locally compact, Hausdorff space, and
denote by X0 the one point compactification of X. Then C(X0) is the
minimal unitization of C(X).

1.33. We mention that there is also a notion of a largest unitization for
a C∗-algebra A, called the multiplier algebra of A. It plays an analogous
rôle for abstract C∗-algebras that B(H) plays for K(H).

The love of honey is the root of all beehives.
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2. Elements of C∗-algebras.

2.1. In this section, we study the internal structure of C∗-algebras.
Using the involution and C∗-equation, we are able to show that the Gelfand
Transform for abelian C∗-algebras is injective, and hence that the only
abelian C∗-algebras are of the form C0(X) for some locally compact Haus-
dorff space X. We also develop a partial order on the set of self-adjoint
elements.

2.2. Recall that if A is a unital Banach algebra and a ∈ A, then the
spectrum of a relative to A is

σA(a) = {λ ∈ C : (a− λ eA) is not invertible in A}.

The resolvent of a relative to A is ρA(a) = C\σA(a). When A is not unital,
we set σA(a) = σÃ(a), where Ã is the unitization of A described in the last
section. It is clear that in this case, 0 ∈ σA(a), since A is an ideal in its
unitization. (We shall show below that in fact, any unitization and more
generally any C∗-algebra B containing A will yield the same spectrum.)

When only one C∗-algebra is under consideration, we suppress the sub-
scripts to simplify the notation.

It is easy to verify that σ(x∗) = σ(x)∗ = {λ : λ ∈ σ(x)}. Moreover, x is
invertible if and only if both x∗x and xx∗ are invertible. Indeed, if x ∈ A−1,
then so is x∗. Thus x∗ x and xx∗ lie in A−1, since this latter is a group.
Conversely, if x∗ x is invertible with inverse z, then z x∗ x = eA and so x is
left invertible. But (xx∗)r = eA for some r ∈ A, and so x is right invertible.

Finally, we remark that the invertibility of both xx∗ and of x∗ x is re-
quired. Indeed, if S denotes the unilateral backward shift operator from
Example 3.9, then S S∗ = I, but S is not invertible, as we have seen.

2.3. Definition. For each a in a C∗-algebra A, we define the real
part Re a = (a+ a∗)/2 and the imaginary part Im a = (a− a∗)/2i of a.

The terminology is of course borrowed from C.

2.4. Definition. An element x of a C∗-algebra A is called

• hermitian if x = x∗;
• normal if xx∗ = x∗x;
• positive if x = x∗ and σ(x) ⊆ [0,∞);
• unitary if x∗ = x−1;
• idempotent if x = x2;
• a projection if x = x∗ = x2

• a partial isometry if xx∗ and x∗ x are projections (called the
range projection and the initial projection of x, respectively).
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2.5. Example. Consider the C∗-algebra c0. A sequence x = (xn) is

• hermitian if and only if xn ∈ R for all n ≥ 1;
• always normal;
• positive if and only if xn ≥ 0 for all n ≥ 1;
• unitary if and only if |xn| = 1 for all n ≥ 1;
• idempotent (or a projection, or a partial isometry) if and only if
xn ∈ {0, 1} for all n ≥ 1;

2.6. Proposition. Let A be a C∗-algebra.

(i) If u ∈ A is unitary, then σ(u) ⊆ T.
(ii) If h ∈ A is hermitian, then σ(h) ⊆ R.

Proof.

(i) First observe that 1 = ‖eA‖ = ‖u∗u‖ = ‖u‖2. Thus spr (u) ≤
‖u‖ = 1 implies σ(u) ⊆ D. But ‖u−1‖ ≥ 1/dist(0, σ(u)) implies
that dist(0, σ(u)) ≥ ‖u∗‖ = 1, and so σ(u) ⊆ T.

(ii) Suppose h = h∗ ∈ A. Consider u = exp (ih). Using the uniform
convergence of the power series expansion of exp (ih) we see that
u∗ = exp(−ih∗) = exp(−ih). Since (ih) and (−ih) obviously com-
mute, we obtain:

u∗u = exp (−ih) exp (ih)
= exp (−ih+ ih)
= exp (0)
= 1
= uu∗.

Thus u is unitary. By (i) and the holomorphic functional calculus,
σ(u) = exp (iσ(h)) ⊆ T, from which we conclude that σ(h) ⊆ R.

2

2.7. Suppose S is a unital, self-adjoint linear manifold in a C∗-algebra
A. If h = h∗ ∈ S, then spr (h) ≤ ‖h‖, and hence σ(h) ⊆ [−‖h‖, ‖h‖]. Letting
p1 = h + ‖h‖eA and p2 = ‖h‖eA, we find that both p1 and p2 are positive
and h = p1 − p2. Thus for any s ∈ S, we may apply this to the real and
imaginary parts of s to see that s is a linear combination of four positive
elements. This linear combination is far from unique. (Another such linear
combination is obtained by simply letting q1 = p1 + eA, q2 = p2 + eA.)

Such linear manifolds S as above are referred to as operator systems.
For example, {α−1z + α0 + α1z : α−1, α0, α1 ∈ C} is an operator system in
C(T). Many results stated for C∗-algebras carry over to operator systems.
We refer the reader to [Pau86] for an excellent treatment of this vast topic.
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2.8. Theorem. Suppose that A ⊆ B are C∗-algebras and x ∈ A. Then
σA(x) = σB(x).
Proof. By considering Ã instead of A, we may assume that A is unital.
Clearly it suffices to prove that σA(x) ⊆ σB(x).

First consider the case where h = h∗ ∈ A. Then σA(h) ⊆ R, and as such
σA(h) = ∂σA(h). By Proposition 3.7 ∂σA(h) ⊆ σB(h) for any C∗-algebra B
containing A.

In general, if x ∈ A is not invertible in A, then either h1 = x∗x or
h2 = xx∗ is not invertible. As h1 and h2 are self-adjoint, from above we
have either 0 ∈ σB(h1) or 0 ∈ σB(h2). Either way, it follows that x is not
invertible in B.

2

2.9. Theorem. The Gelfand-Naimark Theorem. Let A be an
abelian C∗-algebra. Then the Gelfand Transform Γ : A → C0(ΣA) is an
isometric *-isomorphism.
Proof. We have seen that the Gelfand Transform is a norm decreasing
homomorphism from A into C0(ΣA). By Theorem 1.15, σ(a) ∪ {0} =
ran Γ(a) ∪ {0} in both the unital and non-unital cases. In particular, if
h = h∗ ∈ A, then ran Γ(a) ⊆ R, and so Γ(h) = Γ(h)∗. Thus Γ is a *-
homomorphism.

Also, ‖Γ(a)‖2 = ‖Γ(a∗a)‖ = spr (Γ(a∗a)) = spr (a∗a) = ‖a‖2, and so Γ is
isometric. Finally, Γ(A) is a closed, self-adjoint subalgebra of C0(ΣA) which
(by Theorem 1.14) separates the points of ΣA. By the Stone-Weierstraß
Theorem, Γ(A) = C0(ΣA).

2

2.10. Theorem. The Abstract Spectral Theorem. Let A be a
unital C∗-algebra and n ∈ A be normal. Then ΣC∗(n) is homeomorphic to
σ(n). As such, C∗(n) is isometrically *-isomorphic to (C(σ(n), ‖ · ‖).
Proof. We claim that Γ(n) implements the homeomorphism between ΣC∗(n)

and σ(n). Since ΣC∗(n) is compact, σ(n) is Hausdorff, and Γ(n) is continu-
ous, it suffices to show that Γ(n) is a bijection. By Theorem 1.15, ranΓ(n) =
σ(n), and so Γ(n) is onto. Suppose φ1, φ2 ∈ ΣC∗(n) and φ1(n) = Γ(n)(φ1) =
Γ(n)(φ2) = φ2(n). Since Γ is a *-homomorphism, φ1(n∗) = Γ(n∗)(φ1) =
Γ(n)(φ1) = Γ(n)(φ2) = Γ(n∗)(φ2) = φ2(n∗). Then φ1(p(n, n∗)) = φ2(n, n∗))
for all polynomials p in two non-commuting variables, as both φ1 and φ2

are multiplicative. By the continuity of φ1 and φ2 and the density of
{p(n, n∗) : p a polynomial in two non-commuting variables } in C∗(n), we
find that φ1 = φ2 and Γ(n) is injective. By the Gelfand-Naimark Theo-
rem 2.9, C∗(n) '∗ C(ΣC∗(n)). It follows immediately that C∗(n) '∗ C(σ(n)).

2
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It is worth drawing attention to the fact that if Γ : C∗(n) → C(
∑

C∗(n)) is
the Gelfand Transform and for x ∈ C∗(n) we set Γ′(x) = Γ(x)◦Γ−1(n), then
Γ′ implements the *-isomorphism between C∗(n) and C(σ(n)). Furthermore
Γ′(n)(z) = z for all z ∈ σ(n); that is, Γ′(n) = q, where q(z) = z. In practice,
we usually identify C(ΣC∗(n)) and C(σ(n)), and still refer to the induced map
Γ′ as the Gelfand Transform, relabelling it as Γ.

When A is non-unital, the A ⊆ Ã and C∗(1Ã, n) '∗ C(σ(n)). But
then C∗0 (n) ⊆ Ã corresponds to the functions in C(σ(n)) which vanish at 0,
namely C0(σ(n)\{0}).

As an immediate Corollary to the above theorem, we are able to extend
the holomorphic functional Calculus developed in Chapter Two to a broader
class of functions.

2.11. Theorem. The Continuous Functional Calculus. Let A
be a unital C∗-algebra and n ∈ A be normal. Then Γ−1 : C(σ(n)) → C∗(n)
is an isometric *-isomorphism and for all f, g ∈ C(σ(n)), λ ∈ C, we have

(i) (λf + g)(n) = λf(n) + g(n);
(ii) (f g)(n) = f(n) g(n);
(iii) the Spectral Mapping Theorem: σ(f(n)) = f(σ(n));
(iv) ‖f(n)‖ = spr (f(n)) = spr (f) = ‖f‖.

In particular, if q(z) = z, z ∈ σ(n), then n = Γ−1(q).
Remark. When A is non-unital, the Gelfand Transform induces a func-
tional calculus for continuous functions vanishing at 0.

2.12. Corollary. Let A be a unital C∗-algebra and n ∈ A be normal.
Then

(i) n = n∗ if and only if σ(n) ⊆ R;
(ii) n ≥ 0 if and only if σ(n) ⊆ [0,∞);
(iii) n∗ = n−1 if and only if σ(n) ⊆ T;
(iv) n = n∗ = n2 if and only if σ(n) ⊆ {0, 1}.

Proof. This is an immediate consequence of identifying C∗(n) with C(σ(n)).
2

It is worth observing that all of the above notions are C∗-notions; that
is, if φ : A → B is a *-isomorphism of C∗-algebras, then each of the above
notions is preserved by φ.

2.13. Proposition. Let A be a C∗-algebra and 0 ≤ r ∈ A. Then
there exists a unique element q ∈ A such that 0 ≤ q and q2 = r. Moreover,
if a ∈ A and a r = r a, then a commutes with q.
Proof. Then function f(z) = z

1
2 ∈ C(σ(r)), and f(0) = 0. Thus q := f(r) ∈

C∗0 (r) and thus is a normal element of A. In fact, σ(q) = f(σ(r)) ⊆ [0,∞),
and so q ≥ 0. Next, q2 = (f(r))2 = f2(r) = j(r) = r, where j(z) = z, z ∈
σ(r).
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Suppose 0 ≤ s ∈ A and s2 = r. Then s r = s(s2) = (s2)s = r s, so
that C∗0 (r, s) is abelian. The Gelfand Map Γ1 : C∗0 (r, s) → C0(ΣC∗0 (r,s)) is an
isometric *-isomorphism and Γ1(q), Γ1(s) are two positive functions whose
square is Γ1(r). Thus Γ1(q) = Γ1(s). Since Γ1 is injective, q = s. This
shows that q is unique.

Finally, if a r = r a, then a commutes with every polynomial in r. Since
q = f(r) is a limit of polynomials in r, and since multiplication is jointly
continuous, a q = q a.

2

For obvious reasons, we write q = r
1
2 and refer to q as the (positive)

square root of r.
Let us momentarily pause to address a natural question which arises. For

H a Hilbert space and R ∈ B(H), we currently have two apparently different
notions of positivity. That is, we have the operator notion (1): R = R∗ and
< Rx, x >≥ 0 for all x ∈ H, and the C∗-algebra notion (2): R is normal and
σ(R) ⊆ [0,∞). The following proposition reconciles these two notions.

2.14. Proposition. Let H be a complex Hilbert space and R ∈ B(H).
The following are equivalent:

(i) R = R∗ and < Rx, x >≥ 0 for all x ∈ H;
(ii) R is normal and σ(R) ⊆ [0,∞).

Proof.
(i) ⇒ (ii) Clearly R = R∗ implies R is normal, and σ(R) ⊆ R. Let

λ ∈ R with λ < 0. Then

‖(R− λI)x‖2 = < (R− λI)x, (R− λI)x >
= < Rx,Rx > −2λ < Rx, x > +λ2 < x, x >

≥ λ2 < x, x > .

Thus (R−λI) is bounded below. Since R is normal, σ(R) = σa(R)
by Proposition 3.17, and therefore λ 6∈ σ(R). Hence σ(R) ∈ [0,∞).

(ii) ⇒ (i) Suppose R is normal and σ(R) ⊆ [0,∞). Then by Proposi-
tion 2.13, the operator Q = R

1
2 is positive. Let x ∈ H. Then

< Rx, x > = < Q2x, x >

= < Qx,Qx >

= ‖Qx‖2 ≥ 0.

2

2.15. Remark. Of course, the above Proposition fails spectacularly
when R is not normal. For example, if V is the classical Volterra operator
from Example 4.5, then σ(V ) = {0} ⊆ [0,∞). But V is not positive, or even
normal, for the only normal quasinilpotent operator is 0.
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2.16. Definition. Let A be a C∗-algebra and h = h∗ ∈ A. Consider
the function f+ : R → R, f+(x) = max{x, 0}. We define the positive part
h+ of h to be h+ = f+(h), and the negative part h− of h to be h− = h+−h.
It follows easily from the continuous functional calculus that h− = f−(h),
where f−(x) = −min{x, 0} for all x ∈ R. Both h+, h− ≥ 0, as h+, h− are
normal and σ(h+) = σ(f+(h)) = f+(σ(h)) ⊆ [0,∞) (with a parallel proof
holding for h−). We therefore have h = h+ − h−.

Clearly, given x ∈ A, we can write x in terms of its real and imaginary
parts, x = y + iz, and y = y+ − y−, z = z+ − z−. Thus every element of A
is a linear combination of (at most 4) positive elements.

A useful result that follows from the functional calculus is:

2.17. Proposition. Let A be a C∗-algebra and h = h∗ ∈ A. Then
‖h‖ = max(‖h+‖, ‖h−‖).
Proof. Consider ‖h+‖ = spr (h+) = spr (f+(h)) = ‖f+|σ(h)‖ = max({0}, {λ :
λ ∈ σ(h), λ ≥ 0}), while ‖h−‖ = spr (h−) = spr (f−(h)) = ‖f−|σ(h)‖ =
max({0}, {−λ : λ ∈ σ(h), λ ≤ 0}). A moment’s reflection shows that
max(‖h+‖, ‖h−‖) = spr (h) = ‖h‖.

2

2.18. Lemma. Let A be a unital C∗-algebra and h = h∗ ∈ A. The
following are equivalent:

(i) h ≥ 0;
(ii) ‖t1− h‖ ≤ t for some t ≥ ‖h‖;
(iii) ‖t1− h‖ ≤ t for all t ≥ ‖h‖.

Proof. First let us identify C∗(h) with C(σ(h)) via the Gelfand Transform Γ.
Let ĥ = Γ(h) so that ĥ(z) = z for all z ∈ σ(h). The equivalence of the above
three conditions is a result of their equivalence in C(σ(h)), combined with
the fact that positivity is a C∗-notion, as noted in the comments following
Corollary 2.12. Thus we have

(i) ⇒ (iii)

‖t1− h‖ = ‖Γ(t1− h)‖
= ‖t1− ĥ‖
≤ t for all t ≥ ‖ĥ‖ = ‖h‖.

(iii) ⇒ (ii) Obvious.
(ii) ⇒ (i) If ‖t1− h‖ = ‖t1− ĥ‖ ≤ t, then ĥ ≥ 0, and so h ≥ 0.

2

2.19. Definition. Let A be a Banach space. A real cone in A is a
subset F of A satisfying:

(a) 0 ∈ F ;
(b) if x, y ∈ F and λ ≥ 0 in R, then λx+ y ∈ F ;
(iii) F ∩ {−x : x ∈ F} = {0}.
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For the sake of convenience, we shall write −F for {−x : x ∈ F}.

2.20. Example. Let A = C, the complex numbers viewed as a 1-
dimensional Banach space over itself. The set F = {z ∈ C : Re(z) ∈
[0,∞), Im(z) ∈ [0,∞)} is a real cone in A. More generally, any of the four
“quadrants” in C determined by two lines passing through the origin forms
a real cone.

2.21. Example. Let A = C(X), X a compact Hausdorff space. The
set F = {f ∈ C(X) : f ≥ 0} is a real cone in A.

2.22. Proposition. Let A be a C∗-algebra. Then A+ = {p ∈ A : p ≥
0} is a norm-closed, real cone in A, called the positive cone of A.
Proof. We may assume without loss of generality that 1 ∈ A. Clearly
0 ∈ A+, and if p ∈ A+ and 0 ≤ λ ∈ R, then (λp)∗ = λp∗ = λp and
σ(λp) = λσ(p) ⊆ [0,∞), so that λp ∈ A+.

Next suppose that x, y ∈ A+. By Lemma 2.18, we obtain:

‖ (‖x‖+ ‖y‖)1− (x+ y) ‖ ≤ ‖ ‖x‖1− x ‖+ ‖ ‖y‖1− y ‖
≤ ‖x‖+ ‖y‖,

imply by the same Lemma that x + y ≥ 0. Suppose x ∈ F ∩ (−F). Then
x = x∗ and σ(x) ⊆ [0,∞) ∩ (−∞, 0] = {0}. Since ‖x‖ = spr (x) = 0, we
have x = 0. So far we have shown that F is a real cone.

Finally, suppose that we have {xn}∞n=1 ⊆ F and x = limn→∞ xn. Then
x∗ = limn→∞ x∗n = limn→∞ xn = x, so that x is self-adjoint. By dropping to
a subsequence if necessary, we may assume that ‖x‖ ≥ ‖xn‖/2 for all n ≥ 1.
Then

‖ (2‖x‖)1− x ‖ = lim
n→∞

‖ (2‖x‖)1− xn ‖

≤ lim
n→∞

2‖x‖

= 2‖x‖.

By Lemma 2.18, x ≥ 0 and so F is norm-closed, completing the proof.
2

Let H be a Hilbert space and Z ∈ B(H). If R = Z∗Z, then for any
x ∈ H, < Rx, x >=< Z∗Zx, x >= ‖Zx‖2 ≥ 0, and so R ≥ 0. Our next goal
is to show that in any C∗-algebra, r ∈ A is positive precisely if r factors as
z∗z for some z ∈ A. The proof is rather more delicate than in the B(H)
setting. The next Lemma comes in handy.

2.23. Lemma. Let A be a unital Banach algebra and a, b ∈ A. Then
σ(ab) ∪ {0} = σ(ba) ∪ {0}.
Proof. Clearly it suffices to consider the case where A is unital. The proof,
while completely unmotivated, is a simple algebraic calculation.
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Suppose 0 6= λ ∈ ρ(ab). Let c = λ−1(λ− ab)−1, and verify that

(λ− ba)−1 = (λ−1 + bca)
= λ−1 + λ−1b(λ− ab)−1a

= λ−1(1 + b(λ− ab)−1a).

2

2.24. Theorem. Let A be a C∗-algebra and r ∈ A. Then r ≥ 0 if
and only if r = z∗z for some z ∈ A.
Proof. First suppose that r ≥ 0. By Proposition 2.13, there exists a unique
z ≥ 0 so that r = z2 = z∗z.

Next, suppose r = z∗z for some z ∈ A. Clearly r = r∗. Let us write r as
the difference of its positive and negative parts, namely r = r+ − r−. Our
goal is to show that r− = 0.

Now r− ≥ 0 and so r− has a positive square root. Consider y = zr
1
2
−.

Then y∗y is self-adjoint and

y∗y = (zr
1
2
−)∗(zr

1
2
−)

= r
1
2
−z

∗zr
1
2
−

= r−(r+ − r−)r
1
2
−

= r
1
2
−r+r

1
2
− − r2−

= −r2−
≤ 0.

(Note that the last equality follows from the fact that f
1
2
−f+ = 0.) Thus

σ(y∗y) ⊆ (−∞, 0]. Writing y = h+ ik, where h = Rey, k = Imy, we have

yy∗ = h2 + i k h− i h k + k2

y∗y = h2 − i h h+ i h k + k2

so that

yy∗ = (yy∗ + y∗y)− (y∗y) = 2(h2 + k2)− (y∗y).

Since h2 + k2 ≥ 0 and y∗y ≤ 0 from above, the fact that A+ is a positive
cone implies that yy∗ ≥ 0. Thus σ(yy∗) ⊆ [0,∞).

By the previous Lemma, σ(yy∗) ∪ {0} = σ(y∗y) ∪ {0}, from which we
deduce that σ(yy∗) = {0} = σ(y∗y). But then ‖y‖2 = ‖y∗y‖ = spr (y∗y) =
0, and so y = 0. That is, ‖ − r2−‖ = ‖y∗y‖ = 0, so that r− = 0 and
r = r+ ≥ 0, as claimed.

2
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2.25. Remark.
(a) Given a ∈ A, a C∗-algebra, we can now define |a| = (a∗a)

1
2 , and

we call this the absolute value of a.
(b) The above theorem has a partial extension to involutive unital Ba-

nach algebras. Suppose B is such an algebra with unit e, and x ∈ B
satisfies ‖x − e‖ < 1. Then x = y2 for some y ∈ B. Indeed, when
‖e − x‖ < 1, we have σ(x) ⊆ {z ∈ C : |z − 1| < 1}. As such the
function f(z) = z

1
2 is analytic on σ(x), and so we set y = f(x).

2.26. A partial order on Asa. Given two self-adjoint elements x, y ∈
A, a C∗-algebra, we set x ≤ y if y − x ≥ 0. It is easy to check that this
defines a partial order. Certain, but not all properties of the order on R
carry over to this setting. Consider the following:

2.27. Proposition. Let A be a C∗-algebra.
(i) If a, b ∈ Asa and c ∈ A, then a ≤ b implies c∗ac ≤ c∗bc.
(ii) If 0 ≤ a ≤ b, then ‖a‖ ≤ ‖b‖.
(iii) If 1 ∈ A, a, b ∈ A+ are invertible and a ≤ b, then b−1 ≤ a−1.

Proof.
(i) Since a ≤ b, b − a is positive, and so we can find z ∈ A so that

b− a = z∗z. Then c∗z∗zc = (zc)∗(zc) ≤ 0 by Theorem 2.24. That
is, c∗bc− c∗ac ≥ 0, which is equivalent to our claim.

(ii) It suffices to consider the case where 1 ∈ A. Then the unital C∗-
algebra generated by b, namely C∗(b) '∗ C(σ(b)). Then Γ(b) ≤
‖Γ(b)‖1 = ‖b‖1, and since positivity is a C∗-property, b ≤ ‖b‖1.

But then a ≤ b and b ≤ ‖b‖1 implies a ≤ ‖b‖1. Again, by the
Gelfand-Naimark Theorem, Γ(a) ≤ ‖b‖1, and so ‖a‖ = ‖Γ(a)‖ ≤
‖b‖.

(iii) First suppose c ≥ 1. Then Γ(c) ≥ 1, and so Γ(c) is invertible
and Γ(c)−1 ≤ 1. This in turn implies that c is invertible and that
c−1 ≤ 1.

More generally, given a ≤ b, 1 = a−
1
2aa−

1
2 ≤ a−

1
2 ba−

1
2 , and so

the above argument implies that 1 ≥ (a−
1
2 ba−

1
2 )−1 = a

1
2 b−1a

1
2 .

Finally, a−1 = a−
1
2 1a−

1
2 ≥ b−1, by (i) above.

2

Where there’s a will, there’s a wake. [Old Irish Proverb]
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3. Ideals in C∗-algebras.

3.1. In Section 5.1, we briefly discussed ideals of C∗-algebras in con-
nection with unitizations. Now we return for a more detailed and structured
look at ideals and their elements. At times it is not desirable to adjoin a unit
to a C∗-algebra . For many purposes, it suffices to consider “approximate
identities”, also called “approximate units”, which we now define.

3.2. Definition. Let A be a C∗-algebra and suppose K is a linear
manifold in A. Then a right approximate identity for K is a net (uλ) of
positive elements in K such that ‖uλ‖ ≤ 1 for all λ, and such that

lim
λ
‖k − k uλ‖ = 0

for all k ∈ K.
Analogously, one can define a left approximate identity for a linear

manifold K of A.

By an algebraic (left, right, or two-sided) ideal of a C*-algebra A, we
shall simply mean a linear manifold K which is invariant under multiplication
(on the left, right, or both sides) by elements of A. The notion of a (left,
right or two-sided) ideal differs only in that ideals are assumed to be norm-
closed. Unless otherwise specified, algebraic ideals and ideals are assumed
to be two-sided.

3.3. Example. Let H be an infinite dimensional Hilbert space. Then
F(H) = {F ∈ B(H) : rankF <∞} is an algebraic ideal whose closure is the
set K(H) of compact operators on H, by Theorem 4.2.

3.4. Example. Let C00(R) = {f ∈ C(R) : supp(f) is compact }.
Then C00(R) is an algebraic ideal of C(R) whose norm closure is C0(R), the
set of continuous functions which vanish at infinity.

3.5. Proposition. Let A be a C∗-algebra and suppose K is an alge-
braic left ideal in A. Then K has a right approximate identity.
Proof. We may assume without loss of generality that A is unital. Given a
finite subset F = {a1, a2, . . . , an} ⊆ K, we define

hF =
n∑

i=1

a∗i ai

and

vF = hF (hF +
1
n

1)
−1

= (hF +
1
n

1)
−1

hF .

Note that vF ∈ K, since hF ∈ K.
Let F = {F : F ⊆ K, F finite } be directed by inclusion.

Claim: the set (vF : F ∈ F ,⊇) is an approximate identity for K.
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To see this, note first that hF ≥ 0 and that 0 ≤ t(t + 1
n)−1 ≤ 1 for all

t ∈ R+. Thus 0 ≤ vF ≤ 1 by the functional calculus. Suppose F, G ∈ F
and F ⊇ G. We may assume that F = {a1, a2, . . . , am} and that G =
{a1, a2, . . . , an}, where n ≤ m.

Now hF ≥ hG since hF−hG =
∑m

i=n+1 a
∗
i ai ≥ 0. Thus hF + 1

n1 ≥ hG+ 1
n1

and hence

(hF +
1
n

1)−1 ≤ (hG +
1
n

1)−1.

From this, and since 1
m(t+ 1

m)−1 ≤ 1
n(t+ 1

n)−1 for all t ∈ R+, we have

1
m

(hF +
1
m

1)−1 ≤ 1
n

(hF +
1
n

1)−1 ≤ 1
n

(hG +
1
n

1)−1.

But
1
m

(hF +
1
m

1)−1 = 1− vF

and
1
n

(hG +
1
n

1)−1 = 1− vG,

and so 1− vF ≤ 1− vG, implying that vG ≤ vF when F ⊇ G.
Suppose k ∈ K. Given n ∈ N, choose F0 ∈ F such that F0 has n elements

and k ∈ F0. If F ∈ F and F0 ⊆ F , then F has m (≥ n) elements, including
k. Thus k∗k ≤ hF , and

(k − kvF )∗(k − kvF ) = (1− vF )k∗k(1− vF )
≤ (1− vF )hF (1− vF )
= 1

m2 (hF + 1
m1)−2hF .

Since 1
m2 (t+ 1

m1)−2t ≤ 1
4m for all t ∈ R+, we have

‖k − kvF ‖2 = ‖(k − kvF )∗(k − kvF )‖
≤ ‖ 1

m2 (hF + 1
m1)−2hF ‖

≤ 1
4m

≤ 1
4n .

Thus ‖k−kvF ‖ ≤ 1
2
√

n
for all F ⊇ F0. By definition, limF∈F ‖k−kvF ‖ =

0.
This concludes the proof.

2

If K is an algebraic right ideal of A, then K∗ is an algebraic left ideal of
A. By applying the above Proposition to K∗ and interpreting it in terms of
K itself we obtain:

3.6. Corollary. Let A be a C∗-algebra and suppose K is an algebraic
right ideal in A. Then K has a left approximate identity.
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3.7. Remark. We have shown that an algebraic two sided ideal of a
C*-algebra A possesses both a left and a right approximate identity. We
now wish to show that these two identities can be chosen to coincide. First
we require a lemma.

3.8. Lemma. Let A be a C*-algebra and suppose that K is an alge-
braic, self-adjoint ideal in A. Then any left approximate identity for K is
also a right approximate identity for K, and vice-versa.
Proof. Suppose (uλ) is a right approximate unit for K. Then limλ ‖k −
kuλ‖ = 0 for all k ∈ K. But then limλ ‖k∗− k∗uλ‖ = 0 = limλ ‖k− uλk‖, so
that (uλ) is also a left approximate unit for K.

2

3.9. Theorem. Every C*-algebra has an approximate identity. If
the C*-algebra is separable, then a countable approximate identity may be
chosen
Proof. Let A be the C*-algebra. It is clearly a self-adjoint left ideal in itself,
and therefore has a right approximate identity by Proposition 3.5, which is
an approximate identity by Lemma 3.8.

Next, suppose A is separable, and let {an}∞n=1 be a countable dense
subset of A. Let (uλ)λ∈Λ be an approximate identity for A. Choose λ0 ∈ Λ
arbitrarily. For each k ≥ 1, we can find λk ∈ Λ such that λk ≥ λk−1 and
max(‖uλk

an − an‖, ‖anuλk
− an‖) < ε for each 1 ≤ n ≤ k. A relatively

routine approximation argument then implies that {uλk
}∞k=1 is the desired

countable approximate identity.
2

3.10. Corollary. Every closed ideal K in a C*-algebra A is self-
adjoint.
Proof. Let k ∈ K, and let (uλ) denote the approximate identity for K.
Then k∗ = limλ k

∗uλ, but uλ ∈ K for all λ, implying that each k∗uλ and
therefore k∗ lies in K = K.

2

The above result is, in general, false if the ideal is not closed. For
example, if A = C(D), the continuous functions on the closed unit disk, and
if K = qA, where q ∈ A is the identity function q(z) = z, then K is an
algebraic ideal in A, but q∗ does not lie in K.

3.11. Corollary. Every algebraic ideal K in a C*-algebra A has an
approximate identity.
Proof. Since K is a closed ideal in A, it must be self-adjoint, by the previous
Corollary. The left approximate identity (uλ) for K is again a left approxi-
mate identity for K. By Lemma 3.8, (uλ) is a right approximate identity for
K, and since it already lies in K, it is therefore an approximate unit for K.
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2

3.12. Example. Let A be a unital C*-algebra. For each n ≥ 1, set
un = eA. Then {un}∞n=1 is an approximate unit for A.

3.13. Example. Let H be an infinite dimensional, separable Hilbert
space with orthonormal basis {en}∞n=1. For each k ≥ 1, let Pk denote the
orthogonal projection of H onto the span of {e1, e2, . . . , ek}. Then from the
arguments of Theorem 4.2, {Pk}∞k=1 is an approximate identity for K(H).

3.14. Example. Consider the ideal C0(R) of C(R). For each n ≥ 1,
let

un(x) =


1 if |x| ≤ n,

(n+ 1)− |x| if |x| ∈ (n, n+ 1),
0 if |x| ≥ n.

Then {un}∞n=1 is an approximate identity for C0(R).

3.15. Remark. For most purposes where we do not have a unit in the
C*-algebra, an approximate unit will do. In certain circumstances, we need
something a bit stronger, namely a quasicentral approximate unit. (defn)

3.16. Lemma. Let (uλ) be an approximate unit in a C*-algebra A.
Then the convex hull of (uλ) is again an approximate unit.

3.17. Theorem. Every C*-algebra admits a quasicentral approximate
unit.

3.18. Proposition. Suppose A is a C*-algebra and L is an ideal in
A. If K is an ideal in L, then K is also an ideal in A.
Proof. Since K is the linear span of its positive elements, it suffices to prove
that ak and ka lie in K for all a ∈ A and 0 ≤ k ∈ K. Since ak = (a k

1
2 )k

1
2 ,

and since k
1
2 ∈ K, we have ak ∈ K L ⊆ K.

2

3.19. Definition. Let B be a C*-algebra. A C*-algebra A of B is said
to be hereditary if b ∈ B+, a ∈ A+ with 0 ≤ b ≤ a implies b ∈ A.

3.20. Example. Let B = C([0, 1]) and A = {f ∈ C([0, 1]) : f(x) =
0 for all x ∈ [14 ,

3
4 ]}. If g ∈ B+, f ∈ A+ and 0 ≤ g ≤ f , then 0 ≤ g(x) ≤

f(x) = 0 for all x ∈ [14 ,
3
4 ], and hence g ∈ A. Thus A is a hereditary

C*-subalgebra of B.
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3.21. Proposition. Let B be a C*-algebra and 0 6= p 6= 1 be a projec-
tion in B. Then A = pBp is hereditary.
Proof. That A = pBp is a C*-subalgebra of B is routine. Suppose 0 ≤ b ≤ a
for some a ∈ A, b ∈ B. Then by Proposition 2.27, 0 ≤ (1 − p)b(1 − p) ≤
(1− p)a(1− p) = 0, and so (1− p)b(1− p) = 0.

Next, ‖b
1
2 (1− p)‖2 = ‖(1− p)b(1− p)‖ = 0, so that b(1− p) = b

1
2 (b

1
2 (1−

p)) = 0. Finally, since b = b∗, (1−p)b = (b(1−p))∗ = 0, and so b = pbp ∈ A,
as required.

2

3.22. Lemma. Let A be a C*-algebra and a, b ∈ A. Suppose 0 ≤
b, ‖b‖ ≤ 1 and aa∗ ≤ b4. Then there exists c ∈ A, ‖c‖ ≤ 1 such that
a = b c.
Proof. Let Ã denote the minimal unitization of A, and denote by 1 the
identity in Ã. For 0 < λ < 1, let cλ = (b+ λ1)−1a, which lies in A because
A is an ideal of Ã. Our goal is to prove that c = limλ→0 cλ exists, and that
this is the element we want. Now

cλc
∗
λ = (b+ λ1)−1aa∗(b+ λ1)−1

≤ (b+ λ1)−1b4(b+ λ1)−1

≤ b2,

and hence ‖cλ‖2 = ‖c∗λ‖2 ≤ ‖b2‖ ≤ 1. Next we prove that {cλ}λ∈(0,1) is
Cauchy. If λ, β ∈ (0, 1), then

‖cλ − cβ‖2 = ‖(cλ − cβ)∗‖2

= ‖(cλ − cβ)(cλ − cβ)∗‖
= ‖((b+ λ1)−1 − (b+ β1)−1)aa∗(b+ λ1)−1 − (b+ β1)−1)‖
= |λ− β|2‖(b+ λ1)−1(b+ β1)−1aa∗(b+ λ1)−1(b+ β1)−1‖
≤ |λ− β|2‖(b+ λ1)−1(b+ β1)−1b4(b+ λ1)−1(b+ β1)−1‖
≤ |λ− β|2,

as b4(b+λ1)−2(b+β1)−2 ≤ 1. Let c = limλ→0 cλ. Then bc = limλ→0 bcλ = a.
2

3.23. Proposition. Let A be a C*-algebra. Then every ideal in A is
hereditary.
Proof. Suppose that 0 6= K is an ideal in A, a ∈ A, k ∈ K and 0 ≤ a ≤ k.
Then we can write a = zz∗ for some z ∈ A and k = (k

1
4 )4, where k

1
4 ∈ K by

the continuous functional calculus. Then

0 ≤ zz∗ ≤ (k
1
4 )4.

By Lemma 3.22, z = (k
1
4 )c for some c ∈ A. In particular, z ∈ K and hence

a = zz∗ ∈ K, as required.
2
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3.24. Theorem. Let A be a C*-algebra and K be an ideal in A. Let
(uλ) be any approximate unit for K. Then A/K is a C*-algebra, and for
a ∈ A, we have

‖πK(a)‖ = lim
λ
‖a− auλ‖.

Proof. Fix a ∈ A. Clearly

‖πK(a)‖ = inf{‖a+ k‖ : k ∈ K}
≤ inf{‖a− auλ‖ : λ ∈ Λ},

as each uλ and hence auλ lies in K.
Now, given ε > 0, choose k ∈ K so that ‖πK(a)‖+ ε > ‖a+ k‖. Then

‖a− auλ‖ = ‖(a+ k)− k − auλ‖
= ‖(a+ k)− (k − kuλ)− (a+ k)uλ‖
≤ ‖(a+ k)− (a+ k)uλ‖+ ‖k − kuλ‖.

We shall work in the unitization Ã of A in order to obtain our desired
norm estimates.

‖a− auλ‖ ≤ ‖(a+ k)(1− uλ)‖+ ‖k − kuλ‖
≤ ‖a+ k‖ ‖1− uλ‖+ ‖k − kuλ‖.

Hence limλ ‖a − auλ‖ ≤ (‖πK(a)‖ + ε)1 + 0. Since ε > 0 was arbitrary,
‖piK(a)‖ = limλ ‖a− auλ‖.

We saw in Proposition 1.16 that A/K is a Banach algebra. Since K is
self-adjoint, we can set πK(a)∗ = πK(a∗), and this is a well-defined involution
on A/K. There remains only to verify the C∗-equation.

Given a ∈ A,

‖πK(a)∗ πK(a)‖ = ‖πK(a∗a)‖
= inf

λ
‖a∗a− a∗auλ‖

≥ inf
λ
‖(1− uλ)(a∗a)(1− uλ)‖

= inf
λ
‖a(1− uλ)‖2

= ‖πK(a)‖2.

By Remark 1.9, we see that the quotient norm is a C∗-norm, and thus A/K
is a C∗-algebra .

2

A subspace of a Banach space is said to be proximinal if the distance
from an arbitrary vector to that subspace is always attained. Although
we shall not prove it here, it can be shown that ideals of C∗-algebras are
proximinal - that is, the quotient norm is attained.
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3.25. Theorem. Let τ : A → B be a *-homomorphism between C*-
algebras A and B. Then ‖τ‖ ≤ 1, and τ is isometric if and only if τ is
injective.
Proof. First suppose 0 ≤ r ∈ A. Then r = z∗z for some z ∈ A, and
hence τ(r) = τ(z)∗τ(z) ≥ 0. In particular, τ(r) is normal and so C∗0 (τ(r))
is abelian. Let ϕ ∈

∑
C∗0 (τ(r)). Then ϕ ◦ τ ∈

∑
C∗0 (r) and hence ‖ϕ ◦ τ‖ ≤ 1.

But

‖τ(r)‖ = sup{ϕ(τ(r)) : ϕ ∈
∑

C∗0 (r)}
≤ ‖r‖.

More generally, if a ∈ A, then a∗a ≥ 0, and hence from above,

‖τ(a)‖2 = ‖τ(a∗a)‖ ≤ ‖a∗a‖ = ‖a‖2.

Thus we have shown that τ is continuous, with ‖τ‖ ≤ 1.
Clearly if τ is isometric, it must be injective.
Next, suppose that τ is not isometric, and choose a ∈ A such that

‖a‖ = 1, but ‖τ(a)‖ < 1. Let r = a∗a. Then ‖r‖ = ‖a‖2 = 1, but
‖τ(r)‖ = ‖τ(a)‖2 = 1 − δ < 1 for some δ > 0. We shall work with r ≥ 0
instead of a. Choose f ∈ C([0, 1]) such that f(x) = 0 for all x ∈ [0, 1 − δ],
but f(1) = 1. By the Stone-Weierstraß Theorem, f is a limit of polynomials
pn in one variable with pn(0) = 0 for each n ≥ 1. For any such polynomial,

τ(pn(r)) = pn(τ(r)),

since τ is a *-homomorphism. Since τ is continuous from above,

τ(f(r)) = τ( lim
n→∞

pn(r))

= lim
n→∞

τ(pn(r))

= lim
n→∞

pn(τ(r))

= f(τ(r)).

Now spr (r) = ‖r‖ = 1, and since 0 ≤ r, we conclude that 1 ∈ σ(r). Thus
1 = f(1) ∈ f(σ(r)) = σ(f(r)), so that f(r) 6= 0. Finally, τ(r) ≥ 0 and
spr (τ(r)) ≤ ‖τ(r)‖ ≤ 1 − δ. Since f |[0,1−δ] = 0, we have f(τ(r)) = 0 =
τ(f(r)), implying that τ is not injective.

2

3.26. Corollary. Let τ : A → B be a *-homomorphism between C*-
algebras A and B. Then τ can be factored as τ = τ ◦ π, where π : A →
A/ker τ is the canonical map, and τ : A/ker τ → ran τ is an isometric
*-isomorphism. In particular, τ(A) is a C∗-algebra .
Proof. Since τ is continuous, ker τ is a norm-closed ideal of A, and hence
is self-adjoint by Corollary 3.10. By Theorem 3.24, A/ker τ is a C∗-algebra
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and from elementary algebra arguments, τ factors as τ = τ ◦ π, where
π : A → A/ker τ is the canonical map and τ is the *-homomorphism

τ : A/ker τ → ran τ
a+ ker τ 7→ τ(a).

Since ker τ = 0, τ is an isometric map onto its range, and thus ran τ = ran τ
is a C∗-subalgebra of B.

2

3.27. Proposition. Let A be a C*-subalgebra of a C*-algebra B, and
let K be an ideal of B. Then A ∩K is an ideal in A, and

A + K
K

' A
A ∩K

.

In particular, A + K is a C*-subalgebra of B.
Proof. The first statement is a routine exercise. Consider the map

β : A → B/K
a 7→ a+ K.

It is readily seen to be a *-homomorphism. Moreover, ker β = A ∩ K. By
Corollary 3.26, ranβ = A+K/K is isometrically *-isomorphic to A/(A∩K),
and so A + K/K is a C∗-algebra . Thus it is complete. Since K is also
complete, we conclude that A + K is complete as well. Hence A + K is a
closed, self-adjoint subalgebra of B, as was required to prove.

2

“Finnish guys last nice”: Mae West
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4. Linear Functionals and States on C∗-algebras.

4.1. Let us now turn our attention to the dual space of a C∗-algebra.
As we shall see, the linear functionals generalize the notion of measures on
spaces of continuous functions, and are crucial to the representation theory
of C∗-algebras.

4.2. Definition. Let A and B be C∗-algebras, and let ϕ denote a
linear map from A to B. We define the adjoint of ϕ as ϕ∗ : A → B via
ϕ∗(a) = (ϕ(a∗))∗ for all a ∈ A. Then ϕ is said to be self-adjoint if ϕ = ϕ∗.

The map ϕ is said to be positive if ϕ(x∗x) ≥ 0 for all x ∈ A. We write
ϕ ≥ 0 when this is the case.

If B = C, the complex numbers, and ϕ ∈ A∗, then ϕ is called a state if
ϕ is a positive linear functional of norm one. We denote by S(A) the set of
all states on A, and refer to this as the state space of A.

4.3. Remarks. A few comments are in order. By definition, a linear
map ϕ between C∗-algebras is self-adjoint if and only if ϕ(x∗) = (ϕ(x))∗ for
all x ∈ A. It is routine to verify that this is equivalent to asking that ϕ send
hermitian elements of A to hermitian elements of B.

If ϕ ≥ 0, then ϕ preserves order. That is, if x ≤ y in A, then y − x ≥ 0,
and hence ϕ(y − x) = ϕ(y)− ϕ(x) ≥ 0 in B.

Finally, it is easy to see that every positive linear map ϕ is automatically
self-adjoint. Indeed, given h = h∗ ∈ A, write h = h+−h−, and observe that
ϕ(h) = ϕ(h+)− ϕ(h−) is self-adjoint.

4.4. Example. Let ϕ : A → B be any ∗-homomorphism between
C∗-algebras A and B. Then

ϕ(x∗x) = ϕ(x)∗ ϕ(x) ≥ 0

for all x ∈ A, and hence ϕ ≥ 0.
In particular, every multiplicative linear functional on A is positive.

4.5. Example. Let X be a compact, Hausdorff space. The Riesz-
Markov Theorem [reference] asserts that C(X)∗ ' M(X), the space of
complex-valued regular Borel measures on X. The action of a measure
µ on f ∈ C(X) is through integration, that is: µ(f) :=

∫
X f dµ.

When X = [0, 1], we can identify M(X) with the space BV [0, 1] of
functions of bounded variation on [0, 1]. Now, given F ∈ BV [0, 1], we define
µF ∈M(X) via

µF (f) =
∫

X
f dF,

the quantity on the right being a Riemann-Stieltjes integral. For example,
the evalution functional δx(f) = f(x) for some x ∈ X corresponds to the
point mass at x.

Observe that µ is a self-adjoint (resp. positive) linear functional precisely
when the measure dµ is real-valued (resp. positive).
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4.6. Example. Let n,m ≥ 1 be integers, and consider the C∗-algebra
A = Mn ⊕ Mm ⊆ B(Cn+m). For each k ≥ 1, let tr : Mk → C denote the
normalized trace functional

tr ([aij ]) =
1
k

k∑
i=1

aii.

For a = (a1, a2) ∈ A and λ ∈ [0, 1], we can define ϕλ(a) = λtrn(a1) + (1 −
λ)trm(a2). Then {ϕλ}λ∈[0,1] is a family of states on A.

4.7. Example. Let H be an infinite dimensional Hilbert space and
let P be a non-trivial projection on H. The map

ϕ : B(H) → B(H)
T 7→ PTP

is a positive linear map.
Indeed, if T ≥ 0, the ϕ(T ∗T ) = PT ∗TP = (TP )∗(TP ) ≥ 0. Observe

that ϕ is not a *-homomorphism!

4.8. Remark. We have shown that every element of a C∗-algebra is,
in a natural way, a linear combination of four positive elements. Of course,
this is a generalization of the corresponding fact for complex numbers.

in a similar vein, every complex measure possesses a Jordan decomposi-
tion [reference] as a linear combination of four positive measures. Because
of the association between linear functionals on commutative C∗-algebras
and measures as outlined above, we shall think of linear functionals on C∗-
algebras as abstract measures, and obtain a corresponding Jordan decompo-
sition for these as well. This will imply that the state space of a C∗-algebra
A is in some sense “large”, a fact which we shall exploit in the proof of the
Gelfand-Naimark Theorem below.

We have seen that every multiplicative linear functional on an abelian
C∗-algebra is automatically continuous of norm one. Furthermore, every
such functional is also positive. In fact, more is true.

4.9. Theorem. Let A be a C∗-algebra and ϕ : A → C be a positive
linear map. Then ϕ is continuous.
Proof. First observe that ϕ is bounded if and only if there exists K > 0 so
that 0 ≤ r ∈ A+ with ‖r‖ ≤ 1 implies ϕ(r) ≤ K. Indeed, if ϕ is bounded,
we can trivially choose K = ‖ϕ‖.

Conversely, if 0 ≤ r ∈ A+ with ‖r‖ ≤ 1 implies ϕ(r) ≤ K, then given
any x ∈ A, we can write x = y + iz, where y = Rex, z = Imx. Then we set
y = y+−y− and z = z+−z−, and recall that max(‖y+‖, ‖y−‖, ‖z+‖, ‖z−‖) ≤
‖x‖. From this we obtain

|ϕ(x)| = |ϕ(y+)− ϕ(y−) + iϕ(z+)− iϕ(z−)|
≤ ϕ(y+) + ϕ(y−) + ϕ(z+) + ϕ(z−)
≤ 4K‖x‖,
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and so ‖ϕ‖ ≤ 4K <∞.
Now we argue by contradiction. Suppose, to the contrary, that for every

n ≥ 1 we can find 0 ≤ rn in A so that ‖rn‖ ≤ 1
2n and ϕ(rn) ≥ 1. Then

for each k ≥ 1, sk =
∑k

n=1 rn ∈ A+, and sk ≤ s =
∑∞

n=1 rn ∈ A+. From
Remark ??, we see that k ≤ ϕ(sk) ≤ ϕ(s) for all k ≥ 1, which is absurd. It
follows that ϕ must be bounded on A+, and hence on A.

2

4.10. Given a positive linear functional ϕ on a C∗-algebra A, we can
construct a pseudo-inner product on A by setting

[a, b] := ϕ(b∗a)

for a, b ∈ A. Then we have

(i) [a, b] is clearly a sesquilinear function, linear in a and conjugate
linear in b;

(ii) [a, a] ≥ 0 for all a ∈ A, as ϕ ≥ 0 and a∗a ≥ 0;
(iii) Since ϕ is self-adjoint, [a, b] = ϕ(b∗a) = ϕ(a∗b) = [b, a];
(iv) If x ∈ A, then [xa, b] = ϕ(b∗(xa)) = ϕ((x∗b)∗a) = [a, x∗b].

The following will also prove useful in the GNS construction.

4.11. Lemma. Let [·, ·] be a positive sesquilinear function on a C∗-
algebra A. Then [·, ·] satisfies the Cauchy-Schwarz Inequality:

|[a, b]|2 ≤ [a, a] [b, b].

Proof.

(a) If [a, b] = 0, there is nothing to prove.
(b) If [a, a] = 0, then we claim that [a, b] = 0 for all b ∈ A. To see this,

note that for all β ∈ C,

0 ≤ [a+ βb, a+ βb]
= [a, a] + |β|2[b, b] + 2Re(β[a, b]).

Suppose there exists b ∈ A such that [a, b] 6= 0. We may then scale
b so that [a, b] = −1. Now choose β > 0. The above equation then
becomes:

0 ≤ [a, a]− 2β + β2[b, b]
= −2β + β2[b, b],

which implies 0 ≤ β[b, b] − 2. This yields a contradiction when β
is chosen sufficiently small and positive. Thus [a, a] = 0 implies
|[a, b]|2 = 0 ≤ [a, a] [b, b], which is clearly true.
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(c) If [a, b] 6= 0 and [a, a] 6= 0, we may choose β = −[a, a]/[a, b]. Then,
as above,

0 ≤ [a, a] + |β|2[b, b] + 2Re(β[a, b])

= [a, a]− 2[a, a] +
[a, a]2[b, b]
|[a, b]|2

,

which implies

|[a, b]|2 ≤ [a, a] [b, b],

as claimed.

2

4.12. Lemma. Let A be a C*-algebra, and 0 ≤ ϕ ∈ A∗. Then

(i) |ϕ(b∗a)| ≤ ϕ(a∗a)
1
2 ϕ(b∗b)

1
2 ;

(ii) |ϕ(a)|2 ≤ ‖ϕ‖ϕ(a∗a).

Proof.

(i) This is just a reformulation of the Cauchy-Schwarz Inequality which
we deduced for the pseudo-inner product associated to ϕ in the
previous Lemma.

(ii) Let (uλ)λ∈Λ be an approximate unit for A. Then

|ϕ(a)|2 = lim
λ
|ϕ(auλ)|2

≤ sup
λ
ϕ(a∗a)ϕ(u∗λuλ)

≤ sup
λ
ϕ(a∗a)‖ϕ‖ ‖uλ‖2

≤ ϕ(a∗a)‖ϕ‖.

2

4.13. Theorem. Let A be a C∗-algebra and ϕ ∈ A∗. The following
are then equivalent:

(i) 0 ≤ ϕ;
(ii) ‖ϕ‖ = limλ ϕ(uλ) for some approximate unit (uλ)λ∈Λ of A;
(iii) ‖ϕ‖ = limλ ϕ(uλ) for every approximate unit (uλ)λ∈Λ of A.

Proof.

(i) implies (iii) Consider {ϕ(uλ)}λ∈Λ, which is an increasing net of
positive real numbers, bounded above by ‖ϕ‖. Then limλ ϕ(uλ)
exists. Clearly limλ ϕ(uλ) ≤ supλ ‖ϕ‖ ‖uλ‖ ≤ ‖ϕ‖.

For the other inequality, first observe that if 0 ≤ r and ‖r‖ ≤ 1,
then 0 ≤ r2 ≤ r. This follows from the Gelfand-Naimark Theorem
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by indentifying r with the identity function q(z) = z on σ(r) ⊆
[0, 1]. Then, given a ∈ A,

|ϕ(a)| = lim
λ
|ϕ(uλa)|

≤ lim
λ
ϕ(u∗λuλ)

1
2 ϕ(a∗a)

1
2

≤ lim
λ
ϕ(uλ)

1
2 ϕ(a∗a)

1
2

≤ lim
λ
ϕ(uλ)

1
2 ‖ϕ‖

1
2 ‖a∗a‖

1
2

≤ (lim
λ
ϕ(uλ)

1
2 )‖ϕ‖

1
2 ‖a‖.

By taking the supremum over a ∈ A, ‖a‖ = 1, we find that ‖ϕ‖
1
2 ≤

limλ ϕ(uλ)
1
2 , and hence ‖ϕ‖ = limλ ϕ(uλ).

(iii) implies (ii) Obvious.
(ii) implies (i) Let us scale ϕ so that ‖ϕ‖ = 1. Consider h = h∗ ∈ A

with ‖h‖ = 1. Let ϕ(h) = s+it ∈ C where s, t ∈ R. Our first goal is
to show that t = 0. By considering −h instead of h, we may assume
that t ≥ 0. Fix an integer n ≥ 1, and consider xn,λ = h + inuλ.
Now

‖xn,λ‖2 = ‖x∗n,λxn,λ‖
= ‖h2 + in(huλ − uλh)− n2uλ‖
≤ ‖h‖2 + n‖huλ − uλh‖+ n2

= 1 + n2 + n‖huλ − uλh‖.
Now limλ ϕ(xn,λ) = limλ(ϕ(h)+inϕ(uλ)) = ϕ(h)+in = s+i(t+n).
Furthermore, |ϕ(xn,λ)|2 ≤ ‖xn,λ‖2, and so

s2 + (t+ n)2 ≤ lim
λ

(1 + n2 + n‖huλ − uλh‖) = 1 + n2.

Thus s2 + t2 + 2tn + n2 ≤ 1 + n2. Since t > 0, we obtain a
contradiction by choosing n sufficiently large.

So far we have shown that ϕ is self-adjoint. We still want
0 ≤ ϕ(r). Suppose 0 ≤ r ≤ 1. Let hλ = r − uλ. By Lemma ??,
‖h‖ ≤ 1. Now limλ ϕ(h) = ϕ(r)− 1, and since |ϕ(h)| ≤ 1, we have
ϕ(r) − 1| ≤ 1, from which we conclude that 0 ≤ ϕ(r) ≤ 1, which
completes the proof.

2

4.14. Corollary. Suppose A is a C∗-algebra, and ϕ, α, β ∈ A∗.
(i) If α, β ≥ 0, then ‖α+ β‖ = ‖α‖+ ‖β‖.
(ii) Suppose A is unital. Then ϕ ≥ 0 if and only if ‖ϕ‖ = ϕ(eA). In

particular, ϕ is a state on A if and only if ϕ(eA) = 1 = ‖ϕ‖.
Proof.
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(i) Since α, β ≥ 0, so is α+β. But then if (uλ)λ∈Λ is any approximate
unit for A,

‖α+ β‖ = lim
λ

(α+ β)(uλ)

= lim
λ
α(uλ) + lim

λ
β(uλ)

= ‖α‖+ ‖β‖.

(ii) This is an immediate consequence of Theorem 4.13, after observing
that uλ = eA is an approximate identity for A.

2

4.15. Proposition. Let A be a C∗-algebra and 0 ≤ ϕ ∈ A∗. Then for
all a, b ∈ A,

ϕ(b∗a∗ab) ≤ ‖a∗a‖ϕ(b∗b).

Proof. We claim that b∗a∗ab ≤ ‖a∗a‖b∗b, from which the above equation
clearly follows. For the sake of convenience, we shall work in Ã.

We know that a∗a ≤ ‖a∗a‖eA in Ã, and thus

b∗a∗ab ≤ b∗(‖a∗a‖eA)b = ‖a∗a‖b∗b.

Since ϕ is positive, it preserves order, and we are done.

2

4.16. Theorem. Let A be a unital C∗-algebra. Then the state space
S(A) is a weak*-compact, convex subset of the unit ball A∗1 of A∗.
Proof. Clearly S(A) ⊆ A∗1. Since A∗1 is weak*-compact by the Banach-
Alaoglu Theorem, it suffices to show that S(A) is weak*-closed.

Suppose {ϕλ}λ∈Λ is a net in S(A) converging in the weak*-topology
to ϕ ∈ A∗. Again, the weak*-compactness of A∗1 implies that ‖ϕ‖ ≤ 1.
Moreover,

ϕ(1) = lim
λ
ϕλ(1) = 1,

and so by Corollary 4.14, ϕ ∈ S(A). Thus S(A) is weak*-closed, as required.
If ϕ1, ϕ2 ∈ S(A) and 0 < t < 1, then clearly ϕ = tϕ1 + (1 − t)ϕ2 is

positive, and ϕ(1) = 1. Since ‖ϕ‖ ≤ t‖ϕ1‖ + (1 − t)‖ϕ2‖ = 1, ϕ ∈ S(A),
which is therefore convex.

2
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4.17. Our next goal is to prove that if A and B are C∗-algebras with
A ⊆ B, then every state on A can be extended to a state on B. Before doing
that, let us observe that the restriction of a state on B is not necessarily a
state on A, although it is still clearly a positive linear functional.

For example, let c denote the C∗-subalgebra of `∞(N) consisting of con-
vergent sequences. Then c0 = {(an)∞n=1 ∈ c : limn→∞ an = 0} is a non-unital
C∗-subalgebra of c. Consider the states β1 and β2 on c, where

β1(an) = lim
n→∞

an and β2(an) = a1.

Then β = 1
2(β1 +β2) is again a state on c, by Theorem 4.16. The restriction

of β to c0 is 1
2β2, which is not a state on c0.

4.18. Theorem. Let A and B be C∗-algebras with A ⊆ B. Suppose
ϕ ∈ S(A). Then there exists β ∈ S(B) whose restriction to A coincides with
ϕ.
Proof. Consider first the case where B = Ã, the unitization of A.

Here we have no choice as to the definition of β since β ∈ S(B) implies
β(eB) = 1. In other words, we must have β(a+αeB) = ϕ(a) +α. It remains
only to verify that this β is in fact a state, which reduces to verifying that
‖β‖ = 1. Let (uλ)λ∈Λ be an approximate unit for A. Now

|β(a+ αeB)| = |ϕ(a) + α|
= lim

λ
ϕ(auλ) + αϕ(uλ)|

= lim
λ
|ϕ(auλ + αuλ)|

≤ lim inf
λ

‖ϕ‖ ‖a+ αeB‖ ‖uλ‖

≤ ‖a+ αeB‖.

It follows that ‖β‖ ≤ 1. Since β is an extension of ϕ, it has norm at least 1,
i.e. β ∈ S(B).

Consider next the case where B is any unital C∗-algebra containing A.
Then we can assume, using the above paragraph, that A is unital as well.
If ϕ ∈ S(A) and β is any extension of ϕ to B given us by the Hahn-Banach
Theorem (with ‖β‖ = ‖ϕ‖ = 1), then ‖β‖ = 1 = ϕ(eB) = β(eB), and so
β ∈ S(B).

Finally, suppose B is not unital. First we extend ϕ to a state ϕ̃ on Ã
by the first paragraph. From the second paragraph, ϕ̃ extends to a state
β̃ on B̃. Let β be the restriction of β̃ to B. Clearly β is positive, and
1 = ‖β̃‖ ≥ ‖β‖ ≥ ‖ϕ‖ = 1, since β is an extension of ϕ. Thus β ∈ S(B).

2
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4.19. Corollary. Suppose that A and B are C∗-algebras and that A ⊆
B. Then every positive linear functional on A extends to a positive linear
functional on B with the same norm.
Proof. If 0 < ϕ is a positive linear functional on A, then α = ϕ/‖ϕ‖ is a
state on A, which extends to a state β on B by Theorem 4.18 above. Hence
‖ϕ‖ β extends ϕ.

2

4.20. Proposition. If A is an ideal of a C∗-algebra B, then any pos-
itive linear functional ϕ on A extends in a unique way to a positive linear
functional β on B with ‖β‖ = ‖ϕ‖.
Proof. Suppose A ⊆ B is an ideal. From Corollary 4.19, given 0 ≤ ϕ ∈ A∗,
we can find 0 ≤ γ1 ∈ B∗ so that ‖γ1‖ = ‖ϕ‖ and γ1|A = ϕ. Let γ2 be any
positive extension of ϕ to B with ‖γ2‖ = ‖ϕ‖. Let (uλ)λ be an approximate
identity for A.

Then limλ γ2(1 − uλ) = 0. Moreover, (1 − uλ)2 ≤ (1 − uλ), and so
limλ γ2((1− uλ)2) = 0.

For all b ∈ B,

|γ2(b)− γ2(uλb)|2 = |γ2((1− uλ)b)|2

≤ γ2((1− uλ)2)1/2γ2(b∗b)1/2

by the Cauchy-Schwarz inequality. It follows that limλ |γ2(b)−γ2(uλb)| = 0,
so that γ2(b) = limλ γ2(uλb).

Since A is an ideal, we have uλb ∈ A, and hence γ2(b) = limλ ϕ(uλb). In
particular, the values of γ on B are completely determined by the values of
ϕ on A, and so γ1 is unique.

2

4.21. Proposition. Let A be a C∗-algebra and 0 6= n ∈ A be normal.
(a) If τ ∈ S(A), then τ(n) ∈ co(σ(n)), the closed convex hull of the

spectrum of n.
(b) There exists τ ∈ S(A) such that |τ(n)| = ‖n‖.

Proof.

(a) First recall that the closed convex hull of a compact subset subset
Ω ⊆ C is the intersection of all closed disks which contain Ω.

Suppose that τ ∈ S(A) and that τ(n) 6∈ co(σ(n)). Then there
exists z0 ∈ C and r > 0 so that σ(n) ∈ D(z0, r) := {λ ∈ C :
|z0 − λ| ≤ r}, but |τ(n) − z0| > r. Let τ̃ denote the positive
extension of τ to Ã, with ‖τ̃‖ = ‖τ‖ = 1. Let e denote the identity
in Ã. Now n− z0e is normal and σ(n− z0e) = σ(n)− z0 ⊆ D(0, r),
so that

‖n− z0e‖ = spr(n− z0e) ≤ r,
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while |τ̃(n − z0e)| = |τ̃(n) − z0| > r ≤ ‖n − z0e‖, implying that
the extension τ̃ has norm greater than one, a contradiction since
‖τ̃‖ = ‖τ‖ = 1.

(b) We may assume that n 6= 0. Now C∗0 (n) '∗ C0(σ(n)\{0}). Let
λ ∈ σ(n)\{0} such that |λ| = spr(n) = ‖n‖. Let τ ∈ ΣC∗0 (n) be the
corresponding multiplicative linear functional, so that

τ(m) = [Γ(m)](λ), m ∈ C∗0 (n).

Then τ ∈ S(A) and

|τ(n)| = |[Γ(n)](λ)| = ‖n‖.
2

4.22. Let A be a C∗-algebra and ϕ ∈ A∗. Recall from Definition 4.2
that ϕ∗ : A → C is the map ϕ∗(a) = ϕ(a∗). Note that

‖ϕ∗‖
= sup{|ϕ(a∗)| : ‖a‖ ≤ 1}
= sup{|ϕ(b)| : ‖b‖ ≤ 1}
= ‖ϕ‖.

Moreover, (λϕ1 + ϕ2)∗ = λϕ∗1 + ϕ∗2 and (ϕ∗1)∗ = ϕ. The map ϕ 7→ ϕ∗ fails
to be an involution only because A∗ is not algebra.

Given ϕ ∈ A∗, we can define

ϕr = (ϕ+ ϕ∗)/2 ϕi = (ϕ− ϕ∗)/2i.

Clearly ϕr = ϕ∗r and ϕi = ϕ∗i and ϕ = ϕr + iϕi.

We are now in a position to extend the Jordan decomposition for real-
valued measures on a commutative C∗-algebra to selfadjoint functionals on
a general C∗-algebra.

4.23. Theorem. [Jordan Decomposition] Let A be a C∗-algebra
and ϕ = ϕ∗ ∈ A∗. Then there exist 0 ≤ ϕ+, ϕ− ∈ A∗ so that

ϕ = ϕ+ − ϕ−

and ‖ϕ‖ = ‖ϕ+‖ − ‖ϕ−‖.

Time waits for no man. No man is an island. So. . . time waits for an island. . . I
don’t get it.
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5. The GNS Construction.

5.1. In this section we prove that every C∗-algebra of operators is
isometrically ∗-isomorphic to a C∗-algebra of operators on a Hilbert space.

5.2. Definition. A representation of a C∗-algebra A is a pair (H, ρ)
where

ρ : A → B(H)
is a ∗-homomorphism. The representation is said to be faithful if ρ is
injective.

A cyclic vector for the representation is a vector ν ∈ H for which
ρ(A)ν = {ρ(a)ν : a ∈ A} is dense in H. The representation (H, ρ) is
said to be cyclic if it admits a cyclic vector ν, in which case we shall often
write (H, ρ, ν) to emphasize the fact the ν is cyclic for (H, ρ).

We note that it is common to refer to ρ as the representation, and to
apply adjectives such as “faithful” or “cyclic” to ρ.

5.3. Example.
(a) Let A = C([0, 1]), andH = L2([0, 1], dx), where dx denotes Lebesgue

measure on the interval [0, 1]. Then (H, ρ) is a representation of A,
where

ρ(f) = Mf , f ∈ C([0, 1])
and Mfg = fg, g ∈ H. Since ‖Mf‖ = ‖fnorm∞ by ??, ρ is
injective, and hence (H, ρ) is faithful.

Consider the constant function ν(x) = 1, x ∈ [0, 1] as an ele-
ment of H. (Strictly speaking, of course, ν is an equivalence class
of this function in L2([0, 1], dx).) For any a ∈ A, ρ(a)ν = a, and so
ρ(A)ν = C([0, 1]), which is dense in L2([0, 1], dx). Thus ν is cyclic
for (H, ρ).

(b) Let H be a separable complex Hilbert space with orthonormal basis
{en}∞n=1. Let A = K(H), and consider the representation

ρ : A → B(H(2))
K 7→ K ⊕K.

Let ν = e1⊕e2 ∈ H(2). For each y, z ∈ H, y⊗e∗1 and z⊗e∗2 ∈ K(H),
being rank one operators. Then

ρ(y ⊗ e∗1)(ν) = y ⊕ 0
ρ(z ⊗ e∗2)(ν) = 0⊕ z

and so H(2) = ρ(A)ν, i.e. ν is cyclic for (H(2), ρ).
(c) Let A = C([0, 1]) once again and let H = C. Then (C, ρ) is a

representation, where ρ(f) = f(1), f ∈ C([0, 1]). Note that (C, ρ)
is not faithful, since, for example, if g(x) = 1 − x, x ∈ [0, 1], then
g 6= 0, but ρ(g) = g(1) = 0.
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(d) With A as above, consider H = C3 along with the representation

ρ : C([0, 1]) 7→ B(C3)
f 7→ f(0)⊕ f(0)⊕ f(1).

We leave it as an exercise for the reader to verify that (H, ρ) is
not cyclic.

5.4. Let A be a C∗-algebra. We now describe a process that allows us
to identify a certain quotient of A by a closed left ideal with a pre-Hilbert
space.

Suppose 0 ≤ ϕ ∈ A∗. Recall from paragraph 4.10 that we obtain a
pseudo-inner product on A via

[a, b] := ϕ(b∗a).

Let L = {m ∈ A : [m,m] = 0}. It follows from the Cauchy-Schwarz
Inequality (Lemma 4.11) that m ∈ L if and only if [m, b] = 0 for all b ∈ A.
In particular, if m1,m2 ∈ L and λ ∈ C, b ∈ A, then [λm1+m2, b] = λ[m1, b]+
[m2, b] = 0 + 0, so that L is easily seen to be a subspace of A. Moreover,
by paragraph ?? (iv), if m ∈ L and a ∈ A, then [am, am] = [m,a∗am] = 0
from above, and so am ∈ L. Thus L is in fact a left ideal of A.

It is routine to verify that A/L is a pre-Hilbert space when equipped
with the inner product 〈a + L, b + L〉 := [a, b] := ϕ(b∗a). Furthermore, we
can define a left module action of A upon A/L via

a ◦ (x+ L) = ax+ L, a ∈ A, x+ L ∈ A/L.
This map is well-defined because if x + L = y + L, then x − y ∈ L. Since
this latter is a left ideal of A, ax− ay ∈ L, and so ax+ L = ay + L.

5.5. Theorem. [ The GNS Construction ] Let A be a C∗-algebra
and 0 ≤ ϕ ∈ A∗. Then there exists a cyclic representation (H, ρ, ν) of A
where ν is a cyclic vector satisfying ‖ν‖ = ‖ϕ‖

1
2 and

〈ρ(a)ν, ν〉 = ϕ(a), a ∈ A.

Proof. Using the notation above, let H denote the completion of the pre-
Hilbert space A/L, where L = {m ∈ A : ϕ(m∗m) = 0}. For a, x ∈ A,

‖a ◦ (x+ L)‖2 = ‖ax+ L‖2

= 〈ax+ L, ax+ L〉
= [ax, ax]

= ϕ(x∗a∗ax)

≤ ‖a∗a‖ ϕ(x∗x)

= ‖a‖2 [x, x]

= ‖a‖2 ‖x+ L‖2,
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and so if we define
ρ0 : A/L → A/L

x+ L 7→ ax+ L
then ‖ρ0(a)‖ ≤ ‖a‖ and therefore ρ0(a) extends to a bounded linear map ρ(a)
on H. It is now routine to verify that a 7→ ρ(a) is a linear homomorphism
of A into B(H).

Also,

〈ρ(a∗)x+ L, y + L〉 = [a∗x, y] = [x, ay] = 〈x+ L, ρ(a)y + L〉
for all x, y, a ∈ A, and so by the density of A/L in H, we see that

〈ρ(a∗)ξ1, ξ2〉 = 〈ξ1, ρ(a)ξ2〉 for all ξ1, ξ2 ∈ H.
Hence ρ(a∗) = ρ(a)∗ for all a ∈ A, which implies that (H, ρ) is a representa-
tion of A.

Let (uλ)λ be an approximate identity for A. Then (uλ + L)λ is a net of
vectors in the unit ball of H. Furthermore, since (uλ)λ is increasing, so is
(ϕ(uλ))λ in [0, 1]. Given 0 < ε < 1, choose λ0 so that λ ≥ λ0 implies that
0 ≤ ‖ϕ‖ − ϕ(uλ) < ε/2. If β ≥ α ≥ λ0, then

‖(uβ + L)− (uα + L)‖2 = [(uβ − uα), (uβ − uα)]

= ϕ((uβ − uα)2)

≤ ϕ(uβ − uα)

< |‖ϕ‖ − ϕ(uβ)|+ |‖ϕ‖ − ϕ(uα)|
< ε.

Thus (uλ)λ is Cauchy in the complete space H, and therefore it converges
to some vector ν in the unit ball of H. Also, ‖ν‖2 = [uλ + L, uλ + L] =
ϕ(u2

λ) = ‖ϕ‖, since (u2
λ)λ is also an approximate identity for A.

For any a ∈ A,

ρ(a)ν = lim
λ
ρ(a)(uλ + L)

= lim
λ
auλ + L

= a+ L.

Thus ρ(A)ν = A/L = H, and therefore ν is indeed a cyclic vector for
(H, ρ).

Finally,

〈ρ(a)ν, ν〉 = 〈a+ L, ν〉
= lim

λ
〈a+ L, uλ + L〉

= lim
λ

[a, uλ]

= lim
λ
ϕ(u∗λa)

= ϕ(a)
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for all a ∈ A, completing the proof.
2

5.6. Let (Hλ, ρλ)λ be a family of representations of a fixed C∗-algebra
A. Let H = ⊕λHλ denote the Hilbert space direct sum of the family (Hλ)λ,
and for a ∈ A, define

ρ : A → B(H)
a 7→ ⊕λρλ(a).

Since each ρλ is a representation, ‖ρλ‖ ≤ 1, and thus ‖ρ‖ ≤ 1. It is now
routine to verify that (H, ρ) is a representation of A, call the direct sum
of (Hλ, ρλ)λ and denoted by

(H, ρ) = ⊕λ(Hλ, ρλ).

Clearly ‖ρ(a)‖ = supλ ‖ρλ(a)‖ for all a ∈ A.

In particular, for each τ ∈ S(A), the state space of A, we have con-
structed a cyclic representation (Hτ , ρτ , ντ ) via the GNS Construction (The-
orem 5.5).

5.7. Definition. The universal representation of a C∗-algebra A
is the direct sum representation

(H, ρ) = ⊕{(Hτ , ρτ , ντ ) : τ ∈ S(A)}.

5.8. Theorem. [ Gelfand-Naimark ] Let A be a C∗-algebra. The
universal representation (H, ρ) is a faithful representation of A, and hence
A is isometrically ∗-isomorphic to a C∗-algebra of operators on H.
Proof. Let a ∈ A. Then n = a∗a ≥ 0, and so by Proposition 4.21,
there exists a state τ ∈ S(A) with |τ(n)| = ‖n‖. Let (Hτ , ρτ , ντ ) be the
corresponding cyclic representation and observe that ‖ν‖ = ‖τ‖

1
2 = 1.

Now ‖n‖ = |τ(n)| = |〈ρτ (n)ντ , ντ 〉| ≤ ‖ρτ (n)‖ ≤ ‖n‖, and so ‖n‖ =
ρτ (n)‖.

It follows that

‖ρ(a)‖2 = ‖ρ(a)∗ρ(a)‖ = ‖ρ(a∗a)‖
= ‖ρ(n)‖ ≥ ‖ρτ (n)‖

= ‖n‖ = ‖a∗a‖
= ‖a‖2.

Thus ‖a‖ ≤ ‖ρ(a)‖. Since ‖ρ‖ ≤ 1, ‖ρ(a)‖ ≤ ‖a‖, and thus ρ is isometric.
2

Time waits for no man. No man is an island. So. . . time waits for an island. . . I
don’t get it.





CHAPTER 6

Von Neumann algebras and the Spectral Theorem

There are only two truly infinite things, the universe and stupidity.
And I am unsure about the universe.

Albert Einstein

1. Von Neumann algebras

1.1. In this Chapter, we study a class of concrete C∗-algebras which
are closed in a second, weaker topology than the norm topology. These
are the so-called von Neumann algebras. While various important and deep
structure theorems for these algebras (based upon the projections which can
be found in the algebra) exist, we shall restrict ourselves to that part of the
theory necessary for us to prove the celebrated Spectral Theorem for normal
operators.

1.2. Definition. Let H be a Hilbert space. The weak operator
topology - abbreviated WOT - on B(H) is the weak topology generated by
the functions

φx,y : B(H) → C
T 7→ 〈Tx, y〉

for all x, y ∈ H. Equivalently, the weak operator topology is the locally
convex topology on B(H) generated by the family {T 7→ |〈Tx, y〉| : x, y ∈ H}
of seminorms.

Thus a net (Tα)α converges in the WOT and we write WOT -limα Tα =
T if

lim
α
〈Tαx, y〉 = 〈Tx, y〉

for all x, y ∈ H.
The family {{A ∈ B(H) : |〈Axk, yk〉 − 〈Txk, yk〉| < ε} : xk, yk ∈ H, 1 ≤

k ≤ n, n ≥ 1, ε > 0} forms a neighbourhood base for the WOT .

The strong operator topology - abbreviated SOT - on B(H) is the
weak topology generated by the functions

ψx : B(H) → C
T 7→ Tx

for all x ∈ H. Equivalently, the strong operator topology is the locally con-
vex topology on B(H) generated by the family {T 7→ ‖Tx‖ : x ∈ H} of
seminorms.

139
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Thus a net (Tα)α converges in the SOT and we write SOT -limα Tα = T
if

lim
α
Tαx = Tx

for all x ∈ H.
The family {{A ∈ B(H) : ‖Axk − Txk‖ < ε} : xk ∈ H, 1 ≤ k ≤ n, n ≥

1, ε > 0} forms a neighbourhood base for the SOT .

It follows easily from these definitions that the WOT is weaker than the
SOT , while the SOT is weaker than the norm topology.

1.3. Example. Let H = Cn for some n ≥ 1. We leave it as an exercise
for the reader to verify that the WOT , SOT and norm topologies on B(H)
all coincide.

1.4. Example. Let H be a separable Hilbert space with orthonormal
basis {en}∞n=1. Let Pn denote the orthogonal projection onto the span of
{e1, e2, ..., en}, n ≥ 1. Then the sequence {Pn}∞n=1 converges to the identity
in the SOT .

Indeed, if x ∈ H, say x =
∑∞

k=1 xkek, then ‖x−Pnx‖ = ‖
∑∞

k=n+1 xkek‖ =
(
∑∞

k=n+1 |xk|2)
1
2 and this tends to 0 as n tends to infinity.

1.5. Remark. In infinite dimensional Hilbert spaces, the SOT , WOT
and norm topologies are all distinct. For example, if H is separable and
infinite dimensional with orthonormal basis {en}∞n=1, and if Fn = e1 ⊗ e∗n,
then it is easy to verify that SOT -limn Fn = 0 but ‖Fn‖ = 1 for all n ≥ 1,
while if Gn = en ⊗ e∗1, then WOT -limnGn = 0, while ‖Gne1‖ = 1 for all
n ≥ 1, so that SOT -limnGn 6= 0.

These examples can easily be adapted to non-separable spaces.

1.6. Proposition. Let H be a Hilbert space and let A,B ∈ B(H) be
fixed. Then each of the functions

(i) σ : B(H)× B(H) → B(H)
(X,Y ) 7→ X + Y

;

(ii) µ : C× B(H) → B(H)
(z,X) 7→ zX

;

(iii) λA : B(H) → B(H)
X 7→ AX

;

(iv) ρB : B(H) → B(H)
X 7→ XB

;

(v) α : B(H)× B(H) → B(H)
T 7→ T ∗

.

is continuous in the WOT. The first four are also SOT-continuous, while
the adjoint operation α is not SOT continuous.
Proof. Exercise.
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2

1.7. Definition. Let H be a Hilbert space. Then a von Neumann
algebra (also called a W ∗-algebra) M is a C∗-subalgebra of B(H) which is
closed in the WOT.

We remark that some authors require that the algebra M contain the
identity operator. As we shall see, every von Neumann algebra contains a
maximal projection which serves as an identity for the algebra as a ring. By
restricting our attention to the range of that projection, we can then assume
that the identity operator lies in M.

1.8. Example. If H is a Hilbert space, then B(H) is a von Neumann
algebra.

1.9. Proposition. Let H be a Hilbert space and A ⊆ B(H) be a self-
adjoint subalgebra. Then AWOT is a von Neumann algebra. If A is abelian,
then so is AWOT.
Proof. Suppose (Aα)α∈Λ and (Bβ)β∈Γ are nets in A with WOT-limαAα =
A and WOT-limβ Bβ = B. Now Λ × Γ is a directed set with the lexi-
cographic order, so that (α1, β1) ≤ (α2, β2) if α1 < α2, or α1 = α2 and
β1 ≤ β2. If we set Aα,β = Aα, Bα,β = Bβ for all α, β, then limα,β Aα,β = A
and limα,β Bα,β = B. By Proposition 1.6, for all z ∈ C, zA + B =
WOT- limα,β zAα,β +Bα,β ∈ A

WOT.
Next, for each β ∈ Γ, ABβ = WOT-limαAαBβA

WOT, and thus

WOT- lim
β
ABβ = AB ∈ AWOT

.

Thus AWOT is an algebra. Since the adjoint operation is continuous in the
WOT, and since A is self-adjoint, Aα 7→WOT A implies A∗α 7→WOT A∗, and
so A∗ ∈ AWOT. Hence AWOT is a von Neumann algebra.

Suppose A is abelian. For all β ∈ Γ and x, y ∈ H,

〈ABβx, y〉 = WOT- limα〈AαBβx, y〉
= WOT- limα〈BβAαx, y〉
= WOT- limα〈Aαx,B

∗
βy〉

= 〈Ax,B∗βy〉 = 〈BβAx, y〉.

Thus ABβ = Bβ A for all β ∈ Γ. The same argument then shows that
AB = BA, and so AWOT is abelian.

2
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1.10. Definition. If C ⊆ B(H) is any collection of operators, then

C′ = {T ∈ B(H) : TC = CT for all C ∈ C}

is called the commutant of C.

1.11. Proposition. Let H be a Hilbert space. Then K(H)′ = CI.
Proof. Exercise.

2

1.12. Proposition. Let H be a Hilbert space and C ⊆ B(H) be a
self-adjoint collection of operators. Then the commutant C′ of C is a von
Neumann algebra.
Proof. Suppose A,B ∈ C′, z ∈ C and C ∈ C. Then (zA + B)C =
zAC + BC = zCA+ CB = C(zA+ B) and (AB)C = A(BC) = A(CB) =
(AC)B = (CA)B = C(AB), so that C′ is an algebra. Also, C self-adjoint
implies that AC∗ = C∗A and hence CA∗ = A∗C for all C ∈ C. Thus C′ is
self-adjoint.

Finally, if Aα ∈ C′, α ∈ Λ and WOT- limαAα = A, then for all x, y ∈ H,

〈ACx, y〉 = limα〈CAαx, y〉 = limα〈Aαx,C
∗y〉

= 〈Ax,C∗y〉 = 〈CAx, y〉,

so that A ∈ C′ and therefore C′ is WOT-closed, which completes the proof.
2

1.13. Definition. A masa M in a C∗-algebra A is a maximal abelian
self-adjoint subalgebra. That is, M is a self-adjoint abelian subalgebra of A,
and is not properly contained in any abelian self-adjoint subalgebra of A.

1.14. Example. Let A = Mn(C) for some n ≥ 1. Then Dn =
{diag(d1, d2, ..., dn) : dk ∈ C, 1 ≤ k ≤ n} is a masa in A. We leave the
verification as an exercise, although this example will be covered by Propo-
sition 1.16 below.

1.15. Proposition. Let H be a Hilbert space and M ⊆ B(H) be a
self-adjoint algebra of operators. The following are equivalent:

(a) M = M′;
(b) M is a masa.

In particular, every masa in B(H) is a von Neumann algebra.
Proof.

(a) implies (b): Since M = M′, M is abelian. Suppose M ⊆ N, where
N is abelian and self-adjoint. Then N ⊆ M′, and so N ⊆ M. Thus
M is a masa.



1. VON NEUMANN ALGEBRAS 143

(b) implies (a): Suppose that M is a masa. Let T ∈ M′, T = H + iK,
where H = (T + T ∗)/2 and K = (T − T ∗)/2i. If M ∈ M, then
M∗ ∈ M, so that TM∗ = M∗T and thus T ∗M = MT ∗ and T ∗ ∈
M′. But then H,K ∈ M′.

Now if N is the WOT-closed algebra generated by M and H,
then N is abelian and so N = M by maximality. Thus H ∈ M.
Similarly, K ∈ M and therefore T ∈ M. That is, M′ ⊆ M. Since
M is abelian, M ⊆ M′, from which equality follows.

2

Recall that a measure space (X,µ) is called a probability space if µ is
a positive regular Borel measure on X for which µ(X) = 1. Recall that the
map f 7→Mf is an isometric embedding of L∞(X,µ) into B(L2(X,µ)). Let
us use M∞(X,µ) to denote the image of L∞(X,µ) under this embedding.

1.16. Proposition. Let (X,µ) be a probability space. ThenM∞(X,µ)
is a masa in B(L2(X,µ)), and as such is a von Neumann algebra.
Proof. Since M∞(X,µ) is self-adjoint, by Proposition 1.15, it suffices to
show that M∞(X,µ) = M∞(X,µ)′. Observe that M∞(X,µ) is abelian,
and so M∞(X,µ) ⊆M∞(X,µ)′.

Suppose T ∈ B(H) satisfies TMf = MfT for all f ∈ L∞(X,µ). Let
e ∈ L2(X,µ) denote the constant function e(x) = 1a.e., and set g = Te.

Then Tf = TMfe = MfTe = fg for all f ∈ L∞(X,µ). If we can show
that g ∈ L∞(X,µ), then it will follow from the continuity of T and the fact
that L∞(X,µ) is dense in L2(X,µ) that T = Mg.

Let E = {x ∈ X : |g(x)| ≥ ‖T‖+ 1}, and let f = χE ∈ L∞(X,µ). Then

‖Tf‖2 =
∫

X
|fg|2dµ

=
∫

E
|fg|2dµ

> ‖T‖2

∫
E
|f |2dµ

= ‖T‖2 ‖f‖2
2,

and so ‖f‖2
2 = 0, implying that f = 0 a.e.. Thus |g(x)| ≤ ‖T‖+ 1 a.e., and

hence g ∈ L∞(X,µ). From the argument above, T = Mg ∈M∞(X,µ), and
hence M∞(X,µ)′ ⊆M∞(X,µ).

2

1.17. Lemma. Suppose A ⊆ B(H) is a self-adjoint algebra and x ∈ H.
Let P denote the orthogonal projection onto [Ax], the closure of Ax in H.
Then P ∈ A′.
Proof. We prove that [Ax] is reducing for each element A of A. Indeed, if
z ∈ [Ax], then z = limn→∞Anx for some sequence {An}n in A. But then
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Az = limn→∞AAnx ∈ [Ax], and A∗z = limn→∞A∗Anx ∈ [Ax], so that
[Ax] is reducing for A by Proposition 3.??.

Thus AP = PAP and A∗P = PA∗P , from which PA = AP , and
P ∈ A′, as claimed.

2

1.18. Definition. Let H be a Hilbert space and C ⊆ B(H). The
kernel of C is the set

ker C = {x ∈ H : Cx = 0 for all C ∈ C}.

1.19. Example.
(a) We leave it as an exercise for the reader to verify that kerK(H) =

{0}.
(b) If T ∈ B(H), and C is the algebra generated by T , then ker C =

kerT .

1.20. Lemma. Let A ⊆ B(H). Set A(n) = {A ⊕ A ⊕ ... ⊕ A : A ∈
A} ⊆ B(H(n)). Then (A(n))′′ = {B ⊕B ⊕ ...⊕B : B ∈ A′′}.
Proof. Exercise.

2

1.21. Theorem. [The von Neumann Double Commutant The-
orem ]. Let A ⊆ B(H) be a self-adjoint algebra of operators and suppose
that kerA = {0}. Then AWOT = ASOT = A′′. In particular, if A is a von
Neumann algebra, then A = A′′.

Remark: Before proving the result, let us pause to observe what a truly
remarkable Theorem this is. Indeed, the conclusion of this Theorem allows
us to identify a topological concept, namely the closure of a given algebra in
a certain topology, with a purely algebraic concept, the second commutant
of the algebra. It is difficult to overstate the usefulness of this Theorem.

Proof. Observe that A ⊆ A′′ and that this latter is a von Neumann algebra
by Proposition 1.9. Thus AWOT ⊆ A′′. Since the strong operator topology
is stronger than the weak operator topology,

ASOT ⊆ AWOT ⊆ A′′.

It therefore suffices to prove that if B ∈ A′′, then B ∈ ASOT. This amounts
to proving that if ε > 0 and x1, x2, ..., xn ∈ H, then there exists A ∈ A so
that ‖(A−B)xk‖ < ε, 1 ≤ k ≤ n.

Let ε > 0.
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(1) Case One: n = 1 Let x ∈ H. Then by Lemma 1.17, if P is the
orthogonal projection onto [Ax], P ∈ A′. Moreover, x ∈ ranP ,
for if C ∈ A, then C(I − P )x = (I − P )x = 0, and hence (I −
P )x ∈ ker A = {0}. Since P ∈ A′, we have PB = BP , and so
Bx = BPx = PBx ∈ ranP . That is, there exists A ∈ A so that
‖Bx−Ax‖ < ε.

(2) Case Two: n > 1 Let x1, x2, ..., xn ∈ H and set z = x1 ⊕ x2 ⊕
· · · ⊕ xn ∈ H(n). By Lemma ??, A(n) is a self-adjoint algebra of
operators and it is routine to check that ker A(n) = {0}. By Case
One above, we can find A0 ∈ (A(n))′′ so that

‖(A0 −B(n))z‖ < ε.

Since (A(n))′′ = (A′′)(n), A0 = A(n) for some A ∈ A, and so
we have (

∑n
k=1 ‖(A − B)xk‖2)

1
2 < ε, which in turn implies that

‖(A−B)xk‖ < ε for all 1 ≤ k ≤ n.

2

1.22. Proposition. Let H be a Hilbert space and suppose ϕ : B(H) →
C is a linear map. The following are equivalent:

(a) ϕ is SOT-continuous;
(b) ϕ is WOT-continuous;
(c) there exist {xk}n

k=1, {yk}n
k=1 ∈ H so that ϕ(T ) =

∑n
k=1〈Txk, yk〉

for all T ∈ B(H).

Proof.

(c) implies (b): this is clear from the definition of the WOT.
(b) implies (a): this follows from the fact that the WOT is weaker than

the SOT.
(a) implies (c): Let ε > 0. From the definition of a basic neigh-

bourhood in the SOT, we can find vectors x1, x2, ..., xn ∈ H such
that (

∑n
k=1 ‖Txk − 0xk‖2)

1
2 < ε implies |ϕ(T ) − ϕ(0)| < 1. Con-

sider Ψ : B(H) → H(n)

T 7→ (Tx1, Tx2, ..., Txn).
Then Ψ is linear and

so R = ranT is a linear manifold. Consider

βR : R → C
(Tx1, Tx2, ..., Txn) 7→ ϕ(T ).

Then from above it follows that βR is well-defined, is continuous,
and in fact ‖βR‖ ≤ 1/ε. By the Hahn-Banach Theorem, βR extends
to a continuous linear functional β ∈ (H(n))∗ ' H(n). By the Riesz
Representation Theorem, β(Z) = 〈Zx, x〉 for some y ∈ H(n), say
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y = (y1, y2, ..., yn). In particular,

ϕ(T ) = β(Tx1, Tx2, ..., Txn)
= 〈(Tx1, Tx2, ..., Txn), (y1, y2, ..., yn)〉

=
n∑

k=1

〈Txk, yk〉

for all T ∈ B(H).
2

1.23. Remark. Suppose H is a separable, complex Hilbert space, T ∈
B(H) and F ∈ F(H) is a finite rank operator. Let {eα}α be an orthonormal
basis for H. It can be shown that we can then define tr(TF ) =

∑∞
i=1 kαα,

where [TF ] = [kα,β] with respect to the given basis. If F =
∑n

i=1 yαi ⊗ x∗αi
,

then

tr(TF ) =
n∑

i=1

〈Txαi , yαi〉.

Thus the WOT-continuous (or SOT-continuous) linear functionals are those
induced by ϕF , F ∈ F(H), where ϕF (T ) = tr(TF ).

1.24. Corollary. (B(H), SOT ) and (B(H),WOT ) have the same
closed, convex sets.
Proof. By the Krein-Milman Theorem, the SOT-closed convex subsets are
completely determined by the SOT-closed half-spaces which contain them.
These in turn are determined by the SOT-continuous linear functionals on
B(H). Since the SOT- and WOT-continuous linear functionals on B(H)
coincide, every SOT-closed convex set is also WOT-closed.

Conversely, any WOT-closed set is automatically SOT-closed, and in
particular, this applies to convex sets.

2

1.25. Proposition. Let M ⊆ B(H) be a von Neumann algebra. Then
the unit ball M1 of M is WOT-compact.
Proof. First note that M1 is WOT-closed, since (Tα)α ⊆ M1 and Tα →
T in the WOT implies that T ∈ MWOT and |〈Tx, y〉 = limα |〈Tαx, y〉| ≤
supα |‖Tα‖ ‖x‖ ‖y‖ for all x, y ∈ H. The remainder of the proof is similar to
that of the Banach-Alaoglu Theorem.

For each x, y ∈ H, consider Ix,y = [−‖x‖ ‖y‖, ‖x‖ ‖y‖]. LetB = Πx,y∈HIx,y,
and suppose that B carries the product topology so that B is compact (since
each Ix,y clearly is). Now the map

j : M1 → B
T 7→ Πx,y∈H〈Tx, y〉

is clearly an injective map from M1 into B. We clear that j is a homeomor-
phism of (M1,WOT ) with its range.
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Indeed, Tα →WOT T if and only if 〈Tαx, y〉 → 〈Tx, y〉 for each x, y ∈ H
if and only if j(Tα) → j(T ) in the product topology on B.

Moreover, j(M1) is closed in B. To see this, suppose (j(Tα))α ⊆ j(M1).
If j(Tα) → (zx,y)x,y∈H, then for each y0 ∈ H,

φy0(x) := zx,y0

defines a continuous linear functional on H. By the Riesz Representation
Theorem, there exists a vector T ∗y0 ∈ H so that φy0(x) = 〈x, T ∗y0〉. It
is not difficult to verify that the function y0 7→ T ∗y0 is linear. Moreover,
|zx,y| ≤ ‖x‖ ‖y‖ for all x, y ∈ H and hence

‖T ∗y0‖ = sup
‖x‖=1

|〈x, T ∗y0〉|

= sup
‖x‖=1

|zx,y0 |

≤ ‖x‖ ‖y0‖ = ‖y0‖.

Hence ‖T‖ = ‖T ∗‖ ≤ 1.
Clearly 〈Tαx, y〉 7→ zx,y = 〈x, T ∗y〉 = 〈Tx, y〉 for all x, y ∈ H, and so

(zx,y)x,y∈H = Πx,y = Πx,y〈Tx, y〉 = j(T ) ∈ ran j. Thus ran j is closed in
the compact set B and hence ran j is compact. But then (M1,WOT) is also
compact, which is what we were trying to prove.

2

1.26. Proposition. Let (Pβ)β∈Γ be an increasing net of positive el-
ements in the unit ball M1 of a unital von Neumann algebra M. Then
P = SOT− limβ Pβ exists, P ∈ M1 and 0 ≤ P ≤ I.
Proof. Fix x ∈ H. Then 〈Pβx, x〉β is an increasing net of positive real
numbers in [0, 1] and hence mx := limβ〈Pβx, x〉 exists. Let ε > 0 and choose
β0 such that β ≥ β0 implies |mx − 〈Pβx, x〉| < ε.

Since (Pβ)β is increasing, if β ≥ α, then Pβ−Pα ≥ 0, and so (Pβ−Pα)
1
2 ∈

M. Moreover, 0 ≤ Pα ≤ Pβ ≤ I implies Pβ − Pα ≤ I − 0 = I, and hence
(Pβ − Pα)

1
2 ≤ I. If β ≥ α ≥ β0, then

‖(Pβ − Pα)x‖2 ≤ ‖(Pβ − Pα)
1
2 ‖2 ‖(Pβ − Pα)

1
2x‖2

= ‖Pβ − Pα‖ 〈(Pβ − Pα)
1
2x, (Pβ − Pα)

1
2x〉

≤ 〈(Pβ − Pα)x, x〉 < ε.

Hence (Pβx)β is Cauchy. Since H is complete, Px := limβ Pβx exists
for all x ∈ H. It is not hard to check that P is linear, and 〈Px, x〉 =
limβ〈Pβx, x〉 ≥ 0, so that P ≥ 0. Since Pβ → P in the SOT, we also have
Pβ → P in the WOT. Since the unit ball M1 of M is WOT-compact from
above, and since Pβ ∈ M1 for all β, we get P ∈ M1.

2
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1.27. Theorem. Kaplansky’s Density Theorem Let H be a Hilbert
space and let I ∈ A ⊆ B(H) be a self-adjoint algebra of operators. Then

(ASOT)sa
1 ⊆ (Asa

1 )
SOT

.

1.28. Lemma. Let A be a C∗-algebra and ϕ ∈ A∗ be a self-adjoint
linear functional. If (H, ρ, ν) is the universal representation of A, then there
exist vectors x, y ∈ H so that ϕ(a) = 〈ρ(a)x, y〉 for all a ∈ A. Furthermore,
x and y can be chosen so that ‖x‖2, ‖y‖2 ≤ ‖ϕ‖.

1.29. Theorem. Let A be a C∗-algebra and (H, ρ, ν) be the universal
representation of A. Then ρ(A)′′ is isometrically isomorphic as a Banach
space to A∗∗ via an isomorphism that fixes A.

1.30. Polar Decomposition. Given a complex number z, we can write
z as a product of a positive number (its modulus) and a complex number of
magnitude one. We wish to generalize this to operators on a Hilbert space.
Our reason for waiting until this section to prove the result will be made
clear from Propositon ??.

1.31. Definition. Let H1 and H2 be Hilbert spaces and V ∈ B(H1,H2).
We say that V is a partial isometry if ‖V x‖ = ‖x‖ for all x ∈ (kerV )⊥.
If kerV = {0}, we say that V is an isometry.

The space (kerV )⊥ is called the initial space of V , while ranV is called
the final space of V . Observe that ranV is automatically closed in H2.

1.32. Example. Fix n ∈ N and let H = Cn. Then V is an isometry
if and only if V is unitary.

1.33. Example. Let H be a separable Hilbert space with orthonormal
basis {en}∞n=1. Consider the unilateral forward shift Sen = en+1, n ≥ 1.
Then S is an isometry, and S∗ is a partial isometry with initial space {e1}⊥.

1.34. Proposition. Let H be a Hilbert space and H1,H2 be closed
subspaces of H with dimH1 = dimH2. Then there exists a partial isometry
V with initial space H1 and final space H2.
Proof.

2
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1.35. Proposition. Let H be a Hilbert space and V ∈ B(H). The
following are equivalent:

(a) V is a partial isometry.
(b) V ∗ is a partial isometry.
(c) V V ∗ is a projection - in which case it is the orthogonal projection

onto the range of V .
(d) V ∗V is a projection, in which case it is the orthogonal projection

onto the initial space of V .
Proof.

2

1.36. Theorem. [Polar Decomposition.] Let H be a Hilbert space
and T ∈ B(H). There there exists a positive operator P and a partial isom-
etry V such that T = V P . Moreover, P and V are unique if we require that
kerP = kerV = kerT .
Proof.

2

1.37. Proposition. The partial isometry V appearing in the polar
decomposition of the operator T = PV lies in the von Neumann algebra
generated by V .

1.38. Example. We include the following example which shows that
V need not belong to the C∗-algebra generated by V .

1.39. Proposition. Let H be a Hilbert space, and W ∈ B(H) be an
isometry. Then there exist a unitary U and a cardinal number α so that
W ' U ⊕ S(α), where S is the forward unilateral shift operator.
Proof.

2

The love of honey is the root of all beehives.
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2. The spectral theorem for normal operators.

2.1. In this section we extend the functional calculus for normal opera-
tors on a separable Hilbert space beyond the continuous functional calculus
we obtained in Chapter Four via the Gelfand transform. In the present
setting, we show that if H is a separable Hilbert space and N ∈ B(H) is
normal, then the unital von Neumann algebra W ∗(N) generated by N is
isometrically ∗-isomorphic to L∞(σ(N), µ), where µ is a finite, positive, reg-
ular Borel measure with support σ(N). This identification leads us to an
L∞-functional calculus for normal operators.

2.2. Proposition. Let (X,µ) be a measure space, where µ is a finite,
positive, regular Borel measure on X. Then a net (fα)α∈Λ in L∞(X,µ) con-
verges in the weak∗-topology to a function f if and only if (Mfα)α converges
in the WOT to Mf .
Proof. Suppose fα converges in the weak∗-topology to f . Then for all
g ∈ L1(X,µ),

lim
α

∫
X
fαgdµ =

∫
X
fgdµ.

If h1, h2 ∈ L2(X,µ), then h1h2 ∈ L1(X,µ) by Hölder’s Inequality and so

lim
α
〈Mfαh1, h2〉 = lim

α
〈fαh1, h2〉

= lim
α

∫
X
fαh1h2dµ

=
∫

X
fh1h2dµ

= 〈fh1, h2〉
= 〈Mfh1, h2〉.

That is, (Mfα) converges in the WOT to Mf .

Conversely, if (Mfα)α converges in the WOT to Mf , then given g ∈
L1(X,µ), we can find h1, h2 ∈ L2(X,µ) so that g = h1h2. Then, as above,

lim
α

∫
X
fαh1h2dµ = lim

α
〈Mfαh1, h2〉

= 〈Mfh1, h2〉

=
∫

X
fh1h2dµ.

Thus (fα)α converges in the weak∗-topology to f .

2
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2.3. Lemma. Suppose X is a compact, Hausdorff space and that µ
is a positive, regular Borel measure on X with µ(X) = 1. If X can be
written as the disjoint union of measurable sets {Ej}n

j=1, g ∈ L1(X,µ) and
‖g‖1 = 1, then for all ε > 0 there exist compact sets K1,K2, ...,Kn such that
Kj ⊆ Ej and with K = ∪n

j=1Kj,∫
X\K

|g|dµ < ε.

Proof. For each 1 ≤ j ≤ n, let Ej(m) = {x ∈ Ej : m − 1 ≤ |g(x)| <
m},m ≥ 1. Then Ej(m) is measurable for all m, j and

1 = ‖g‖1 =
n∑

j=1

∞∑
m=1

∫
Ej(m)

|g|dµ.

Let ε > 0. Then there exists N > 0 so that for each 1 ≤ j ≤ n,

∞∑
m=N+1

∫
Ej(m)

|g|dµ < ε/2n.

For each 1 ≤ j ≤ n, 1 ≤ m ≤ N , the regularity of µ allows us to find a
compact set Kj(m) ⊆ Ej(m) so that µ(Ej(m)\Kj(m)) < ε/2N2n.

Let Kj = ∪N
m=1Kj(m). Since each Km(j) is compact, so is Kj . It follows

that if K = ∪n
j=1Kj , then

∫
X\K

|g|dµ =
n∑

j=1

∞∑
m=N+1

∫
Ej(m)

|g|dµ+
n∑

j=1

N∑
m=1

∫
Ej(m)\Kj(m)

|g|dµ

≤
n∑

j=1

ε/2n+
n∑

j=1

N∑
m=1

(ε/2nN2)

< ε/2 +
n∑

j=1

N∑
m=1

(ε/2nN2)N

= ε/2 +
n∑

j=1

ε/2n = ε.

2

Remark: If L is compact and K ⊆ L, then
∫
X\L |g|dµ ≤

∫
X\K |g|dµ < ε.
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2.4. Proposition. Let X be a compact, Hausdorff set and µ be a
positive, regular Borel measure on X with µ(X) = 1. Then the unit ball
(C(X))1 of C(X) is weak∗-dense in (L∞(X,µ))1, and as such, C(X) is weak∗-
dense in L∞(X,µ).
Proof. First observe that the simple functions in (L∞(X,µ))1 are norm
dense in (L∞(X,µ))1, and hence they are weak∗-dense. As such, it suffices to
prove that each simple function can be approximated in the weak∗-topology
on L∞(X,µ) by continuous functions.

Consider ϕ(x) =
∑n

j=1 ajχEj , where Ej is measurable, 1 ≤ j ≤ n and
∪n

j=1Ej = X. (We can suppose without loss of generality that the Ej ’s
are also disjoint. Suppose furthermore that ‖ϕ‖∞ ≤ 1. Let Kj ⊆ Ej be
a compact set for all 1 ≤ j ≤ n. Then K = ∪n

j=1Kj is compact, and so
by Tietze’s Extension Theorem we can find a function fK ∈ C(X) so that
fK(x) = aj if x ∈ Kj and 0 ≤ fK ≤ 1.

Let Λ = {K : K = ∪n
j=1Kj ,Kj ⊆ Ejcompact}, and partially order Λ

by inclusion, so that K1 ≤ K2 if K1 ⊆ K2. Then Λ is a directed set and
(fK)K∈Λ is a net in C(X). Let ε > 0. For g ∈ L1(X,µ), by Lemma 2.3 and
the remark which follows it, we can find K0 ∈ Λ so that K ≥ K0 implies∫
X\K |g|dµ < ε/2. But then K ≥ K0 implies

|
∫

X
(fK − ϕ)gdµ| ≤

n∑
j=1

∫
Ej\Kj

|fK − ϕ| |g|dµ

≤ 2
n∑

j=1

∫
Ej\Kj

|g|dµ

= 2
∫

X\K
|g|dµ < ε,

and so weak∗-limK fK = g.
Thus (C(X))1 is weak∗-dense in (L∞(X,µ))1. The second statement is

straightforward.
2

2.5. Recall that two positive measures µ1 and µ2 on a sigma alge-
bra (X,S) are mutually absolutely continuous if for E ∈ S, µ1(E) = 0 is
equivalent to µ2(E) = 0. We write µ1 ∼ µ2 in this case.

2.6. Theorem. Let X be a compact, metric space and µ1, µ2 be fi-
nite, positive, regular Borel measures on X. Suppose that τ : L∞(X,µ1) 7→
L∞(X,µ2) is an isometric ∗-isomorphism and τ(f) = f for all f ∈ C(X).
Then µ1 ∼ µ2, L∞(X,µ1) = L∞(X,µ2), and τ(g) = g for all g ∈ L∞(X,µ1).

Proof. Suppose that E ⊆ X is a Borel set. Then τ(χE) ∈ L∞(X,µ2) is
idempotent, and hence a characteristic function, say χF (= χF (E)). If we
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can show that E = F a.e.− µ2, then

µ1(E) = 0 iff χE = 0 in L∞(X,µ1)
iff τ(χE) = 0 in L∞(X,µ2)
iff χF = 0 in L∞(X,µ2)
iff µ2(F ) = 0
iff µ2(E) = 0.

From this it follows that µ1 ∼ µ2 and therefore that L∞(X,µ1) = L∞(X,µ2).
Furthermore, since τ then fixes all characteristic functions, it fixes their
spans, which are norm dense in L∞(X,µ1). By continuity of τ , we see that
τ fixes the entire algebra, so τ is the identity map.

Note that χX\E = 1− χE , and hence τ(χX\E) = 1− τ(χE) = 1− χF =
χX\F . As such, if we can prove that E ⊆ X implies that µ2(F\E) = 0,
then X\E ⊆ X implies µ2(E\F ) = µ2((X\F )\(X\E)) = 0. Letting ∆ =
(E\F ) ∪ (F\E), we have µ2(∆) = 0, and hence E = F a.e.− µ2.

Case One: E is compact: For each n ≥ 1, define fn ∈ C(X) as follows:

fn(x) =
{

1− n dist(x,E) if dist(x,E) ≤ 1/n
0 otherwise

Then fn ≥ χE for all n ≥ 1, and fn(x) → χE(x) as n → ∞ for all
x ∈ X. Since τ is a ∗-homomorphism, it is positive, and as such, it
preserves order. Thus τ(χE) ≤ τ(fn) for all n ≥ 1. But fn ∈ C(X)
implies τ(fn) = fn so that χF = τ(χE) ≤ fn for all n ≥ 1. Hence
χF ≤ χE in L∞(X,µ2). Thus µ2(F\E) = 0, as required.

Case Two: E ⊆ X is Borel: Since µ1, µ2 are regular, we can find
an increasing sequence (Kn)n of compact subseteq of E so that
µi(E\Kn) → 0 as n → ∞, i = 1, 2. (Indeed, choose K1 so that
µ1(E\K1) < 1, K2 ≥ K1 so that µ2(E\K2) < 1/2, etc.).

Now τ preserves order, and therefore it also preserves suprema.
That is, if sup gn = g in L∞(X,µ1), then sup τ(gn) = τ(g) in
L∞(X,µ2). In our case,

supχKn = χE in L∞(X,µ1).

Thus sup τ(χKn) = τ(χE) = χF in L∞(X,µ2). Since τ(χKn) ≤
χKn by Case One, we have

χE = supχKn ≥ sup τ(χKn) = χF

in L∞(X,µ2), and so again, µ2(F\E) = 0, completing the proof.
2

2.7. Definition. Let H be a Hilbert space and A ⊆ B(H) be an alge-
bra. A vector x ∈ H is said to be cyclic for A if [Ax] = H. Also, x is said
to be separating for A if A ∈ A and Ax = 0 imply that A = 0.
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2.8. Example. Let X ⊆ C be a compact set and µ be a positive
regular Borel measure with suppµ = X.

Let q(z) = z, z ∈ X, and consider Mq ∈ B(L2(X,µ)). Then e(z) =
1, z ∈ X is cyclic for C∗(Mq). Indeed, since C∗(Mq) ' C(X), we get
[C∗(M1)e] = [C(X)] = L2(X,µ).

Note that e is also separating for C∗(Mq), since T ∈ C∗(Mq) implies
T = Mf for some f ∈ C(X), and hence Te = f = 0 if and only if T = 0.
This is not a coincidence.

2.9. Lemma. Let H be a Hilbert space and A ⊆ B(H) be an abelian
algebra. If x is cyclic for A, then x is separating for A.
Proof. Suppose A ∈ A and Ax = 0. Then for all B ∈ A, ABx = BAx = 0.
By continuity of A, Ay = 0 for all y ∈ [Ax] = H. Thus A = 0 and x is
separating for A.

2

2.10. Theorem. [The Spectral Theorem. Cyclic Case] Let H be
a Hilbert space and N ∈ B(H) be normal. Suppose that x ∈ H is a cyclic
vector for C∗(N). Then there exists a finite, positive, regular Borel measure
µ with suppµ = σ(N) and a unitary U : H → L2(σ(N), µ) so that

Γ∗ : W ∗(N) 7→ B(L2(σ(N), µ))
T 7→ UTU∗

is an isometric ∗-isomorphism onto M∞(σ(N), µ). Furthermore, up to the
isomorphism between M∞(σ(N), µ) and L∞(σ(N), µ), Γ∗|C∗(N) = Γ, the
Gelfand transform.
Proof. First we observe that since C∗(N) is separable and x ∈ H is cyclic
for C∗(N), it follows that H is separable as well. Without loss of generality,
we may assume that ‖x‖ = 1.

Consider
ϕ : C∗(N) → C

T 7→ 〈Tx, x〉.
Then ϕ is a positive linear functional. Also, Γ : C∗(N) → C(σ(N)) is an
isometric ∗-isomorphism, so

ϕ ◦ Γ−1 : C(σ(N)) → C

is a positive linear functional on C(σ(N)). By the Riesz-Markov Theorem,
there exists a finite, positive, regular Borel measure µ on σ(N) such that

ϕ(f(N)) = ϕ ◦ Γ−1(f) =
∫

σ(N)
fdµ.

We claim that suppµ = σ(N). For otherwise, there exists G ⊆ σ(N)
open so that µ(G) = 0. Choose a non-zero positive continuous function f
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with f ≤ χG. Then 0 6= f(N) and hence

ϕ(f(N)) = ϕ((f(N)1/2)2)

= ‖f(N)1/2x‖2

6= 0

since f(N)1/2 ∈ C∗(N) and x is cyclic, hence separating for C∗(N). But
then 0 6= ϕ(f(N)) =

∫
σ(N) fdµ ≤

∫
G 1dµ = µ(G) = 0, a contradiction. Thus

suppµ = σ(N).
Consider

U0 : C∗(N) → C(σ(N))
g(N)x 7→ g.

Then

‖f‖2
2 =

∫
σ(N)

|g|2dµ

= ϕ ◦ (|g|2(N))
= 〈|g|2(N)x, x〉
= 〈g(N)∗ g(N)x, x〉
= ‖g(N)x‖2,

so U0 is isometric. We can and do extend U0 to an isometry U : H =
[C∗(N)x] → [C(σ(N)] = L2(σ(N), µ).

Now set
Γ∗ : W ∗(N) → B(L2(σ(N), µ))

T 7→ UTU∗.

Then Γ∗ is an isometric ∗-preserving map. For f, g ∈ C(σ(N)), Γ∗(f(N))g =
U(f(N))U∗g = Uf(N)g(N) = fg, so that Γ∗(f(N)) = Mf .

Now Γ∗ is WOT-WOT continuous. Indeed, suppose fα(N) → f(N) in
the WOT. Then for all g, h ∈  L2(σ(N), µ), 〈UfαU

∗(Ug), (Uh)〉 = 〈fαg, h〉 →
〈fg, h〉 = 〈UfU∗(Ug), (Uh)〉. Since the WOT on M∞(σ(N), µ) is just
the weak∗-topology on L∞(σ(N), µ), and since C(σ(N)) is weak∗-dense in
L∞(σ(N), µ) by Proposition 2.2, it follows that ran γ∗ ⊇ MC(σ(N))

WOT =
M∞(σ(N), µ).

2

2.11. We remark that the measure µ above is unique in the sense that
if ν is a second finite, positive, regular Borel measure with support equal to
σ(N) and Γ∗ν : W ∗(N) → B(L2(σ(N), ν)) extends the Gelfand map as Γ∗

does, then µ ∼ ν, L∞(σ(N), µ) = L∞(σ(N), ν), and Γ∗ν = Γ∗.
Indeed, Γ∗ν ◦ (Γ∗)−1 : M∞(σ(N), µ) → M∞(σ, ν) is an isometric ∗-

isomorphism which, through Γ, induces an isometric ∗-isomorphism τ from
L∞(σ(N)), µ to L∞(σ(N), ν) which fixes the continuous functions. By The-
orem 2.6, τ is the identity map, so that Γ∗ν = Γ∗.
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2.12. Proposition. Suppose H is a Hilbert space, A ⊆ B(H) is an
abelian C∗-algebra. Then there exists a masa M of B(H) so that A ⊆ M.
Proof. This is a straightforward application of Zorn’s Lemma and the proof
is left to the reader.

2

2.13. Theorem. Let H be a separable Hilbert space and M ⊆ B(H)
be a masa. Then M admits a cyclic vector x.
Proof. The key to the first half of the proof is that if y and z are two
non-zero vectors and z is orthogonal to [My], then [Mz] is orthogonal to
[My]. This follows from the fact that [My] is reducing for M.

Now consider the family F = {{xα}α ∈ Λ ⊆ H : ‖xα‖ = 1 for all α, [Mxα1 ] ⊥
[Mxα2 ] if α1 6= α2}, partially ordered with respect to inclusion. If J =
{(Jβ)β} is a chain in F, it is routine to verify that ∪βJβ lies in F and is
an upper bound for J. By Zorn’s Lemma, F has a maximal element, say
{xγ}γ∈Ξ. If H0 = ∨[Mxγ ] 6= H, then we can choose a unit vector y ∈ H0.
From the comment in the first paragraph, we deduce that {xγ}γ ∪ {y} ∈ F
and is greater than {xγ}γ , contradicting the maximality of {xγ}γ . Thus
∨[Mxγ ] = H.

Since M is a masa, I ∈ M and so xγ ∈ [Mxγ ] for each γ and thus
dim [Mxγ ] ≥ 1. Since dim H = ℵ0 ≥

∑
γ dim [Mxγ ], it follows that the

cardinality of Ξ is at most ℵ0. Write Ξ = {n}m
n=1, m ≤ ℵ0. Let x =∑

n<m+1 xn/n. (The index set of the sum is merely a device to allow us to
handle the cases where Ξ is infinite and where Ξ is finite simultaneously.)
For each n, the orthogonal projection Pn onto [Mxn] lies in M′ = M, so that
[Mxn] = [MPnx] ⊆ [Mx] for all n < m + 1. Thus H = ∨n<m+1[Mxn] ⊆
[Mx] ⊆ H, and x is a cyclic vector for M.

2

2.14. Corollary. Let H be a separable Hilbert space and A ⊆ B(H) be
an abelian C∗-algebra. Then A has a separating vector.
Proof. By Proposition 2.12, A ⊆ M for some masa M of B(H). By Theo-
rem 2.13, M has a cyclic vector x, and x is separating for M by Lemma 2.9.
Finally, if x is separating for M, then trivially x is also separating for A.

2

Let H be a separable Hilbert space, A ⊆ B(H) be a C∗-algebra, and
x ∈ H. Denote by Hx the space [Ax], and for Z ∈ B(H), denote by Zx the
compression of Z to Hx.

2.15. Proposition. Let H be a separable Hilbert space, A ⊆ B(H) be
a C∗-algebra, and x ∈ H be a separating vector for A. The map

Φ : A → B(Hx)
T 7→ Tx
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is an isometric ∗-isomorphism of A onto ran Φ. Moreover, σ(T ) = σ(Tx)
for all T ∈ A.
Proof. Recall from Lemma 1.17 that the orthogonal projection Px onto Hx

lies in A′, and x ∈ ranPx. From this the fact that Φ is a ∗-homomorphism
easily follows.

Suppose 0 6= T ∈ A. Then Tx(x) = TPx(x) = Tx 6= 0, as x is separating
for A. Thus ker Φ = 0, and so Φ is an isometric map as well. Now Φ(A) is
a C∗-algebra by ??, and so in particular,

σ(T ) = σA(T ) = σΦ(A)(Φ(T )) = σB(Hx)(Tx) = σ(Tx),

completing the proof.
2

2.16. Theorem. [The Spectral Theorem for normal operators]
Let H be a separable Hilbert space and N ∈ B(H) be normal. Then there
exists a finite, positive, regular Borel measure µ with support equal to σ(N)
and an isometric ∗-isomorphism

Γ∗ : W ∗(N) →M∞(σ(N), µ)

which extends the Gelfand map Γm : C∗(N) →M(C(σ(N), µ)), Γm(f(N)) =
Mf .

Moreover, µ is unique up to mutual absolute continuity, while Γ∗m and
M∞(σ(N), µ) are unique.
Proof. By Corollay 2.14, W ∗(N) an abelian C∗-algebra implies that W ∗(N)
has a separating vector x, which we may assume has norm one. Let Hx =
[W ∗(N)x], and consider (using the same notation as before)

Φ : W ∗(N) → B(Hx)
T 7→ Tx.

By Proposition 2.15, Φ is an isometric ∗-isomorphism, and σ(Tx) = σ(T )
for all T ∈ W ∗(N) - in particular, σ(Nx) = σ(N). By identifying W ∗(N)
with its range Φ(W ∗(N)), we may assume that W ∗(N) already has a cyclic
vector. But C∗(N)

WOT
= W ∗(N), and so if T ∈ W ∗(N), then there exists

a net (Tα)α ∈ C∗(N) so that Tx = limα Tαx ∈ [C∗(N)x]. It follows that
Hx = [C∗(N)x], so that x is also a cyclic vector for C∗(N).

By the Cyclic Version of the Spectral Theorem for normal operators,
Theorem 2.10, we obtain a finite, positive, regular Borel measure µ with
support σ(N) so that Γ∗m : W ∗(N) → B(Hx) is an isometric ∗-isomorphism.
Also, ran Γ∗m = M∞(σ(N), µ). From the proof of that Theorem, we saw
that Γ∗m is WOT-WOT continuous, and so Γ∗ = Γ∗m ◦ Φ is WOT-WOT
continuous as well. Also, Γ∗ extends the Gelfand map because Γ∗m does.

Finally, Φ surjective implies that ran Γ∗ = M∞(σ(N), µ). Uniqueness
follows as before.

2
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2.17. Remark.
(i) Let H be a separable Hilbert space and N ∈ B(H) be normal. We

can now define an L∞-functional calculus for N .
(ii) N can be approximated by linear combinations of projections.
(iii) We can define a spectral measure on σ(N).

Where there’s a will, there’s a wake. [Old Irish Proverb]
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Appendix A: The essential spectrum

A.1. Definition. Given an operator T ∈ B(H), we define the
essential spectrum of T to be the spectrum of the image π(T ) in the Calkin
algebra A(H).

In this note, we wish to prove a result due to Putnam and Schechter ,
namely:

A.2. Theorem. Let H be a Hilbert space and T ∈ B(H). Suppose
that λ ∈ ∂σ(T ). Then either λ is isolated in σ(T ), or λ ∈ σe(T ).

The proof below uses a description of the singular points of the semi-
Fredholm domain of T , due to C. Apostol [?].

A.3. Definition. Let H be a Hilbert space and T ∈ B(H). Then the
semi-Fredholm domain ρsF(T ) of T is the set of all complex numbers λ
such that λ1− π(T ) is either left or right invertible in the Calkin algebra.

If µ ∈ C, then µ is called a (T )−singular point if the function

λ 7→ Pker(T−λ)

is discontinuous at µ. Otherwise, µ is said to be (T )−regular .
If µ ∈ ρsF(T ) and µ is singular (resp. µ is regular), then we write

µ ∈ ρs
sF(T ) (resp. ρr

sF(T )).

A.4. Lemma. Let T ∈ B(H) and suppose that µ is a regular point
of the semi-Fredholm domain of T . Then

ker (T − µ)∗ ⊆ ( span {ker (T − λ) : λ ∈ C})⊥.

Proof. First note that ran (T − µ) ⊇ ker (T − λ) for all λ 6= µ. For if
x ∈ ker (T −λ) and λ 6= µ, then (T −µ)x = (λ−µ)x and so x ∈ ran (T −µ).

Also span{ker (T − λ) : λ ∈ C} = span{ker (T − λ) : λ 6= µ}. This
follows from the regularity of µ. Basically, we must show that ker (T −
µ) ⊆ span{ker (T − λ) : λ 6= µ}. But if x ∈ (T − µ) and ‖x‖ = 1, then
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again by the regularity of µ, for any ε > 0 we can find λn → µ such that
‖Pker (T−λn) − Pker (T−µ)‖ < ε.

But then

ε > ‖Pker (T−λn)x− Pker (T−µ)x‖
= ‖Pker (T−λn)x− x‖,

and so x ∈ ker (T − µ) ⊆ span{ker (T − λ) : λ 6= µ}.
Combining these two arguments,

ker (T − µ)∗ = (ran (T − µ))⊥

⊆ span{ker (T − λ) : λ ∈ C}.
2

A.5. Theorem. Let T ∈ B(H). Then
(i) ρr

sF(T ) is open;
(ii) ρr

sF(T ) = ρr
sF(T ∗)∗ := {λ : λ ∈ ρr

sF(T )};
(iii) ρr

sF(T ) has no accumulation points in ρs
sF(T ).

Proof.
(i) Let µ ∈ ρr

sF(T ) and put Y = span{ker (T − λ) : λ ∈ C}. We claim
that TY ⊆ Y .

Consider y ∈ span{ker (T − λ) : y ∈ C}, say y =
∑m

n=1 yn with
each yn ∈ ker (T −λn). Then Ty =

∑m
n=1 Tyn =

∑m
n=1 λnyn which

lies in span{ker (T − λn) : 1 ≤ n ≤ m}. By the continuity of T , we
have TY ⊆ Y . Let TY = T |Y .

Since ker (T − µ) ⊆ Y , ran (TY − µ) is closed. To see this,
suppose that {xn} is a sequence in ran (TY − µ) such that {xn}
converges to x ∈ Y . Then there exists a sequence {yn} ⊆ Y such
that (TY − µ)yn = xn.

In fact, since ker (T − µ) ⊆ Y , we can let

zn = PY	ker (T−µ)yn

and then

(T − µ)zn = (TY − µ)zn = (TY − µ)yn = xn

for all n ≥ 1.
Since ran (T−µ) is closed, (i.e. µ ∈ ρsF), there exists z ∈ H such

that (T −µ)z = x. But (T −µ) is bounded below on (ker (T −µ))⊥,
and therefore (TY −µ) is bounded below on Y 	 ker (T −λ). From
this we get a δ > 0 such that

‖xn − x‖ = ‖(T − µ)zn − (T − µ)z‖
≥ δ‖zn − z‖

for all n ≥ 1.
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But then z = limn→∞ zn, and so z ∈ Y . This gives us (TY −
µ)z = (T − µ)z = x, and so x ∈ ran (TY − µ), i.e. ran (TY − µ) is
closed.

We next claim that

(TY − µ)Y ⊇ span{ker (T − λ) : λ 6= µ}
= span{ker (T − λ) : λ ∈ C}
= Y.

The first equality we saw in the previous Lemma, while the
second is the definition of Y . As for the containment, let y ∈
span{ker (T − λ) : λ 6= µ}, say y =

∑m
n=1 yn. Then

(TY − µ)y =
m∑

n=1

(TY − µ)yn

=
m∑

n=1

(λn − µ)yn

where yn ∈ ker (T − λn). Thus if z =
∑m

n=1(λn − µ)−1yn, we have
z ∈ Y and (TY − µ)z = y. Since ran (TY − µ) is closed, the desired
conclusion follows.

Since (TY − µ) is onto, we have µ ∈ ρr(TY ), the right resolvent
set of TY . For A ∈ B(H), define the right resolvent as

Rr(λ;A) = (λ−A)∗[(λ−A)(λ−A)∗]−1

so that
Pker (A−λ) = I −Rr(λ;A)(λ−A)

for all λ ∈ ρr(A).
Since ker (TY −µ) = ker (T −µ) for all λ ∈ C, we infer that the

map λ 7→ Pker (T−µ) is continuous in an open neighbourhood Gµ of
µ, as ρr(T ) is open. Thus µ is an interior point of ρr

sF(T ), and so
ρr
sF(T ) is open.

(ii) ρr
sF(T ) = ρr

sF(T ∗)∗

Let Z = (span{ker (T − λ)∗ : λ ∈ C})⊥. Then the proof of (i)
shows that ρr

sF(T ) ⊆ ρr(TY ) and ρr
sF(T ∗) ⊆ ρr(T ∗Z⊥).

We now claim that ρr
sF(T ) ⊆ ρl(TY ⊥) = ρr(T ∗Y ⊥)∗. For suppose

that λ ∈ ρr(TY ). If w ∈ ker (TY ⊥ − λ), then

(T − λ)
[

0
w

]
=
[
Ty − λ TZ

0 TY ⊥ − λ

] [
0
w

]
=
[
TZw
0

]
.

Since TY − λ is right invertible, (TY − λ)R = I for some R ∈
B(Y ) and so (TY − λ)R(−TZw) = (−TZw). Letting v = −RTZw,
we have

(T − λ)
[
v
w

]
and so

[
v
w

]
∈ ker (T − λ) ⊆ Y.
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Thus w = 0. But then TY ⊥ is injective.
If λ ∈ ρr

sF(T ), then ran (TY ⊥ − λ) = PY ⊥(ran (T − λ)) and
since ran (T − λ) is closed, so is ran (TY ⊥ − λ). Thus λ ∈ ρr

sF(T )
implies that ker(TY ⊥ − λ) = {0} and ran (TY ⊥ − λ) is closed, so
that λ ∈ ρl(TY ⊥) = ρr(T ∗Y ⊥)∗.

Similarly, ρr
sF(T ∗) ⊆ ρr(TZ)∗.

Since the maps

λ 7→ Pker(T ∗
Y⊥

−λ)λ ∈ ρ
r
sF(T )

λ 7→ Pker(T ∗Z−λ)λ ∈ ρ
r
sF(T ∗)

are continuous, and by the first Lemma we have

ker (T − λ)∗ = ker (T ∗Y ⊥ − λ) for all λ ∈ ρr
sF(T )

ker(T − λ) = ker (TZ − λ) for all λ ∈ ρr
sF(T ∗),

we infer that

ρr
sF(T )∗ ⊆ ρr

sF(T ∗)
ρr
sF(T ∗) ⊆ ρr

sF(T )∗

so that ρr
sF(T ) = ρr

sF(T ∗)∗.

(iii) ρs
sF(T ) has no accumulation points in ρsF(T ).

Let z ∈ ρs
sF(T ). Then we may assume that z ∈ ρle(T ), for other-

wise, by (2), we may consider z and T ∗. Put Y0 = span{ker (T−λ) :
λ 6= z}. As TY0 − z has dense range (the proof follows as from (1)),
and since ran (TY0) is closed (i.e. z ∈ ρle(T )), we get z ∈ ρr(TY0).

Now for λ 6= z, we have ker (T − λ) = ker (TY0 − λ). Since the
map

λ 7→ Rr(λ;TY0) λ ∈ ρr(TY0)

is continuous, we have that

λ 7→ Pker(TY0
−λ) = I −Rr(λ;TY0)(λ− TY0) λ ∈ ρr(TY0)

is continous, and so

λ 7→ Pker (T−λ)

is continous in some punctured neighbourhood of z. Since ρsF(T )
is open, we have that z is an isolated point in ρs

sF(T ).
Finally, suppose ρs

sF(T ) has an accumulation point µ ∈ ρsF(T ).
Then by (1), µ ∈ ρs

sF(T ) and µ is isolated, a contradiction. This
concludes the proof.

2
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A.6. Proposition. Let H be a Hilbert space and T ∈ B(H). Then

σ(T ) = σe(T ) ∪ σp(T ) ∪ σp(T ∗)∗,

where σp(T ∗)∗ = {λ : λ ∈ σp(T ∗)}.

Proof. Suppose λ 6∈ ∪σp(T )∪σp(T ∗)∗. Then nul(T −λ) = nul(T −λ)∗ = 0.
Thus (T −λ) is injective and has dense range. If λ 6∈ σe, then (T −λ) is

Fredholm and thus ran (T − λ) is closed. But then (T − λ) is bijective and
hence λ 6∈ σ(T ). Thus σ(T ) ⊆ σe(T )∪ σp(T )∪ σp(T ∗)∗. The other inclusion
is obvious.

2

A.7. Theorem. Let T ∈ B(H) and suppose λ ∈ ∂σ(T ). Then either
λ is isolated or λ ∈ σe(T ).

Proof. Suppose λ 6∈ σe(T ). Then by the above Proposition, we may assume
that λ ∈ σp(T ) (otherwise consider λ and T ∗. Since λ ∈ ∂σ(T ), we can find
a sequence {λ}n ⊆ ρ(T ) such that λ = limn→∞ λn.

Since ker (T−λn) = {0} for all n ≥ 1 while ker (T−λ) 6= {0}, we conclude
that λ ∈ ρs

sF(T ). Since ρs
sF(T ) has no accumulation points in ρsF(T ), and

since λ 6∈ σe(T ), we conclude that λ is isolated in σ(T ).
2

A.8. Corollary. Let T ∈ B(H). Then σ(T ) = σe(T ) ∪ Ω, where
Ω consists of some bounded components of the Fredholm domain of T and a
sequence of isolated points in the Fredholm domain which converge to σe(T ).

“I regret that I have only sixteen lives to give to my country.”
Sybill

***************************************





Appendix B. von Neumann algebras as dual spaces

Let H be a separable Hilbert space. In this note we show the von
Neumann algebras are precisely the class of C*-algebras of B(H) which can
be identified with the dual space of some Banach space X. Much of the
material in the second half of this note is borrowed from the book of Pedersen
[?] .

Let us first recall how B(H) is itself a dual space. By K(H) we denote
the set of compact operators on H.

Given an operator K ∈ K(H), we may consider |K| = (K∗K)
1
2 ∈ K(H).

Then |K| ≥ 0, and so by the Spectral Theorem for Compact Normal Oper-
ators, we know that σ(|K|) = {sn(K)}∞n=1, where sn(K) ≥ 0 for all n ≥ 1
and limn→∞ sn(K) = 0.

B.1. Definition. We write K ∈ C1(H) and say that K is a trace
class operator on H if K is compact and

∑∞
n=1 sn(K) < ∞. The

numbers sn = sn(K) are called the singular numbers for K.
More generally, we write K ∈ Cp(H) if

∑∞
n=1 sn

p <∞.

We shall require the following two facts. Their proofs may be found in
[?].

Facts:

• For each p, 1 ≤ p < ∞, Cp(H) is an ideal of B(H) called the
Schatten p-ideal. Moreover, Cp(H) is closed in the Cp− norm
topology which is the topology determined by the norm

‖K‖p = (
∞∑

n=1

sn
p)

1/p

.
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• If T ∈ B(H), K ∈ C1(H) and {en}∞n=1 is an orthonormal basis of H,
then we can define tr(TK) =

∑∞
n=1 ann, where TK = [aij ]i,j≥1 with

respect to the orthonormal basis {en}∞n=1. One can then show that
tr(TK) is well-defined; that is, it is independent of the orthonormal
basis chosen.

From the above two facts, we see that given T ∈ B(H), we can define

φT : C1(H) → C
K 7→ tr(TK) .

The map that sends a trace class operator T to the functional φT proves
to be an isometric isomorphism between C1(H)∗ and B(H), so that B(H) is
a dual space and as such is endowed with the weak∗-topology induced by
its predual, C1(H). This turns out to be precisely the ultraweak or σ-weak
topology on B(H).

An alternate approach to this result is to realize C1(H) as the closure of
H⊗H in B(H)∗.

In order to prove that every von Neumann algebra A is a dual space, we
require some basic results form Linear Analysis.

B.2. Definition. Let X be a Banach space and M ⊂ X, N ⊆ X∗ be
linear manifolds. Then

M⊥ = {f ∈ X∗ : f(m) = 0 for all m ∈M}
⊥N = {x ∈ X : g(x) = 0 for all g ∈ N}.

B.3. Proposition. Let X be a Banach space and M ⊆ X, N ⊆ X∗

be linear manifolds. Then

(1) M⊥ is a weak∗-closed subspace of X∗.
(2) ⊥N is a norm closed subspace of X.

Proof.

(1) Suppose {fα}α∈Λ is a net in M⊥ and fα converges to f in the
weak∗-topology. Then for all x in X, limα∈Λ fα(x) = f(x), and so
in particular, f(m) = limα fα(m) = 0 for all m ∈M , implying that
f ∈M⊥. Thus M is weak∗-closed.

(2) If {xn}∞n=1 ⊆⊥ N and x = limn→∞ xn, then g(x) = limn→∞ g(xn) =
0 for all g ∈ N . Thus x ∈⊥ N and the latter is norm closed.

2

B.4. Theorem. Let X be a Banach space and let M ⊆ X and
N ⊆ X∗ be linear manifolds. Then (⊥N)⊥ is the weak∗-closure of N in X∗.
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Proof. Clearly, if g ∈ N , then g(x) = 0 for all x ∈ ⊥N , and so g ∈ (⊥N)⊥.
But (⊥N)⊥ is now a weak∗-closed subspace of X∗ which contains the weak∗-
closure of N .

If f does not lie in the weak∗-closure of N , then by the Hahn-Banach
Theorem applied to X∗ with its weak∗-topology (which separates points from
convex sets), there exists x ∈ ⊥N such that f(x) 6= 0. But then f 6∈ (⊥N)⊥,
completing the proof.

2

B.5. Theorem. Let X be a Banach space and M ⊆ X be a subspace
of X. Let π : X → X/M denote the canonical quotient map. Then the map

τ : (X/M)∗ → M⊥

f 7→ f ◦ π

is an isometric isomorphism.

Proof. First we shall show that τ is injective.
If τ(f) = f ◦ π = g ◦ π = τ(g), then

f(π(x)) = (f ◦ π)(x) = (g ◦ π)(x) = g(π(x)) for all x ∈ X,

and so f = g as elements of (X/M)∗.

Next we show that τ is surjective.
Let φ ∈M⊥ and define g ∈ (X/M)∗ by g(π(x)) = φ(x). To see that g is

well-defined, note that if π(x) = π(y), then

g(π(x))− g(π(y)) = φ(x)− φ(y) = φ(x− y).

But π(x − y) = 0 implies that x − y ∈ M , and so φ(x − y) = 0. Thus g is
well-defined, and since τ(g) = g ◦ π = φ, τ is surjective.

Finally we show that τ is isometric. Let τ ∈ (X/M)∗. Then

‖τ(g)‖ = ‖g ◦ π‖
= sup

‖x‖=1
‖g ◦ π(x)‖

= sup
‖π(x)‖=1

‖g(π(x))‖

= ‖g‖.

2

B.6. Theorem. Let A ⊆ B(H) be a von Neumann algebra acting on
a separable Hilbert space H. Then A is isometrically isomorphic to the dual
space of some Banach space.
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Proof. Let X = C1(H) = (B(H))∗, and let M = ⊥A, so that M is closed in
X. By Theorem B.5 above, we have

(X/M)∗ 'M⊥,

and this isomorphism is isometric. But then

(C1(H)/(⊥A))
∗ ' (⊥A)

⊥
= A−weak∗ .

But A is a von Neumann algebra and hence A is closed in the weak-
operator topology, which is weaker than the weak∗-topology on B(H). Thus
A is weak∗-closed as well, and so

(C1(H)/(⊥A))
∗ ' A,

where the isomorphism is once again isometric.
2

To complete the analysis, one needs to show that if a C*-algebra A is
isometrically isomorphic to the dual space of some Banach space X, then A
is a von Neumann algebra. This is by far the more difficult implication.

We begin with the following Proposition, which may be found in [?].
B.7. Proposition. Let A be a C*-algebra and let S denote its unit

sphere. Then S has an extreme point if and only if A has an identity.

Proof. Suppose first that A has an identity, say 1. We shall show that 1 is
an extreme point in S. If 1 = (a+b)/2 with a, b ∈ S, then put c = (a+a∗)/2
and d = (b + b∗)/2. Then 1 = (c + d)/2 with c, d ∈ S. Since d = 2 − c, d
commutes with c and both c and d are self-adjoint.

Representing the C*-algebra generated by 1, c, and d as continuous func-
tions on some compact Hausdorff space, we can easily see that c = d = 1.
Hence a∗ = 2− a, so that a is normal. But then a = a∗ = 1, again by norm
considerations, so that b = 1 and thus 1 is an extreme point.

Conversely, suppose x is an extreme point in S. Let C0(Ω) be the C*-
subalgebra of A generated by x∗x. Then, since every C*-algebra has an
approximate identity, we can take a sequence {yn} of positive elements in
C0(Ω) such that ‖yn‖ ≤ 1 for all n, limn→∞ ‖(x∗x)yn − (x∗x)‖ = 0, and
limn→∞ ‖(x∗x)y2

n − (x∗x)‖ = 0. (This last step follows from the fact that if
{yn} is a bounded approximate identity for C0(Ω), then so is {y2

n}.)
Suppose that at some point t of Ω, x∗x takes a non-zero value less than

one. Then we can take a positive element c of C0(Ω), non-zero at t, such
that γn = yn + c, sn = yn − c, ‖(x∗x)γ2

n‖ ≤ 1, and ‖(x∗x)s2n‖ ≤ 1. Hence
xγn and xsn are in S.

On the other hand,

‖(xyn − x)∗(xyn − x)‖ = ‖x∗xy2
n − x∗xyn − x∗xyn + x∗x‖,

and this tends to 0 as n tends to ∞. Hence limn→∞ xyn = x, so that
xγn → x+ xc and xsn → x− xc.
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Since x+xc, x−xc ∈ S and x =
(x+ xc) + (x− xc)

2
, x = x+xc = x−xc.

Hence xc = 0 and so ‖cx∗xc‖ = ‖x∗xc2‖ = 0. This is a contradiction, because
x∗x(t)c2(t) 6= 0.

Therefore, x∗x has no non-zero value less than one in Ω. In other words,
x∗x is a projection.

Put x∗x + xx∗ = h, and let B be a maximal commutative C*-algebra
of A containing h. Suppose h is not invertible in B. Then there exists a
sequence {zn} of positive elements belonging to B which satisfies ‖z2

n‖ = 1
for all n and limn→∞ ‖hz2

n‖ = 0. Hence,

‖xzn‖ = ‖znx∗‖ = ‖znx∗xzn‖
1
2 ≤ ‖znhzn‖

1
2 → 0 (n→∞),

and analogously, ‖znx‖ = ‖x∗zn‖ → 0 (n→∞). Therefore

lim
n→∞

‖zn − xx∗zn − znx
∗x+ xx∗znx

∗x‖ = 1.

Now we use the symbolic notation: y(1− x) = y − yx, (1− x)y = y − xy.
We shall show that (1− xx∗)A(1− x∗x) = 0. Suppose

a ∈ (1− xx∗)A(1− x∗x),

and ‖a‖ ≤ 1. Then

‖x± a‖ = ‖(x∗ ± a∗)(x± a)‖
1
2 = ‖x∗x± (x∗a+ a∗x) + a∗a‖

1
2 .

Since a∗xx∗a = 0, x∗a = a∗x = 0 and x∗xa∗a = x∗x(1 − x∗x)a∗a = 0.
Hence‖x ± a‖ = max(‖x∗x‖

1
2 , ‖a∗a‖

1
2 ) ≤ 1, so that by the extremity of x,

a = 0.
On the other hand,

zn − xx∗zn − znx
∗x+ xx∗znx

∗x ∈ (1− xx∗)A(1− x∗x);

hence it is zero, a contradiction.
Therefore h is invertible in B, h−1h is the identity of B, and so it is a

projection in A and the identity of h−1hAh−1h.
Suppose A(1 − h−1h) 6= 0. Then there exists an element a 6= 0 in

A(1 − h−1h). Since a∗ah−1h = 0, a∗a commutes with h−1hAh−1h ⊇ B.
But a 6∈ B, since a 6= 0, h−1h = 1B, and ah−1h = 0. This contradicts the
maximality of B. Hence h−1h is the identity of A, completing the proof.

2

Recall the following:

B.8. Theorem. [The Krein-Smulian Theorem] A convex set
in the dual space X∗ of a Banach space X is weak∗-closed if and only if
its intersection with every positive multiple of the closed unit ball in X∗ is
weak∗-closed.

We shall use the Krein-Smulian Theorem to prove the following Lemma.
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B.9. Lemma. Let A be a C*-algebra and X be a Banach space such
that A is isomorphic as a Banach space to X∗. Then Ah := {a ∈ A : a =
a∗}is weak∗-closed.

Furthermore, the positive cone A+ of A is also weak∗-closed.

Proof. By the Krein-Smulian Theorem above, it is sufficient to show that
the unit ball B1(Ah) is weak∗-closed, for Ah is clearly convex. To that end,
let {xα} be a weak∗-convergent net in B1(Ah) and write the limit as x+ iy,
with x, y ∈ Ah. Here, x + iy ∈ B1(A), which is weak∗-closed by Alaoglu’s
Theorem. Then {xα + in} is weak∗-convergent to x+ i(y + n) for every n.
Since ‖xα + in‖ ≤ (1 + n2)

1
2 and the norm is weak∗-lower semicontinuous,

we have
(1 + n2)

1
2 ≥ ‖x+ i(n+ y)‖ ≥ ‖n+ y‖.

If y 6= 0, we may assume that σ(y) contains a number λ > 0 (passing, if
necessary, to {−xα}). But then

λ+ n ≤ ‖n+ y‖ ≤ (1 + n2)
1
2

for all n, a contradiction. Thus y = 0. Again, since the norm is weak∗-lower
semicontinuous, we also have ‖x‖ ≤ 1, that is, x ∈ B1(Ah).

As for the positive cone, it again suffices to show that the unit ball
B1(A+) of A is weak∗-closed. But then simply note thatB1(A+) = 1

2(B1(Ah)+
1), and translation and contraction do not affect weak∗-closures.

2

B.10. Definition. A C*-algebra A is said to be monotone com-
plete if each bounded increasing net in Ah has a least upper bound in Ah.

B.11. Example. The most important example of a monotone
complete C*-algebra for our purposes is the space B(H) of bounded operators
on a Hilbert space H. To see that this is indeed monotone complete, it suffices
(by translation) to show that increasing bounded nets of positive operators
have a least upper bound. We do this by showing that such nets converge
strongly.

Let H be a Hilbert space and let {Pα}α∈Λ be a net of positive operators
on H such that 0 ≤ Pα ≤ Pβ ≤ I for α, β ∈ Λ with α ≤ β. Then there
exits P ∈ B(H) such that 0 ≤ Pα ≤ P ≤ I for all α and the net {Pα}α∈Λ

converges to P strongly.
Proof. Indeed, if Q ∈ B(H) with 0 ≤ Q ≤ 1, then 0 ≤ Q ≤ Q2 ≤ I, since
Q commutes with (I −Q)

1
2 by the functional calculus and

< (Q−Q2)x, x > = < Q(I −Q)
1
2x, (I −Q)

1
2x >

≥ 0



173

for all x ∈ H.
Moreover, for all x, the net {< Pαx, x >} is nondecreasing and is

bounded above by ‖x‖2, and thus is a Cauchy net. Now for α ≤ β, we
have

‖(Pβ − Pα)x‖2 = < (Pβ − Pα)2x, x >
≤ < (Pβ − Pα)x, x >

= < Pβx, x > − < Pαx, x >

and so {Pαx} is a Cauchy net with respect to the Hilbert space norm.
For x ∈ H, let Px = limα Pαx. Then P is linear and ‖Px‖ = limα ‖Pαx‖ ≤

‖x‖, so that ‖P‖ ≤ 1. Also,

0 ≤ lim
α
< Pαx, x >=< Px, x >,

so that P ≥ 0. This completes the proof.
2

B.12. Lemma. Let A be a C*-algebra and X be a Banach space
such that A is isomorphic as a Banach space to X∗. Then A is monotone
complete.

Proof. Let {xi} be a bounded increasing monotone net of self-adjoint ele-
ments of A. Since B1(Ah) is weak∗-compact (being convex, norm bounded
and weak∗-closed), there is a subnet {xj} of {xi} which is weak∗-convergent
to an element x ∈ Ah.

For each xi we eventually have xj ≥ xi for j ≥ i, and thus x ≥ xi

since A+ is weak∗-closed. That is, consider the subnet {xj − xi}j≥i which
eventually lie in A+ and converges in the weak∗-topology to x − xi. In
particular, x is an upper bound for {xi} in Ah.

If y ∈ Ah and y ≥ xi for all i then y ≥ xj for all j, so that

y ≥ weak∗ − limxj = x

as above. As such, x is the least upper bound for xi and so A is monotone
complete.

2

B.13. Definition. Given a subset M of self-adjoint operators on
some Hilbert space H, we denote by Mm (resp. Mm) the set of operators
obtained by taking strong limits of increasing (resp. decreasing) nets in M.

Note that if A is a C*-algebra and M = Asa, then Mm = Mm.
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B.14. Lemma. Let A be a C*-subalgebra of B(H) for some Hilbert
space H, and let M denote the strong operator closure of A. If P is a
projection in M then given x ∈ ranP and y ∈ ranP⊥ there is an element
B ∈ (Msa)m such that Bx = x and By = 0.

Proof. By Kaplansky’s Density Theorem, we find find operators An ∈ M1
+

such that ‖Anx− x‖ < 1
2 and ‖Any‖ < 1

n2−n.

For n < m define Bnm = (1 +
∑m

k=n kAk)−1
∑m

k=n kAk. By spectral
theory, ‖Bnm‖ ≤ 1, Bnm ∈ M+, and Bnm ≤

∑m
k=n kAk.

Thus < Bnmy, y >≤<
∑m

k=n kAky, y >≤
∑m

k=n 2−k < 2−n+1.
Since

∑m
k=n kAk ≥ mAm, we have Bnm ≥ (1 + mAm)−1mAm and so

1−Bnm ≤ (1 +mAm)−1. But Am ∈ M1
+ implies that (1 +mAm) ≤ (1 +m),

and hence (1 +m)−1 ≤ (1 + mAm)−1. Then (mAm)
1
2 (1 + m)−1(mAm)

1
2 ≤

(mAm)
1
2 (1 + mAm)−1(mAm)

1
2 , and hence (mAm)(1 + m)−1 ≤ (mAm)(1 +

mAm)−1. It follows that 1− (mAm)(1 +mAm)−1 ≤ 1− (mAm)(1 +m)−1,
i.e. (1 +mAm)−1 ≤ (1 +m)−1 ((1 +m)−mAm), so that

1−Bnm ≤ ((1 +m)−mAm) .

Thus

< (1−Bnm)x, x > ≤< (1 +m)−1(1 +m(1−Am))x, x >
= (1 +m)−1(< x, x > +m < (1−Am)x, x >)

≤ (1 +m)−1(1 +m( 1
m))

= 2(1 +m)−1.

For fixed n, the sequence {Bnm} is monotone increasing, and since it is
norm bounded, it is strongly convergent to an element 0 ≤ Bn ∈ (Msa)m.
Moreover, ‖Bn‖ ≤ 1.

Since Bn+1 m ≤ Bnm for each m > (n + 1), we see that Bn+1 ≤ Bn, so
that the sequence {Bn} is monotone decreasing and bounded. Again, it is
strongly convergent to an element B ≥ 0, which lies in (Msa)m, again, as
(Msa)m = (Msa)m.

Note that ‖ < Bny, y > ‖ = ‖ limm < Bnmy, y > ‖ ≤ 2−n+1, and
‖ < (1 − Bn)x, x > ‖ = ‖ limm(1 − Bnm)x, x > ‖ ≤ 0. Since 0 ≤ Bn ≤ 1,
we deduce that < (1−Bn)x, x >= 0, and hence that Bnx = x.

Finally, as 0 ≤ B ≤ 1, ‖ < By, y > ‖ = ‖ limn < Bny, y > ‖ = 0,
implying that By = 0. Similarly, Bx = limnBnx = x, completing the proof.

2

B.15. Theorem. Let H be a Hilbert space. A unital C*-algebra M
of B(H) is a von Neumann algebra if and only if (Msa)m = Msa.

Proof. Suppose that M is a von Neumann algebra. Let T ∈ (Msa)m.
Then T ∈ M as the latter is closed in the strong operator topology. Since
T ∈ B(H)sa by definition, T ∈ Msa.
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Conversely, to prove that M is a von Neumann algebra, it suffices to
show that each projection P in the strong closure of M actually belongs to
M.

Suppose that x ∈ PH and y ∈ (I − P )H. Then Lemma B.14 shows
that there exists R ∈ M+ such that Rx = x and Ry = 0. The range
projection P(x,y) of R belongs to M. Indeed, the sequence ( 1

n + R)−1 is
monotone increasing, and converges strongly to P(x,y). Thus P(x,y)x = x,
and P(x,y)y = 0. The projections P(x,y1) ∧ P(x,y2) ∧ . . . ∧ P(x,yn) form a
decreasing net in M+, when {y1, y2, . . . , yn} runs through the finite subsets
of (I − P )H. Thus the limit projection Px ≤ P , and lies in Msa. Clearly, P
is the limit of the increasing net of projections Px1 ∨ Px2 ∨ . . . ∨ Pxk

where
{x1, x2, . . . , xk} runs over the finite subsets of PH. Thus P ∈ (Msa)m ⊆ M,
completing the proof.

2

B.16. Definition. Let A be a von Neumann algebra. Then φ ∈ A∗
is said to be normal if for each bounded monotone increasing net {xi} in
Ah with limxi = x we have {φ(xi)} converging to φ(x).

More generally, if A and B are von Neumann algebras, then a positive
linear map ρ of A into B is said to be normal if for each bounded monotone
increasing net {xi} in Ah, the net {ρ(xi)} increases to ρ(x) in Bh.

B.17. Lemma. If A is a unital monotone complete C*-algebra with
a separating family of normal states, then there is a normal isomorphism of
A onto a von Neumann algebra.

Proof. Let F denote the separating family of normal states of A and con-
sider the representation πF = ⊕φ∈Fπφ, acting on HF = ⊕φ∈FHφ. Then
(πF ,HF ) is faithful. Indeed, if x ≥ 0 lies in the kernel of πF , then

φ(x) =< πφ(x)ξφ, ξφ >
= 0

for each φ ∈ F , so that x = 0. Since kerπF is a C*-algebra, it is spanned by
its positive elements, and therefore kerπF = {0}.

Now if {xα} is a bounded montone increasing net in Asa, then {xα} has a
least upper bound x ∈ Asa, as A is monotone complete. Also {πF (xα)}α is a
bounded monotone decreasing net in B(HF ) as πF ≥ 0, and thus {πF (xα)}α

has a least upper bound y in B(HF ), as B(HF ) is monotone complete. Since
x ≥ xα for all α, πF (x) ≥ πF (xα) for all α, and hence πF (x) ≥ y.
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However, if φ ∈ F , and (πφ,Hφ, zφ) is the cyclic representation associ-
ated with φ via the GNS construction, then for all unitaries u in A,

< πφ(x)πφ(u)zφ, πφ(u)zφ > = φ(u∗xu)
= limφ(u∗xαu) as φ is normal
= lim < πφ(xα)πφ(u)zφ, πφ(u)zφ > .

Thus (πφ(x)− y)πφ(u)zφ = 0. But A is spanned by its unitaries, and hence

(πφ(x)− y) [πφ(A)zφ] = 0.

As HF = ⊕φ∈FHφ, we conclude that πF (x) = y. Thus πF (A) is mono-
tone complete. By Theorem B.15, πF (A) is a von Neumann algebra.

2

B.18. Theorem. Let A be a C*-algebra and X be a Banach space
such that A is isomorphic as a Banach space to X∗. Then A has a faithful
representation as a von Neumann algebra with A∗ = X.

Proof. Consider the weak∗-topology on A arising from X, and identify X
with the weak∗-continuous elements of X∗. Since the unit ball B1(A) is
weak∗-compact, it has an extremal point, by the Krein-Milman Theorem.
Hence A is unital, by Proposition B.7.

By Lemma B.9, Ah is weak∗-closed, as well as the positive cone A+ of
A.

It now follows that the positive cone of X, namely X+, is separating for
A. For if a ∈ Ah and −a 6∈ A+, then since A+ is a weak∗-closed cone in Ah,
by the Hahn-Banach Theorem there exists an element φ ∈ Xh such that
φ(A+) ≥ 0 and φ(a) > 0. Namely, we can think of Ah as a real vector space
and obtain a real linear functional on Ah satisfying these conditions. Then
we complexify φ to A.

By Lemma B.12, A is monotone complete.
Suppose φ ∈ X+. Then φ is normal, since if {xi} is a monotone increasing

net in A with least upper bound x, then

limφ(xi) ≤ φ(x) = weak∗ − limφ(xj) ≤ limφ(xi).

Note that limφ(xi) exists since it is a bounded monotone increasing net in
R. Thus A is a monotone complete C*-algebra with a separating family
(namely B1(X)+) of normal states.

By Lemma B.17, A has a faithful representation as a von Neumann
algebra. Moreover, from the GNS construction, we has that X+ ⊆ A∗.

Also, if x ∈ Ah and x 6= 0, then φ(x) 6= 0 for some φ ∈ X+. Thus the
linear span of X+ is norm dense in X, from which we conclude that X ⊆ A∗.

Since the compact topology in B1(A) is unique, the weak∗- and the σ-
weak topologies coincide. Hence A∗ = X.

2



Lab Questions

Question 1. Let A be a Banach algebra. Find A−1 and ΛA = A−1/A−1
0

when:
(i) A = Mn;
(ii) A = Tn;
(iii) A = C([0, 1]).

Question 2. Let X denote a compact, Hausdorff space, and let f ∈ C(X).
(i) Determine σ(f).
(ii) Is the answer the same when f ∈ A(D), the disk algebra?

Question 3. Let f ∈ C([0, 1]). Consider

Mf : C([0, 1]) → C([0, 1])
g 7→ fg.

(i) Determine σ(Mf );
(ii) Determine ‖Mf‖.
(iii) Consider the eigenvalues of Mf . In particular, what happens if

f(x) = x for all x ∈ [0, 1]?

Question 4. Let {en}∞n=1 be the standard orthonormal basis for H = `2(N).
Consider the diagonal operator

D : H → H
en 7→ dn en,

where {dn}n is a bounded sequence of complex numbers.
(i) Determine σ(D) and (D − λ)−1 when λ 6∈ σ(D).
(ii) Determine ‖D‖.
(iii) Determine the set of eigenvalues of D. How does this set compare

to σ(D)?

Question 5. Consider the following more general version of Question 4. Let
An ∈ Mkn , n ≥ 1. Suppose that there exists M > 0 such that ‖An‖ ≤ M
for all n ≥ 1.

(i) Is it true that σ(⊕∞n=1An) = ∪∞n=1σ(An)?
(ii) Now suppose that the sequence {kn} is bounded above. Does this

make any difference to the solution of (i)?

177
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Question 6. Find an example of an operator A acting on an infinite di-
mensional space such that ‖A‖ = 1 but spr(A) = 1/2.

Question 7. Let F ∈ C([0, 1],Mn). Describe
∫ 1
0 F (t) dt.

Question 8. Let A ∈ Mn and suppose that f is analytic on an open
neighbourhood of σ(A). Describe f(A). Hint: Consider Jordan canonical
forms.

Question 9. Find a Banach algebra A such that for each ε > 0, there exist
elements a, b ∈ A such that ‖a− b‖ < ε and

(a) σ(a) has only one component;
(b) σ(b) has infinitely many components.

Now find a Banach algebra B for which given any ε > 0, there do not exist
elements a and b of B satisfying the above two conditions.

Question 10. If a ∈ M2, does there exist b ∈ M2 such that b2 = a? More
generally, under what circumstances does a have a square root?

Question 11. Let H be a Hilbert space with orthonormal basis {en}∞n=1.
Let S be the operator satisfying Sen = en+1 for all n ≥ 1. (Extend S by
linearity and continuity to all of H.) Does there exist B ∈ B(H) such that
B2 = S?

Question 12. Let f ∈ L∞([0, 1], dx) and consider

Mf : L2([0, 1], dx) → L2([0, 1], dx)
g 7→ fg.

Find σ(Mf ).

Question 13. Which diagonal operators on `2(N) are compact? Which
have dense range? Which are unitary? Which are positive? Which are
self-adjoint?

Question 14. Suppose T =
[
A B
0 D

]
as an operator on H⊕H.

(i) Is σ(A) ⊆ σ(T )?
(ii) Is σ(D) ⊆ σ(T )?
(iii) What can be said about the sets of eigenvalues of A and D with

respect to those of T?
(iv) Is σ(T ) ⊆ σ(A) ∪ σ(D)?

Question 15. Find an operator T ∈ B(H) such that T is injective, the
range of T is dense, but T is not invertible.
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Question 16. Let H be a Hilbert space with orthonormal basis {en}∞n=1.
Let {wn}∞n=1 ∈ `∞(N) and define

W : H → H
en 7→ wnen+1

for each n ≥ 1. Extend W by linearity and continuity to all of H. Such an
operator is called a unilateral forward weighted shift with weight sequence
{wn}∞n=1.

(i) Calculate ‖W‖.
(ii) Calculate σ(W ) in the case where wn = 1 for all n. This particular

operator is called the unilateral shift.
(iii) Calculate spr(W ) in general.
(iv) When is W nilpotent?
(v) When is W compact?
(vi) If W is compact, compute σ(W ).
(vii) When is W quasinilpotent? (Recall that T ∈ B(H) is quasinilpotent

if σ(W ) = {0}.)
(viii) Find a unilateral weighted shift W of norm 1 such that W is

quasinilpotent but not nilpotent. Is it possible to find one that
is nilpotent but not quasinilpotent?

Question 17. Let Nil(Cn) = {T ∈ Mn : T k = 0 for some k ≥ 1}. Find the
operator norm closure of Nil(Cn).

Question 18. Find the norm closure of the invertibles in the following
Banach algebras:

(i) A = Mn.
(ii) A = Tn.
(iii) A = C([0, 1]).
(iv) `∞(N).

Question 19. Let S be the unilateral shift opeator acting on a Hilbert
space H. Show that the distance from S to the set of invertible operators
on H is exactly 1.

Question 20. Find elements R, T ∈ B(H) such that
(a) T is right invertible but not left invertible.
(b) R is left invertible but not right invertible.

Question 21. Show that the set of left invertible elements of a Banach alge-
bra A is open. (Alternatively, show that the set of right invertible elements
of a Banach algebra is open.)

Question 22. Find a left topological divisor of 0 in B(H) which is not a
right topological divisor of 0.



180 LAB QUESTIONS

Question 23. Are the invertibles in B(H) dense?

Question 24. Let T ∈ B(H) and p be a polynomial. Suppose that p(T ) ∈
K(H). Must T be compact?

Question 25. SupposeH is a Hilbert space with orthonormal basis {en}∞n=1.
Let T ∈ B(H) and suppose that the matrix of T with respect to this basis
is [tij ] Finally, suppose that

‖T‖2 :=

∑
i, j

|tij |2
 1

2

<∞.

(i) Show that ‖T‖ < ‖T‖2.
(ii) Show that T ∈ K(H).
(iii) The set of all operators T for which ‖T‖2 is finite is called the

Hilbert-Schmidt class and is sometimes denoted by C2(H). Show
that C2(H) is a proper subset of K(H).

Question 26. Find an example of a Banach algebra A with no multiplica-
tive linear functionals.

Question 27. Determine all of the multiplicative linear functionals on `∞n .

Question 28. Consider Tn, the set of upper triangular n× n matrices.
(i) Find all of the maximal ideals of Tn.
(ii) Find the Jacobson radical Jn of Tn.
(iii) Let a ∈ Tn. Let π : Tn → Tn/Jn be the canonical map. Find

‖π(a)‖.

Question 29. Consider the disk algebra A(D).
(i) Show that f∗(z) = f(z) defines an isometric involution on A(D).
(ii) Show that not every multiplicative linear functional on A(D) is

self-adjoint.

Question 30. Let F be a self-adjoint family of operators on a Hilbert space
H. Let

F ′ = {T ∈ B(H) : TF = FT for all F ∈ F}.
Show that if {Tα} is a net in F ′, and if T ∈ B(H) satisfies

(Tαx, y) → (Tx, y)

for all x, y ∈ H, then T ∈ F ′. (This is the statement that F ′ is closed in the
weak operator toplogy (WOT).)

Question 31. Let A be a C∗-algebra, and let a, b lie in the positive cone
of A.
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(i) Show that a ≤ b implies a1/2 ≤ b1/2.
(ii) Show that a ≤ b does NOT imply that a2 ≤ b2.

Question 32. Give an example of a non-closed ideal in the C∗-algebra C(D)
that is not self-adjoint.

Question 33. Show that the strong operator topology, the weak operator
topology, and the norm topology coincide when the underlying Hilbert space
is finite dimensional.

Question 34. Show that for infinite dimensional Hilbert spaces, the weak
operator topology is stricly weaker than the strong operator topology, which
in turn is strictly weaker than the norm topology.

Question 35. Show that the map ∗ : B(H) → B(H) which takes T 7→ T ∗

is continuous in the weak operator topology, but not in the strong operator
topology. Show that this is not the case for the map LB(A) = BA for all
A ∈ B(H), where B ∈ B(H) is fixed.

Question 36. If M and N are compact normal operators with the same
spectrum, then C∗(M) is isometrically isomorphic to C∗(N). Do M and N
have to be unitarily equivalent?

Question 37. Find all of the multiplicative linear functionals on c0.

Question 38. Let W be a unilateral weighted shift as defined in Ques-
tion 16. Suppose that the weight sequence for W is {wn}∞n=1. Show that
W is unitarily equivalent to a weighted shift V whose weight sequence is
{|wn|}∞n=1.

Show that the conclusion does not change if we assume that W is a
bilateral weighted shift ; that is, W is defined as in Question 16, but the
basis is indexed by Z rather than N.

For this reason, in many applications it suffices to consider weighted
shifts with non-negative weight sequence.

Question 39. Which weighted shifts (bilateral or unilateral) are:
(i) normal?
(ii) self-adjoint?
(iii) unitary?
(iv) essentially unitary?
(v) essentially normal?
(vi) essentially self-adjoint?

Question 40. Find the topological divisors of 0 in:
(i) C([0, 1]).
(ii) Mn.
(iii) C0(R).
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Question 41. Show that two injective unilateral weighted shifts W with
weight sequence {wn}∞n=1 and V with weight sequence {vn}∞n=1 are unitarily
equivalent if and only if |wn| = |vn| for all n ≥ 1.

Is the same true for injective bilateral shifts?

Question 42. Give necessary and sufficient conditions for two diagonal
operators to be unitarily equivalent.

Question 43. Give necessary and sufficient conditions for two diagonal
operators to be similar. Compare this with Question 42. What can you
conclude from this?

Question 44. What is the distance from the unilateral shift S to the set
K(H) of compact operators?

Question 45. Let `∞n = (Cn, ‖ · ‖∞) as a Banach algebra under pointwise
multiplication. Find

∑
`∞n

.
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