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Abstract

Let G be a locally compact group, and let A(G) and VN(G) be its Fourier algebra and group von Neu-
mann algebra, respectively. In this paper we consider the similarity problem for A(G): Is every bounded
representation of A(G) on a Hilbert space H similar to a ∗-representation? We show that the similarity prob-
lem for A(G) has a negative answer if and only if there is a bounded representation of A(G) which is not
completely bounded. For groups with small invariant neighborhoods (i.e. SIN groups) we show that a rep-
resentation π :A(G) → B(H) is similar to a ∗-representation if and only if it is completely bounded. This,
in particular, implies that corepresentations of VN(G) associated to non-degenerate completely bounded
representations of A(G) are similar to unitary corepresentations. We also show that if G is a SIN, maxi-
mally almost periodic, or totally disconnected group, then a representation of A(G) is a ∗-representation if
and only if it is a complete contraction. These results partially answer questions posed in Effros and Ruan
(2003) [7] and Spronk (2002) [25].
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1. Introduction

Let A be a Banach ∗-algebra. The similarity problem for A is the following question: Is ev-
ery bounded representation of A as operators on a Hilbert space similar to a ∗-representation?
The study of similarity problems for various classes of Banach ∗-algebras has its origins in the
study of group representations. Let G be a locally compact group and let H be a Hilbert space.
A strongly continuous (unital) representation π :G → B(H) is said to be uniformly bounded
if ‖π‖∞ := supx∈G‖π(x)‖ < ∞. The similarity problem for G asks whether every uniformly
bounded representation π :G → B(H) is similar to a unitary representation? In other words, is
there an invertible operator S ∈ B(H) such that the representation σ :G → B(H) defined by
σ(x) = Sπ(x)S−1 is unitary for all x ∈ G? If this is the case, π is said to unitarizable. We say
that G is unitarizable if every uniformly bounded representation of G is unitarizable. In 1950,
Day [4] and Dixmier [5] independently showed that if G is an amenable locally compact group,
then G is unitarizable. Later on, the existence of non-unitarizable uniformly bounded represen-
tations was shown for several non-amenable groups such as SL(2,R) and the non-commutative
free groups. See for example [2,8,11,17,18,24,27,28]. It is still an open problem whether or not
every unitarizable locally compact group is necessarily amenable [23]. In recent decades, vari-
ous authors have applied the theory of completely bounded maps to study this similarity problem.
One major result, due to Pisier [22] (see also [26, Theorem 6.11]), states that G is amenable if
and only if for every uniformly bounded representation π :G → B(H), there exists S ∈ B(H)

invertible such that Sπ(·)S−1 is a unitary representation and ‖S‖‖S−1‖ � ‖π‖2∞. These results
rely heavily on operator space techniques. For a detailed discussion see [23].

Let dx denote a fixed left-invariant Haar measure on G. It is well known that there is a one-to-
one correspondence between the strongly continuous uniformly bounded unital representations
of G and bounded non-degenerate representations of the Banach ∗-algebra L1(G) := L1(G,dx).
This correspondence is given by

π :G → B(H) ←→ π1 :L1(G) → B(H)

π1(f ) =
∫
G

f (x)π(x)dx
(
f ∈ L1(G)

)
.

Furthermore, it can be shown that ‖π1‖L1(G)→B(H) = ‖π‖∞, that π is unitary if and only if π1
is a ∗-representation, and that this happens if and only if π1 is a (complete) contraction [7]. In
particular, this implies that π1 is similar to a ∗-representation if and only if π is unitarizable, and
so the similarity problem for L1(G) is equivalent to the question of G being unitarizable.

The similarity problem for C∗-algebras is more commonly known as the Kadison Similar-
ity Problem: Is every bounded representation π : A → B(H) of a C∗-algebra A similar to a
∗-representation? Many partial results concerning this problem have been obtained, most no-
tably due to Christensen [3], Haagerup [14], and Pisier [23]. In particular, Haagerup showed that
π : A → B(H) is similar to a ∗-representation if and only if π is a completely bounded represen-
tation of A. Hence an important consequence of Haagerup’s result is that the similarity problem
for a C∗-algebra A has a negative solution if and only if there is a bounded representation of A
which is not completely bounded.

Our goal in this paper is to study the dual version of the similarity problem for L1(G). That
is, we consider the Fourier algebra A(G), and the question of when a bounded representation
π :A(G) → B(H) is similar to a ∗-representation. In the language of Kac algebras [9] (or
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more generally locally compact quantum groups [16]), A(G) is interpreted as the dual object
of L1(G) in the sense of generalized Pontryagin duality. In particular, when G is abelian, with
dual group Ĝ, then A(G) ∼= L1(Ĝ) via the Fourier transform. Thus for an abelian group G,
the representation theory of A(G) coincides with the representation theory of L1(Ĝ). In the
general non-abelian setting though, very few results have been obtained on the structure of the
representations of A(G). In [7], Effros and Ruan used operator space tensor products to de-
fine Hopf algebraic structures on the preduals of Hopf von Neumann algebras. In this context,
they asked whether every completely contractive representation of A(G) on a Hilbert space is in
fact a ∗-representation. Independently, motivated by the work of Paulsen [21, Theorem 9.1] and
Pisier [22], Spronk in [25] asked whether every completely bounded representation of A(G) on
a Hilbert space is similar to a completely contractive representation. In this paper, we give partial
affirmative answers to both of these questions as follows.

In Section 2, we give a brief introduction on the Fourier algebra A(G), the group von Neu-
mann algebra VN(G), and the correspondence between completely bounded representations of
A(G) and the corepresentations of VN(G).

In Section 3, we show that a bounded representation π :A(G) → B(H) is similar to a
∗-representation if and only if one of the following equivalent conditions holds:

(i) π and π̌ are completely bounded representations,
(ii) π and π∗ are completely bounded representations.

Here π̌ and π∗ are the bounded representations of A(G) given by

π̌(u) = π(ǔ), π∗(u) = π(u)∗
(
u ∈ A(G)

)
,

where ǔ(x) = u(x−1) for all x ∈ G. Furthermore, if π is non-degenerate and either (and con-
sequently both of ) (i) or (ii) is satisfied, we show that there exists a similarity S ∈ B(H)

taking π to the ∗-representation Sπ(·)S−1 such that ‖S‖‖S−1‖ � ‖π‖2
cb‖π∗‖2

cb. As a conse-
quence of these results, we obtain an analogous characterization for Fourier algebras to that of
Haagerup’s for C∗-algebras: the similarity problem for the Fourier algebra A(G) has a nega-
tive answer if and only if there is a bounded representation of A(G) which is not completely
bounded.

In Section 4, we show that there is a close connection between the similarity problem for A(G)

and the invertibility of corepresentations of VN(G). One major result we obtain is that a non-
degenerate completely bounded representation π :A(G) → B(H) is similar to a ∗-representation
if and only if its associated corepresentation Vπ ∈ VN(G)⊗B(H) is an invertible operator. This,
in particular, implies that Vπ is similar to a unitary corepresentation.

When G is a SIN group, we improve our results in Section 3 and show that π is similar
to a ∗-representation if and only if π is completely bounded, and that π is a ∗-representation
if and only if it is completely contractive (Section 5). Furthermore, if π is non-degenerate, we
show that there exists a similarity S ∈ B(H) taking π to the ∗-representation Sπ(·)S−1 such that
‖S‖‖S−1‖ � ‖π‖4

cb.
Finally, in Section 6 we use structure theory for locally compact groups to extend some of

these results, and conclude that every completely contractive representation π :A(G) → B(H)

is a ∗-representation whenever G is a totally disconnected, maximally almost periodic, or SIN
group.



2076 M. Brannan, E. Samei / Journal of Functional Analysis 259 (2010) 2073–2097
2. Preliminaries

2.1. The Fourier algebra

Let G be a locally compact group with a fixed left-invariant Haar measure dx. We denote
by λ :G → B(L2(G)) the left regular representation of G on L2(G) and let VN(G) = λ(G)′′ ⊆
B(L2(G)) be the group von Neumann algebra of G. VN(G) is a co-involutive Hopf von Neu-
mann algebra with weak-∗ continuous coproduct Γ : VN(G) → VN(G) ⊗ VN(G) defined by the
equation

Γ
(
λ(x)

) = λ(x) ⊗ λ(x) (x ∈ G),

and weak-∗ continuous co-involution κ : VN(G) → VN(G) defined by

κ
(
λ(x)

) = λ
(
x−1) (x ∈ G).

We refer to [9] for details regarding this.
The Fourier algebra, A(G), is defined as the predual of VN(G). By considering the

pre-adjoint of the coproduct Γ on VN(G), we obtain an associative product Γ∗ :A(G) ⊗
A(G) → A(G), making A(G) a commutative completely contractive Banach algebra. The co-
involution κ : VN(G) → VN(G) also induces an anti-linear completely isometric involution,
u �→ u on A(G), defined by

〈u,T 〉 = 〈
u,κ(T )∗

〉 (
u ∈ A(G), T ∈ VN(G)

)
.

We can identify A(G) with a dense ∗-subalgebra of C0(G) via the injective ∗-homomorphism
λ̂ :A(G) → C0(G) given by

λ̂(u)(x) := 〈
u,λ(x)

〉 (
u ∈ A(G), x ∈ G

)
.

From now on, we will identify A(G) with the ∗-subalgebra λ̂(A(G)) ⊆ C0(G). Note that A(G)

consists precisely of those functions in C0(G) which are coefficients of the left regular represen-
tation. That is,

A(G) = {
x �→ 〈

λ(x)f |g〉 = (g ∗ f̌ )(x): f,g ∈ L2(G)
}
,

where ∗ denotes the convolution of functions on G and f̌ (x) := f (x−1). Furthermore, the norm
on A(G) is given by

‖u‖A(G) = inf
{‖f ‖2‖g‖2: u = 〈

λ(·)f |g〉 = g ∗ f̌
}
.

We refer to [6] and the fundamental paper of Eymard [10] for details on these and other properties
of the Fourier algebra.

For any left and right translation invariant space E of functions on G, we denote by L and R

the natural left and right actions of G on E:

Lxf (y) = f
(
x−1y

)
, Rxf (y) = f (yx) (x, y ∈ G, f ∈ E).
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Given a complex function on G, we will also make frequent use of the so-called “check map”
f �→ f̌ and “tilde map” f �→ f̃ where

f̌ (x) = f
(
x−1), f̃ (x) = f

(
x−1

)
(x ∈ G).

Note in particular that the check map takes A(G) onto itself and is isometric, since it can be
readily seen as the pre-adjoint of the (isometric) co-involution κ : VN(G) → VN(G). This map
however defines a completely bounded map on A(G) if and only if G contains an open abelian
subgroup of finite index. See [12, Proposition 1.5].

In this paper we will make extensive use of the natural structure of A(G) as a left Banach
VN(G)-module. We will quickly outline this structure here. See [10, Section 3.16] for a more
detailed discussion. Given u ∈ A(G), and T ∈ VN(G), define T · u ∈ A(G) by

〈T · u,S〉 := 〈
u,κ(T )S

〉 (
S ∈ VN(G)

)
.

It is readily checked that the operation (T ,u) �→ T ·u is indeed a contractive left action of VN(G)

on A(G), and that pointwise, we have

(T · u)(x) = 〈Lxǔ, T 〉 (
u ∈ A(G), T ∈ VN(G), x ∈ G

)
. (1)

Now suppose that f :G → C is a Haar measurable function such that f ∗ L2(G) ⊆ L2(G).
We will denote by λ(f ) ∈ VN(G) ⊆ B(L2(G)) the left-convolution operator associated to f . If
f ∈ L2(G) and T ∈ VN(G), we will always denote by Tf ∈ L2(G) the image of f under the
operator T . We note here the very important fact that whenever f ∈ A(G)∩L2(G), then T · f ∈
A(G) ∩ L2(G) and (T · f )(x) = (Tf )(x) for almost every x ∈ G (see [10, Proposition 3.17]).
Finally, we remark that if f ∈ A(G) ∩ L1(G) ⊆ A(G) ∩ L2(G), then again T · f = Tf (almost
everywhere) and consequently we have the equality of convolution operators

T λ(f ) = λ(Tf ) = λ(T · f ) ∈ VN(G). (2)

2.2. Representations of A(G) and corepresentations of VN(G)

Our standard reference for operator spaces and completely bounded maps will be [6]. In par-
ticular, we recall that A(G), being the predual of a von Neumann algebra, comes equipped with
a canonical operator space structure.

Let G be a locally compact group and let H be a Hilbert space. Given a bounded representa-
tion π :A(G) → B(H), we say that π is completely bounded if

‖π‖cb := sup
n∈N

∥∥π(n)
∥∥ < ∞,

where π(n) :Mn(A(G)) → Mn(B(H)) is the nth amplification of π ,

π(n)[uij ] = [
π(uij )

] ([uij ] ∈ Mn

(
A(G)

))
.

We say that π is a completely contractive representation if ‖π‖cb � 1.
If M and N are two von Neumann algebras with preduals M∗ and N∗, recall that there is a

completely isometric identification
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CB(M∗,N) ∼= (M∗ ⊗̂ N∗)∗ ∼= M ⊗ N, (3)

where CB(M∗,N) is the operator space of completely bounded linear maps from M∗ into N ,
⊗̂ is the operator space projective tensor product, and ⊗ denotes the von Neumann spatial tensor
product [6, Theorem 7.2.4]. The identification between the first two spaces is given by the dual
pairing

〈ω2, T ω1〉 = 〈ω1 ⊗ ω2,ΦT 〉,

where T ∈ CB(M∗,N), ω1 ∈ M∗, ω2 ∈ N∗, and ΦT ∈ (M∗ ⊗̂ N∗)∗. The identification be-
tween the last two spaces is a non-commutative Fubini theorem, which relies on showing that
M∗ ⊗̂ N∗ ∼= (M ⊗ N)∗ completely isometrically.

Given a Hilbert space H , an operator V ∈ VN(G) ⊗ B(H) is called a corepresentation of
VN(G) on H [20, Lemma 2.6] if

(Γ ⊗ id)V = V1,3V2,3. (4)

Here, we are using the standard leg notation for V1,3 and V2,3 [1, p. 428]: V1,3 is the linear
operator on the Hilbert space tensor product L2(G) ⊗2 L2(G) ⊗2 H that acts as V on the first
and the third tensor factor and as the identity on the second one. V2,3 is defined similarly. If
we let π ∈ CB(A(G),B(H)) be the completely bounded map corresponding to the operator
V ∈ VN(G) ⊗ B(H), it is readily checked that condition (4) on V is equivalent to π being
multiplicative. Therefore the completely bounded representations of A(G) on H are in one-to-
one correspondence with the corepresentations of VN(G) on H . Concretely, this correspondence
is given by

π ←→ Vπ

where

〈
Vπ(f ⊗ ξ)|g ⊗ η

〉 = 〈
π(g ∗ f̌ )ξ |η〉

(5)

for all elementary tensors f ⊗ ξ, g ⊗ η ∈ L2(G) ⊗2 H . Furthermore, since the identification (3)
is (completely) isometric, we always have

‖π‖cb = ‖Vπ‖B(L2(G)⊗2H).

We note that it is shown in [19, Theorem A.1] that Vπ is a unitary operator (i.e. a unitary corep-
resentation of VN(G) on H ) if and only if π is a non-degenerate ∗-representation of A(G) on H .

Finally, given a bounded representation π :A(G) → B(H), observe that we can construct
three additional bounded representations on H from π . These are

π̌ , π∗, π̃ :A(G) → B(H)

and are defined by the formulae

π̌ (u) = π(ǔ), π∗(u) = π(u)∗, π̃ = (π̌)∗
(
u ∈ A(G)

)
. (6)
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Since the maps u �→ ǔ, u �→ u on A(G), and the adjoint map on B(H) are all norm-preserving,
it follows that

‖π‖ = ‖π̌‖ = ∥∥π∗∥∥ = ‖π̃‖.

Since the adjoint on B(H) (for H infinite-dimensional) is never completely bounded and the
check map on A(G) is not completely bounded unless G has an abelian subgroup of finite in-
dex [12], we cannot infer complete boundedness for π̌ and π∗ from the complete boundedness
of π (and visa versa). However, we will show in Lemma 2 that for any completely bounded
representation π , π̃ is completely bounded and

‖π‖cb = ‖π̃‖cb.

Also if either of π̌ or π∗ is completely bounded, then the other one is also completely bounded
and we have

‖π̌‖cb = ∥∥π∗∥∥
cb.

3. Completely bounded representations of A(G)

Recall that if (X,μ) is a measure space and H is a Hilbert space, then L2(X) ⊗2 H can
be canonically identified with L2(X,H), the Hilbert space of strongly measurable functions
ϕ :X → H such that

∫
X

‖ϕ(x)‖2 dμ(x) < ∞. This identification is given μ-almost everywhere
by

(f ⊗ ξ)(x) = f (x)ξ
(
f ∈ L2(X), ξ ∈ H

)
.

Proposition 1. Let H be a Hilbert space, let Φ ∈ CB(A(G),B(H)) be a completely bounded
map, and let VΦ ∈ VN(G) ⊗ B(H) be the unique operator corresponding to Φ . Then for any
f ∈ A(G) ∩ L2(G) and ξ ∈ H , we have

VΦ(f ⊗ ξ)(x) = Φ(Lxf̌ )ξ, (7)

almost everywhere. In particular

∥∥VΦ(f ⊗ ξ)
∥∥

L2(G)⊗2H
=

(∫
G

∥∥Φ(Lxf̌ )ξ
∥∥2

dx

)1/2

.

Proof. Fix f ∈ A(G) ∩ L2(G) and ξ ∈ H . It is well known that for u ∈ A(G) the map
x �→ Lxu is continuous from G into A(G). Consequently the function x �→ Φ(Lxf̌ )ξ belongs to
Cb(G,H), the Banach space of bounded continuous functions from G into H . For each η ∈ H

let T Φ
η,ξ ∈ VN(G) be the coefficient operator defined by the dual pairing

〈
u,T Φ

η,ξ

〉 = 〈
Φ(u)ξ |η〉 (

u ∈ A(G)
)
.

Then for any g ∈ L2(G) ∩ L1(G),
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∫
G

〈
Φ(Lxf̌ )ξ |η〉

g(x)dx =
∫
G

(
T Φ

η,ξ · f )
(x)g(x) dx

(
by (1)

)

=
∫
G

(
T Φ

η,ξ f
)
(x)g(x) dx

(
since f ∈ A(G) ∩ L2(G)

)

= 〈
T Φ

η,ξ f |g〉
= 〈

Φ(g ∗ f̌ )ξ |η〉
= 〈

VΦ(f ⊗ ξ)|g ⊗ η
〉
.

This shows that the conjugate-linear functional

ψ :
(
L2(G) ∩ L1(G)

) ⊗ H → C

defined by

ψ(g ⊗ η) =
∫
G

〈
Φ(Lxf̌ )ξ |η〉

g(x)dx

coincides with the conjugate-linear functional

g ⊗ η �→ 〈
VΦ(f ⊗ ξ)|g ⊗ η

〉
.

From the density of (L2(G) ∩ L1(G)) ⊗ H in L2(G) ⊗2 H , this implies that the function x �→
Φ(Lxf̌ )ξ belongs to L2(G,H) ∼= L2(G) ⊗2 H and coincides with VΦ(ξ ⊗ f ) ∈ L2(G,H) ∼=
L2(G) ⊗2 H almost everywhere. �
Lemma 2. Let π :A(G) → B(H) be a bounded representation and consider the representations
π̃ , π̌ , and π∗ defined in (6). Then:

(i) π is completely bounded if and only if π̃ is completely bounded. In either case, Vπ̃ = V ∗
π ∈

VN(G) ⊗ B(H) and ‖π‖cb = ‖π̃‖cb.
(ii) π̌ is completely bounded if and only if π∗ is completely bounded. In either case, Vπ∗ = V ∗

π̌
∈

VN(G) ⊗ B(H) and ‖π̌‖cb = ‖π∗‖cb.

Proof. Note that it suffices to prove (i) because π∗ = ˜̌π and therefore (ii) follows from (i) by
applying (i) to the representation σ = π̌ . We now prove (i). Suppose that π is completely bounded
with associated corepresentation Vπ ∈ VN(G)⊗B(H). Then for any ξ, η ∈ H , f,g ∈ L2(G), we
have 〈

π̃(g ∗ f̌ )ξ |η〉 = 〈
(π̌)∗(g ∗ f̌ )ξ |η〉

= 〈
π(f ∗ ǧ)∗ξ |η〉

= 〈
ξ |π(f ∗ ǧ)η

〉
= 〈

f ⊗ ξ |Vπ(g ⊗ η)
〉

= 〈
V ∗

π (f ⊗ ξ)|g ⊗ η
〉
.
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Thus the canonical identification (5) implies that π̃ ∈ CB(A(G),B(H)), Vπ̃ = V ∗
π , and so

‖π̃‖cb = ‖Vπ̃‖ = ‖V ∗
π ‖ = ‖π̃‖cb. Since π = ˜̃π , the converse is also true, completing the

proof. �
Now let π :A(G) → B(H) be a bounded representation. For each ξ, η ∈ H let T π

η,ξ ∈ VN(G)

be the coefficient operator defined by

〈
u,T π

η,ξ

〉 = 〈
π(u)ξ |η〉 (

u ∈ A(G)
)
. (8)

Theorem 3. Let π :A(G) → B(H) be a representation such that both π and π∗ are completely
bounded. (Or equivalently, by Lemma 2, π and π̌ are completely bounded.) Then for any ξ, η ∈ H

there exists a unique complex regular Borel measure μπ
η,ξ ∈ M(G) such that T π

η,ξ = λ(μπ
η,ξ ).

Furthermore,

∥∥μπ
η,ξ

∥∥
M(G)

� ‖π‖cb
∥∥π∗∥∥

cb‖ξ‖‖η‖. (9)

Proof. Fix ξ, η ∈ H . To show that T π
η,ξ = λ(μπ

η,ξ ) ∈ λ(M(G)) with the claimed norm estimate,
it suffices by Wendel’s theorem [19, Theorem 1] to show that T π

η,ξ defines a right centralizer

of L1(G) with the same norm estimate as the right-hand side of (9). Since VN(G) = λ(G)′′ =
ρ(G)′, where ρ :G → B(L2(G)) is the right regular representation of G, the operator T π

η,ξ auto-
matically commutes with right translations by elements from G. We therefore only need to show
that for any f ∈ L1(G),

T π
η,ξ λ(f ) ∈ λ

(
L1(G)

)
with

∥∥T π
η,ξ λ(f )

∥∥
L1(G)

� ‖π‖cb
∥∥π∗∥∥

cb‖ξ‖‖η‖‖f ‖1.

To begin, let f ∈ L1(G) be of the form f = gh with g,h ∈ A(G)∩L2(G). Note that in this case
f = gh ∈ A(G)∩L1(G) ⊆ A(G)∩L2(G), and therefore by (2), we have T π

η,ξ λ(f ) = λ(T π
η,ξ ·f ).

Thus,

∥∥T π
η,ξ λ(f )

∥∥
L1(G)

= ∥∥λ
(
T π

η,ξ · f )∥∥
L1(G)

= ∥∥T π
η,ξ · f ∥∥

L1(G)

=
∫
G

∣∣(T π
η,ξ · f )

(x)
∣∣dx

=
∫
G

∣∣〈Lx(ǧȟ), T π
η,ξ

〉∣∣dx

=
∫ ∣∣〈π(

(Lxǧ)(Lxȟ)
)
ξ |η〉∣∣dx
G
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=
∫
G

∣∣〈π(Lxǧ)π(Lxȟ)ξ |η〉∣∣dx

=
∫
G

∣∣〈π(Lxȟ)ξ |π(Lxǧ)∗η
〉∣∣dx

�
∫
G

∥∥π(Lxȟ)ξ
∥∥∥∥π(Lxǧ)∗η

∥∥dx

�
(∫

G

∥∥π(Lxȟ)ξ
∥∥2

dx

)1/2(∫
G

∥∥π(Lxǧ)∗η
∥∥2

dx

)1/2

.

Now let Vπ,Vπ∗ ∈ VN(G)⊗B(H) denote the corepresentations associated to π and π∗, respec-
tively. By Proposition 1 we have

(∫
G

∥∥π(Lxȟ)ξ
∥∥2

dx

)1/2

= ∥∥Vπ(h ⊗ ξ)
∥∥

L2(G)⊗2H
,

and (∫
G

∥∥π(Lxǧ)∗η
∥∥2

dx

)1/2

= ∥∥Vπ∗(g ⊗ η)
∥∥

L2(G)⊗2H
,

giving

∥∥T π
η,ξ λ(f )

∥∥
L1(G)

�
∥∥Vπ(h ⊗ ξ)

∥∥
L2(G)⊗2H

∥∥Vπ∗(g ⊗ η)
∥∥

L2(G)⊗2H

� ‖Vπ‖‖h‖2‖ξ‖‖Vπ∗‖‖g‖2‖η‖
= ‖π‖cb

∥∥π∗∥∥
cb‖g‖2‖h‖2‖ξ‖‖η‖.

Now suppose f ∈ L1(G) is arbitrary. Let g,h ∈ L2(G) be chosen so that f = gh and ‖f ‖1 =
‖g‖2‖h‖2. Since A(G)∩L2(G) is norm dense in L2(G), one can easily show (by approximating
g and h by sequences in A(G) ∩ L2(G)) that the preceding inequality extends by continuity to
this situation. That is,∥∥T π

η,ξ λ(f )
∥∥

L1(G)
� ‖π‖cb

∥∥π∗∥∥
cb‖g‖2‖h‖2‖ξ‖‖η‖ = ‖π‖cb

∥∥π∗∥∥
cb‖f ‖1‖ξ‖‖η‖.

Therefore T π
η,ξ is a right centralizer of L1(G) with norm no larger than

‖π‖cb
∥∥π∗∥∥

cb‖ξ‖‖η‖,

completing the proof. �
Interestingly, Theorem 3 provides an elementary “operator space” proof of Eymard’s theo-

rem [10, Theorem 3.34] characterizing the Gelfand spectrum of the Fourier algebra.
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Corollary 4 (Eymard’s theorem). For any locally compact group G, the Gelfand spectrum ΣA(G)

of A(G) is precisely the group G itself.

Proof. Let χ ∈ ΣA(G) be any character of A(G). Then χ̌ is also a character of A(G). Since
all bounded linear functionals on an operator space are automatically completely bounded, we
may apply Theorem 3 to the one-dimensional representation χ :A(G) → B(C) = C to get that
χ = T

χ
1,1 = λ(μχ) for some measure μχ ∈ M(G). Since A(G) is a dense subalgebra of C0(G),

χ = λ(μχ) extends uniquely to a character of C0(G). By Gelfand theory for the commutative C∗-
algebra C0(G), μχ must correspond to point evaluation at some x ∈ G. Conversely, any x ∈ G

gives rise to a character of A(G) by evaluation at x, completing the proof. �
Before stating the main result of this section, we would first like to make the following remark

concerning the possible degeneracy of the representations of A(G) that we consider.

Remark 5. Let A be a Banach algebra, H a Hilbert space, and let π : A → B(H) be a
bounded representation. Recall that the essential space of π is the closed subspace He :=
span{π(A)H } ⊆ H , that π is non-degenerate if He = H , and that π is degenerate if He �= H . It
is clear that for any representation π : A → B(H), the subrepresentation

πe := π(·)|He : A → B(He)

is always non-degenerate. We call πe the essential part of π .

In the literature (see [3,14,21,23] for example), authors generally only consider the similarity
problem for non-degenerate representations of Banach ∗-algebras. However, this assumption of
non-degeneracy is not really needed as long one assumes the Banach ∗-algebra A under consid-
eration has a bounded two-sided approximate identity. This useful fact is probably well known,
but we present a proof this here for completeness.

Proposition 6. Let A be a Banach ∗-algebra with a bounded two-sided approximate iden-
tity {eα}α , and let π : A → B(H) be a bounded representation with essential part πe. If πe is
similar to a ∗-representation, then so is π .

Proof. Let Q ∈ B(H) be a weak operator topology cluster point of the bounded net {π(eα)}α ⊆
B(H). A routine calculation shows that Q is an idempotent with range equal to He, the essential
space of π . Furthermore, if M = supα‖eα‖, then ‖Q‖ � M‖π‖. Write H as the orthogonal direct
sum H = He ⊕ H⊥

e , and relative to this decomposition define S ∈ B(H) = B(He ⊕ H⊥
e ) to be

the invertible operator given by

S(ξ1, ξ2) = (ξ1 + Qξ2, ξ2)
(
ξ1 ∈ He, ξ2 ∈ H⊥

e

)
,

S−1(ξ1, ξ2) = (ξ1 − Qξ2, ξ2).

Since π(a)Q = π(a) for all a ∈ A, we have

Sπ(a)S−1(ξ1, ξ2) = Sπ(a)(ξ1 − Qξ2, ξ2)

= S
(
π(a)ξ1 − π(a)Qξ2 + π(a)ξ2,0

)



2084 M. Brannan, E. Samei / Journal of Functional Analysis 259 (2010) 2073–2097
= S
(
π(a)ξ1,0

)
= (

π(a)ξ1,0
) = (

πe(a)ξ1,0
)
.

That is,

Sπ(·)S−1 = πe ⊕ 0H⊥
e
.

Now suppose that πe is similar to a ∗-representation. Then there exists a ∗-representation
σ : A → B(He) and an invertible operator T ∈ B(He) such that πe = T σT −1. This implies that

π = S−1(πe ⊕ 0H⊥
e

)S = S−1(T ⊕ IH⊥
e

)(σ ⊕ 0H⊥
e

)(T ⊕ IH⊥
e
)−1S,

so π is similar to the ∗-representation σ ⊕ 0H⊥
e

. �
Remark 7. Note that if we assume in Proposition 6 that A has a contractive approximate identity
and ‖π‖ � 1, then the idempotent Q constructed above is a contraction. Therefore Q is actually
the orthogonal projection from H onto the essential space He, and it follows from this that
π = πe ⊕ 0H⊥

e
.

We are now ready to state the main result of this section.

Theorem 8. Let π :A(G) → B(H) be a bounded representation. Then the following are equiva-
lent:

(i) π is similar to a ∗-representation.
(ii) π and π̌ are completely bounded representations.

(iii) π and π∗ are completely bounded representations.

Furthermore, if π is non-degenerate and (i)–(iii) are true, then there exists an invertible operator
S ∈ B(H) such that Sπ(·)S−1 is a ∗-representation of A(G) and

‖S‖∥∥S−1
∥∥ � ‖π‖2

cb

∥∥π∗∥∥2
cb = ‖π‖2

cb‖π̌‖2
cb.

Proof. The proof of (ii) ⇔ (iii) follows from Lemma 2.
We now prove that (iii) ⇒ (i): If π and π∗ are both completely bounded representations, then

for each ξ, η ∈ H , Theorem 3 implies the existence of a unique measure μπ
η,ξ ∈ M(G) such that

the coefficient operator T π
η,ξ ∈ VN(G) defined in (8) is given by T π

η,ξ = λ(μπ
η,ξ ), and

∥∥μπ
η,ξ

∥∥
M(G)

� ‖π‖cb
∥∥π∗∥∥

cb‖ξ‖‖η‖.

Thus for any u ∈ A(G) we have

∥∥π(u)
∥∥ = sup

{ξ,η∈H : ‖ξ‖=‖η‖=1}
∣∣〈π(u)ξ |η〉∣∣

= sup
∣∣〈u,T π

η,ξ

〉∣∣

{ξ,η∈H : ‖ξ‖=‖η‖=1}
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= sup
{ξ,η∈H : ‖ξ‖=‖η‖=1}

∣∣∣∣
∫
G

u(x)dμπ
η,ξ (x)

∣∣∣∣
� ‖u‖∞ sup

{ξ,η∈H : ‖ξ‖=‖η‖=1}

∥∥μπ
η,ξ

∥∥
M(G)

� ‖u‖∞‖π‖cb
∥∥π∗∥∥

cb.

Consequently π is continuous with respect to the ‖ · ‖∞-norm on A(G). Since A(G) is dense
in C0(G), π extends uniquely to a bounded representation π0 :C0(G) → B(H) with ‖π0‖ �
‖π‖cb‖π∗‖cb. Since C0(G) is a commutative (in particular nuclear) C∗-algebra, [3, Theorem 4.1]
together with Proposition 6 imply that π0 is similar to a ∗-representation σ :C0(G) → B(H).
From this, we get that π = π0|A(G) is similar to the ∗-representation σ |A(G). In particular, if π

(and therefore π0) is non-degenerate, then by [3, Theorem 4.1], there exists an invertible operator
S ∈ B(H) such that S−1π0(·)S (and therefore S−1π(·)S) is a ∗-representation, and

‖S‖∥∥S−1
∥∥ � ‖π0‖2 � ‖π‖2

cb

∥∥π∗∥∥2
cb.

Finally, we show that (i) ⇒ (ii): First note that if σ :A(G) → B(H) is any ∗-representation,
then σ is a complete contraction. Indeed, since any ∗-representation of A(G) extends uniquely
to a ∗-representation of the universal enveloping C∗-algebra C∗(A(G)) ∼= C0(G), it follows that
for any [uij ] ∈ Mn(A(G)),

∥∥σ (n)[uij ]
∥∥

Mn(B(H))
�

∥∥[uij ]
∥∥

Mn(C0(G))
�

∥∥[uij ]
∥∥

Mn(A(G))
.

Now, if we suppose that the representation π :A(G) → B(H) is similar to the ∗-representation
σ :A(G) → B(H), then π is similar to a complete contraction. In particular, π must be com-
pletely bounded. Furthermore, since π̌ will also be similar to the ∗-representation σ̌ , which is
again completely contractive, we get that π̌ is completely bounded as well. �
Corollary 9. Let π :A(G) → B(H) be a completely bounded representation. Then π is simi-
lar to a ∗-representation if and only if there is an invertible operator S ∈ B(H) such that the
representation S−1π(·)S maps A(G) into a subhomogeneous von Neumann algebra.

Proof. Suppose that there is an invertible operator S ∈ B(H) and a subhomogeneous von Neu-
mann algebra M ⊂ B(H) such that

ρ(u) = S−1π(u)S ∈ M
(
u ∈ A(G)

)
.

Then ρ is a completely bounded representation of A(G) on H . Moreover, since the adjoint map
is completely bounded on M , it follows that ρ∗ is also completely bounded. Therefore by the
preceding theorem ρ is similar to a ∗-representation, and so, the same holds for π as well.

Conversely, suppose that there is an invertible operator T ∈ B(H) and a ∗-representation
σ :A(G) → B(H) such that σ(u) = T −1π(u)T for every u ∈ A(G). Then T σ(A(G))T −1 is
commutative ∗-subalgebra of B(H) so that the von Neumann algebra generated by
T σ(A(G))T −1 is commutative, and in particular, subhomogeneous. �
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Note that if H is a finite-dimensional Hilbert space and π :A(G) → B(H) is any bounded
representation, then B(H) ∼= Mn(C) is subhomogeneous and π is automatically completely
bounded (see [6, Proposition 2.2.2]), therefore we obtain the following corollary.

Corollary 10. Every bounded representation π :A(G) → B(H) with H a finite-dimensional
Hilbert space is similar to a ∗-representation.

We finish this section with the following corollary which is analogous to the main result of
Haagerup in [14].

Corollary 11. Let G be a locally compact group. Then the similarity problem for A(G) has a
negative solution if and only if there is a bounded representation of A(G) which is not completely
bounded.

Proof. If every bounded representation of A(G) is similar to a ∗-representation, then every such
representation is automatically completely bounded by Theorem 8. Conversely, suppose that
there is a bounded representation π :A(G) → B(H) that is not similar to a ∗-representation.
Then, by Theorem 8, either π or π∗ is not completely bounded. �
4. Invertible corepresentations

Theorem 8 says that a completely bounded representation π :A(G) → B(H) is similar to a
∗-representation if and only if the bounded representation π∗ (or equivalently π̌ ) is also com-
pletely bounded. In this section we show that if the corepresentation Vπ ∈ VN(G) ⊗ B(H)

associated to π is assumed to be an invertible operator, then π∗ and π̌ are automatically com-
pletely bounded, and therefore π is similar to a ∗-representation. To obtain this result, we need a
few preparatory lemmas.

Lemma 12. Let π :A(G) → B(H) be a bounded representation. Fix u ∈ A(G) ∩ Cc(G),
ξ, η ∈ H , and consider the coefficient operator T π

η,π(u)ξ ∈ VN(G) defined in (8). Then for any
f ∈ A(G) ∩ Cc(G) we have

T π
η,π(u)ξ · f ∈ Cc(G) ∩ A(G)

and ∫
G

(
T π

η,π(u)ξ · f )
(x) dx =

(∫
G

f (x)dx

)〈
π(u)ξ |η〉

.

Proof. Consider the function T π
η,π(u)ξ · f ∈ A(G). We have from (1) and (8) that

(
T π

η,π(u)ξ · f )
(x) = 〈

π
(
(Lxf̌ )u

)
ξ |η〉

for all x ∈ G. Since f and u are compactly supported, the continuous map x �→ (Lxf̌ )u from G

into A(G) is compactly supported. Indeed, (Lxf̌ )u �= 0 only if x ∈ supp(u) supp(f ). In particu-
lar, T π · f is only non-zero on the compact set supp(u) supp(f ) ⊆ G.
η,π(u)ξ
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Now choose ϕ ∈ Cc(G) so that ϕ = 1 on supp(u) supp(f ). Then by the above considerations
we have ∫

G

(
T π

η,π(u)ξ · f )
(x) dx =

∫
G

ϕ(x)
(
T π

η,π(u)ξ · f )
(x) dx

= 〈
T π

η,π(u)ξ f |ϕ〉
= 〈

ϕ ∗ f̌ , T π
η,π(u)ξ

〉
= 〈

π
(
(ϕ ∗ f̌ )u

)
ξ |η〉

.

But for all z ∈ supp((ϕ ∗ f̌ )u) ⊆ supp(u), we have

(
(ϕ ∗ f̌ )u

)
(z) = u(z)

∫
G

ϕ(zx)f (x) dx

= u(z)

∫
G

f (x)dx.

That is (ϕ ∗ f̌ )u = (
∫
G

f (x)dx)u, giving

∫
G

(
T π

η,π(u)ξ · f )
(x) dx = 〈

π
(
(ϕ ∗ f̌ )u

)
ξ |η〉 = (∫

G

f (x)dx

)〈
π(u)ξ |η〉

. �

Lemma 13. Let π :A(G) → B(H) be a completely bounded representation, and let Vπ ∈
VN(G) ⊗ B(H) be the associated corepresentation of π . If Vπ has dense range, then π is non-
degenerate.

Proof. Suppose Vπ has dense range. We need to show that H0 = span{π(A(G))H } is dense
in H , or equivalently, that H⊥

0 = {0}. Let η ∈ H⊥
0 . Then for all ξ ∈ H and f,g ∈ L2(G), we

have

0 = 〈
π(g ∗ f̌ )ξ |η〉 = 〈

Vπ(f ⊗ ξ)|g ⊗ η
〉
.

By linearity and the density of Vπ(L2(G) ⊗ H) in L2(G) ⊗2 H , this implies that g ⊗ η = 0 for
all g ∈ L2(G). Therefore η = 0. �
Remark 14. The converse of Lemma 13 is in fact also true: If π :A(G) → B(H) is a non-
degenerate completely bounded representation, then Vπ has dense range. Since we will not
directly use this fact, we shall omit the proof.

Theorem 15. Let π :A(G) → B(H) be a completely bounded representation such that the as-
sociated corepresentation Vπ ∈ VN(G) ⊗ B(H) is invertible. Then π̌ and π∗ are completely
bounded representations, and V −1 = Vπ̌ .
π
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Proof. From Lemma 2 we know that Vπ̃ = V ∗
π where π̃ is the representation defined in (6). Since

Vπ and Vπ̃ = V ∗
π are both surjective operators, Lemma 13 implies that both representations π

and π̃ are non-degenerate. Since π̃ = (π∗)ˇ, and u �→ ǔ is an automorphism of A(G), we see that
π∗ is also non-degenerate.

Let H0 = span{π∗(A(G) ∩ Cc(G))H }. Since A(G) ∩ Cc(G) is dense in A(G) and π∗ is
non-degenerate, H0 is a dense subspace of H . We now define a linear map

Λπ∗ :
(
A(G) ∩ Cc(G)

) ⊗ H0 → Cc(G,H) ⊂ L2(G) ⊗2 H

by the equation

Λπ∗(g ⊗ η)(x) = π∗(Lxǧ)η
(
g ∈ A(G) ∩ Cc(G), η ∈ H0

)
. (10)

To see that Λπ∗ is well defined, we need to verify that Λπ∗(g ⊗ η) ∈ Cc(G,H) for any g ∈
A(G) ∩ Cc(G) and η ∈ H0. To see this, it suffices by linearity to assume η = π∗(u)η0 for some
u ∈ A(G) ∩ Cc(G) and η0 ∈ H . But then the function

x �→ Λπ∗(g ⊗ η)(x) = π∗((Lxǧ)u
)
η0

belongs to Cc(G,H) since π∗ is bounded and the function x �→ (Lxǧ)u belongs to Cc(G,A(G)).
Now let f,g ∈ A(G) ∩ Cc(G) and ξ ∈ H and η ∈ H0. Write η = ∑n

i=1 π∗(ui)ηi with ui ∈
A(G) ∩ Cc(G), ηi ∈ H . Then, by (10) and Proposition 1, we have

〈
Vπ(f ⊗ ξ)|Λπ∗(g ⊗ η)

〉 = ∫
G

〈
π(Lxf̌ )ξ |π∗(Lxǧ)η

〉
dx

=
n∑

i=1

∫
G

〈
π(Lxf̌ )ξ |π(Lx

ˇ̄g)∗π(ūi)
∗ηi

〉
dx

=
n∑

i=1

∫
G

〈
π

(
Lx(f ḡ)ˇ)π(ūi)ξ |ηi

〉
dx

=
n∑

i=1

∫
G

(
T π

ηi ,π(ūi )ξ
· f ḡ

)
(x) dx

=
(∫

G

f (x)g(x) dx

) n∑
i=1

〈
π(ūi)ξ |ηi

〉
= 〈f |g〉〈ξ |η〉
= 〈f ⊗ ξ |g ⊗ η〉
= 〈

Vπ(f ⊗ ξ)|(V −1
π

)∗
(g ⊗ η)

〉
.

As (A(G)∩Cc(G))⊗H is dense in L2(G)⊗2 H and Vπ is continuous and surjective, the above
calculation shows that

Λπ∗(g ⊗ η) = (
V −1

π

)∗
(g ⊗ η)

(
g ∈ A(G) ∩ Cc(G), η ∈ H0

)
.
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Therefore Λπ∗ and (V −1
π )∗ agree on the dense subspace (A(G) ∩ Cc(G)) ⊗ H0 ⊆ L2(G) ⊗2 H .

Since (V −1
π )∗ is a bounded operator, this implies that Λπ∗ is bounded, and

Λπ∗ = (
V −1

π

)∗ ∈ VN(G) ⊗ B(H).

From relation (5) we see that the completely bounded map from A(G) to B(H) correspond-
ing to Λπ∗ is π∗. Therefore π∗ is a completely bounded representation and Vπ∗ = Λπ∗ . By
Lemma 2 (ii), π̌ is also a completely bounded representation, and Vπ̌ = V ∗

π∗ = (Λπ∗)∗ =
V −1

π . �
We now state the main theorem of this section.

Theorem 16. Let π :A(G) → B(H) be a non-degenerate completely bounded representa-
tion. Then π is similar to a ∗-representation if and only if its associated corepresentation
Vπ ∈ VN(G) ⊗ B(H) is an invertible operator. In either case, Vπ is similar to a unitary corep-
resentation.

Proof. If Vπ is invertible, then Theorem 15 implies that π∗ is a completely bounded representa-
tion. Therefore π is similar to a ∗-representation by Theorem 8.

Now suppose that π = Sσ(·)S−1 where S ∈ B(H) is an invertible operator and σ :A(G) →
B(H) is a ∗-representation. Since non-degeneracy is preserved under similarities, σ is non-
degenerate. By [19, Theorem A.1], the corepresentation Vσ ∈ VN(G) ⊗ B(H) is unitary, and

Vπ = (id ⊗ S)Vσ

(
id ⊗ S−1)

is similar to a unitary corepresentation (and therefore invertible). �
Remark 17. If π :L1(G) → B(H) is a bounded non-degenerate representation, then the associ-
ated corepresentation Vπ ∈ L∞(G) ⊗ B(H) is always an invertible operator. This suggests to us
that the same should be true for the Fourier algebra: Given a non-degenerate completely bounded
representation π :A(G) → B(H), we expect that the corepresentation Vπ ∈ VN(G) ⊗ B(H)

should always be invertible (and therefore similar to a unitary corepresentation by Theorem 16).
We are unable to prove this conjecture for arbitrary locally compact groups G. However, in the
following section we show that this conjecture is true for the class of SIN groups (see Section 5).

5. Groups with small invariant neighborhoods

In this section, we will restrict our attention to the class of locally compact groups with small
invariant neighborhoods (called SIN groups). Recall that a locally compact group G is a SIN
group if it has a neighborhood base U at the identity e consisting of open neighborhoods which
are invariant under the inner automorphisms of G. That is, for all U ∈ U and g ∈ G, we have
gUg−1 = U . Typical examples of SIN groups are discrete, abelian, and compact groups. We will
show that for any SIN group G, every completely bounded representation of A(G) on a Hilbert
space H is similar to a ∗-representation of A(G). In other words, for SIN groups, the completely
bounded representation theory of A(G) on Hilbert spaces is very simple – every completely
bounded representation of A(G) on a Hilbert space arises as the restriction of a bounded rep-
resentation of C0(G) on H . The basic idea in our approach is that when G is a SIN group and
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π :A(G) → B(H) is a completely bounded representation, we can show that π is similar to a
∗-representation without having to a priori assume anything about the complete boundedness of
the associated representations π̌ and π∗ defined in (6).

We begin with the following lemma which will be needed for our considerations of SIN
groups. Recall that a locally compact group G is said to be unimodular if � = 1, where
� :G → R+ is the Haar modular function for G. Below, we will use the notation ZL1(G) to
denote the center of the group algebra L1(G).

Lemma 18. Let G be a unimodular locally compact group, and let π :A(G) → B(H) be a com-
pletely bounded representation. Fix ξ, η ∈ H and let T π

η,ξ ∈ VN(G) be the coefficient operator

introduced in (8). Then, for any ψ ∈ A(G) ∩ L2(G) and ϕ ∈ A(G) ∩ ZL1(G) such that ϕ̃ = ϕ,
we have

T π
η,ξ λ(ϕψ) ∈ λ

(
L1(G)

)
,

with ∥∥T π
η,ξ λ(ϕψ)

∥∥
L1(G)

� ‖π‖2
cb‖ξ‖‖η‖‖ψ‖2‖ϕ‖2.

Proof. Let ϕ and ψ be as above. Since ϕψ ∈ A(G) ∩ L1(G) ⊆ L2(G) we have T π
η,ξ (ϕψ) ∈

L2(G) and T π
η,ξ (ϕψ) = T π

η,ξ · (ϕψ) ∈ A(G) ∩ L2(G) almost everywhere. Therefore, by (2) we
have

T π
η,ξ λ(ϕψ) = λ

(
T π

η,ξ (ϕψ)
) = λ

(
T π

η,ξ · (ϕψ)
) ∈ VN(G),

and so

∥∥T π
η,ξ λ(ϕψ)

∥∥
L1(G)

= ∥∥T π
η,ξ · (ϕψ)

∥∥
L1(G)

=
∫
G

∣∣T π
η,ξ · (ϕψ)(x)

∣∣dx

=
∫
G

∣∣〈π(
Lx(ϕψ)ˇ)ξ |η〉∣∣dx

=
∫
G

∣∣〈π(Lxψ̌)ξ |π(Lxϕ̌)∗η
〉∣∣dx

�
∫
G

∥∥π(Lxψ̌)ξ
∥∥∥∥π(Lxϕ̌)∗η

∥∥dx

�
(∫

G

∥∥π(Lxψ̌)ξ
∥∥2

dx

)1/2(∫
G

∥∥π(Lxϕ̌)∗η
∥∥2

dx

)1/2

= ∥∥Vπ(ψ ⊗ ξ)
∥∥

L2(G)⊗2H
·
(∫ ∥∥π(Lxϕ̌)∗η

∥∥2
dx

)1/2

,

G
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where the last equality is obtained from Proposition 1. We now consider the term
(
∫
G

‖π(Lxϕ̌)∗η‖2 dx)1/2 above. Note that since ϕ ∈ A(G) ∩ ZL1(G) and ϕ̃ = ϕ, we have
Lxϕ̌ = (Lx−1 ϕ̌)˜ for all x ∈ G. Indeed, for any x, y ∈ G

(Lx−1 ϕ̌)˜(y) = (Lx−1 ϕ̌)
(
y−1

)
= ϕ̌

(
xy−1

)
= ϕ̃

(
xy−1)

= ϕ
(
xy−1) (since ϕ̃ = ϕ)

= ϕ
(
y−1x

) (
since ϕ ∈ ZL1(G) and G is unimodular

)
= ϕ̌

(
x−1y

)
= (Lxϕ̌)(y).

Consequently,

(∫
G

∥∥π(Lxϕ̌)∗η
∥∥2

dx

)1/2

=
(∫

G

∥∥π
(
(Lx−1 ϕ̌)˜)∗

η
∥∥2

dx

)1/2

=
(∫

G

∥∥π
(
(Lxϕ̌)˜)∗

η
∥∥2

dx

)1/2

(since G is unimodular)

=
(∫

G

∥∥π̃
(
(Lxϕ̌)

)
η
∥∥2

dx

)1/2

= ∥∥Vπ̃ (ϕ ⊗ η)
∥∥ (applying Lemma 2)

= ∥∥V ∗
π (ϕ ⊗ η)

∥∥.

This finally gives,

∥∥T π
η,ξ λ(ϕψ)

∥∥
L1(G)

�
∥∥Vπ(ψ ⊗ ξ)

∥∥ · ∥∥V ∗
π (ϕ ⊗ η)

∥∥ � ‖π‖2
cb‖ξ‖‖η‖‖ϕ‖2‖ψ‖2. �

Remark 19. In Lemma 18, we only considered functions ψ ∈ A(G) ∩ L2(G) and ϕ ∈ A(G) ∩
ZL1(G) with ϕ = ϕ̃. It is however obvious from the above proof that we can use the density
of A(G) ∩ L2(G) in L2(G) to extend the conclusion of Lemma 18 to arbitrary ψ ∈ L2(G).
More precisely, we have for any ψ ∈ L2(G) and ϕ ∈ A(G) ∩ Z(L1(G)) with ϕ = ϕ̃, that the
image of the vector ϕψ ∈ L2(G)∩L1(G) under the operator T π

η,ξ ∈ VN(G) satisfies T π
η,ξ (ϕψ) ∈

L2(G) ∩ L1(G) with

∥∥T π
η,ξ (ϕψ)

∥∥
L1(G)

� ‖π‖2
cb‖ξ‖‖η‖‖ϕ‖2‖ψ‖2.
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We are now in a position to prove our main result for SIN groups.

Theorem 20. Let G be a SIN group and let π :A(G) → B(H) be a completely bounded
representation. Then π extends continuously to a bounded (hence completely bounded) repre-
sentation π0 :C0(G) → B(H) with norm no larger than ‖π‖2

cb. In particular, every completely
bounded representation π :A(G) → B(H) is similar to a ∗-representation, and when π is non-
degenerate, the similarity S ∈ B(H) taking π to a ∗-representation can be chosen so that

‖S‖∥∥S−1
∥∥ � ‖π‖4

cb.

Proof. To show that π extends continuously to a bounded representation π0 :C0(G) → B(H),
it suffices to show that for all ξ, η ∈ H , the coefficient operator T π

η,ξ ∈ VN(G) defined in (8) is
actually the convolution operator given by a measure μπ

η,ξ ∈ M(G) with norm ‖μπ
η,ξ‖M(G) �

Cπ‖ξ‖‖η‖ where Cπ > 0 is some constant independent of ξ, η ∈ H . Indeed if this is the case,
we can proceed as in the proof of Theorem 8 to show that π :A(G) → B(H) is continuous
with respect to the ‖ · ‖∞-norm on A(G) (with norm bound Cπ ), implying that π extends
continuously and uniquely to a bounded representation π0 :C0(G) → B(H). Once we have
obtained π0, we can again proceed exactly as in the proof of Theorem 8 to show that π is sim-
ilar to a ∗-representation and that if π is non-degenerate, a similarity S ∈ B(H) taking π to a
∗-representation can be chosen so that

‖S‖∥∥S−1
∥∥ � ‖π0‖2 � C2

π .

We will now prove this sufficient condition with constant Cπ = ‖π‖2
cb. To begin, fix ξ, η ∈ H .

Since G is a SIN group, we can fix a neighborhood base U at the identity which consists of open
neighborhoods U ∈ U with compact closure which are invariant under the inner automorphisms
of G. For each U ∈ U , let χU denote the characteristic function of U and define

ϕU := χU ∗ χ̌U

‖χU ∗ χ̌U‖2
.

It is easy to see that ϕU ∈ A(G) ∩ Cc(G) for every U ∈ U . Furthermore, since each U ∈ U is
inner automorphism invariant, we have

ϕU

(
xyx−1) = ϕU(y) (x, y ∈ G).

Since G is unimodular, this means that ϕU ∈ A(G) ∩ ZL1(G) for all U ∈ U .

Now for each U ∈ U , let ψU � 0 ∈ L2(G) be chosen so that ‖ψU‖2 = 1 and ‖ϕUψU‖1 =∫
G

ϕU(g)ψU(g)dg = 1. Define

eU = ϕUψU ∈ L1(G) ∩ L2(G),

and consider the net {eU }U∈U ⊂ L1(G) (where U ∈ U are partially-ordered by reverse inclusion).
Since supp eU ⊆ suppϕU and {suppϕU }U∈U forms a neighborhood base at the identity, it follows
that the net {eU }U∈U is a bounded approximate identity for L1(G). Furthermore, for each U ∈ U ,
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Lemma 18 and Remark 19 tell us that the vector T π
η,ξ eU = T π

η,ξ (ϕUψU) ∈ L2(G) actually lives

in L2(G) ∩ L1(G) and∥∥T π
η,ξ eU

∥∥
L1(G)

� ‖π‖2
cb‖ξ‖‖η‖‖ϕU‖2‖ψU‖2 = ‖π‖2

cb‖ξ‖‖η‖.

This shows that the net {T π
η,ξ eU }U∈U ⊂ L1(G) is uniformly bounded by ‖π‖2

cb‖ξ‖‖η‖. By pass-

ing to a subnet of {T π
η,ξ eU }U∈U if necessary, we may assume that the net {T π

η,ξ eU }U∈U ⊂ L1(G)

converges in the weak-∗ in M(G) to some measure μπ
η,ξ ∈ M(G). Note that ‖μπ

η,ξ‖M(G) �
‖π‖2

cb‖ξ‖‖η‖.
It now remains to show that T π

η,ξ = λ(μπ
η,ξ ). To do this, note that by density of A(G) ∩ Cc(G)

in L2(G) it suffices to show T π
η,ξ f = λ(μπ

η,ξ )f for all f ∈ A(G) ∩ Cc(G). So fix such an f ,

and note that since {eU }U∈U is a bounded approximate identity for L1(G), limU∈U ‖eU ∗ f −
f ‖A(G) = 0. Therefore for almost every x ∈ G we have

(
T π

η,ξ f
)
(x) = (

T π
η,ξ · f )

(x) = 〈
Lxf̌ , T π

η,ξ

〉
= lim

U∈U

〈
Lx(eU ∗ f )ˇ, T π

η,ξ

〉 = lim
U∈U

[
T π

η,ξ · (eU ∗ f )
]
(x)

= lim
U∈U

[
T π

η,ξ (eU ∗ f )
]
(x)

(
since eU ∗ f ∈ A(G) ∩ L2(G)

)
= lim

U∈U

[(
T π

η,ξ eU

) ∗ f
]
(x)(

since VN(G) commutes with right convolutions by Cc(G)
)

= lim
U∈U

∫
G

(
T π

η,ξ eU

)
(y)f

(
y−1x

)
dy

=:
∫
G

f
(
y−1x

)
dμπ

η,ξ (y)

= (
μπ

η,ξ ∗ f
)
(x)

= (
λ
(
μπ

ξ,η

)
f

)
(x).

This completes the proof. �
Corollary 21. Let G be a SIN group and let π :A(G) → B(H) be a completely bounded repre-
sentation of A(G). Then π̌ and π∗ are also completely bounded representations.

Proof. This is just a consequence of Theorems 20 and 8. �
Corollary 22. Let G be a SIN group and π :A(G) → B(H) be a completely bounded rep-
resentation. Then π is non-degenerate if and only if the associated corepresentation Vπ ∈
VN(G) ⊗ B(H) is invertible.

Proof. If π is non-degenerate, then Theorems 15 and 20 imply that Vπ must be invertible. The
converse is just Lemma 13. �
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In [7], it was asked whether the completely contractive representations of A(G) correspond
to ∗-representations, and in [25] it was asked whether or not every completely bounded repre-
sentation of A(G) is similar to a complete contraction. As a corollary to Theorem 20, we obtain
partial answers to these questions.

Corollary 23. Let G be a SIN group and let π :A(G) → B(H) be a completely bounded repre-
sentation. Then π is similar to a complete contraction, and π is a ∗-representation if and only if
it is a complete contraction.

Proof. We already know that π is similar to a ∗-representation by Theorem 20, and that
∗-representations are completely contractive by the proof of Theorem 8. We therefore only
need to show that ‖π‖cb � 1 implies that π is a ∗-representation. But in this case, Theorem 20
implies that π extends uniquely to a bounded representation π0 :C0(G) → B(H) with norm
‖π0‖ � ‖π‖2

cb = 1. Since π0 is a contractive representation of C0(G), Remark 7 tells us that
π0 = π0,e ⊕ 0H⊥

e
relative to the decomposition H = He ⊕ H⊥

e , where He is the essential space
of π0 and π0,e is the essential part of π0. Since non-degenerate contractive representations of
C∗-algebras are always ∗-representations, it follows that π0 = π0,e ⊕ 0H⊥

e
is a ∗-representation.

In particular, π = π0|A(G) is a ∗-representation. �
6. Other classes of groups

In this section we examine the possibility of extending the results of Section 5 to other classes
of locally compact groups. The main result of this section is that the every completely contractive
representation of A(G) is a ∗-representation even if we only assume that the connected compo-
nent of G is a SIN group. We will consider the following terminologies.

For a locally compact group G and an open subgroup K of G, we let G = ⋃̇
x∈I xK denote the

decomposition of G to distinct left cosets of K (i.e. xK ∩ yK = ∅ if x �= y). For every element
u ∈ A(G) and x ∈ I , we write

ux = uχxK,

where χxK is the characteristic function of the coset xK . Since K is open, each χxK is a norm-
one idempotent in the Fourier–Stieltjes algebra B(G) [10, Proposition 2.31]. Since A(G) is a
closed ideal in B(G), ux ∈ A(G). We let

A(xK) = A(G)χxK.

Since K is open, the canonical embedding of the Fourier algebra A(K) into A(G) (i.e. extending
functions by zero outside of K) is completely isometric, allowing us to identify A(K) with
its image A(eK) unambiguously. In what follows, we shall consider the translation operators
Lx :A(K) → A(xK) defined by

(Lxu)(y) = u
(
x−1y

) (
u ∈ A(K)

)
.

We note here that since left translation on A(G) is completely isometric, Lx :A(K) → A(xK) is
always a completely isometric algebra isomorphism. Finally, for any representation π :A(G) →
B(H), we let πx (x ∈ I ) denote the restriction of π to the ideal A(xK).



M. Brannan, E. Samei / Journal of Functional Analysis 259 (2010) 2073–2097 2095
Lemma 24. Let G be a locally compact group, and let K be an open subgroup of G with
the property that every completely contractive representation of A(K) on a Hilbert space H

is a ∗-representation. Then every completely contractive representation of A(G) on H is a
∗-representation.

Proof. Let π :A(G) → B(H) be a completely contractive representation. Write G = ⋃̇
x∈I xK .

For every x ∈ I , the mapping πx ◦ Lx :A(K) → B(H) defines a completely contractive repre-
sentation of A(K) on H , and so, by hypothesis, πx ◦ Lx is a ∗-representation for every x ∈ I .
Now let u ∈ A(G)∩Cc(G) and write u = ∑

x∈I0
ux where I0 ⊆ I is some finite subset. Then we

have

π(u)∗ = π

( ∑
x∈I0

ux

)∗

=
∑
x∈I0

π(ux)
∗

=
∑
x∈I0

(
(πx ◦ Lx)(Lx−1ux)

)∗

=
∑
x∈I0

(πx ◦ Lx)(Lx−1ux)

=
∑
x∈I0

(πx ◦ Lx)(Lx−1ux)

=
∑
x∈I0

π(ux)

= π(u).

Since A(G) ∩ Cc(G) is dense in A(G), this shows that π is a ∗-representation. �
Theorem 25. Let G be a locally compact group such that Ge, the connected component of the
identity, is a SIN group. Then any completely contractive representation π :A(G) → B(H) is a
∗-representation.

Proof. Since any such group G has an open almost connected subgroup, by Lemma 24, we
may assume that G itself is almost connected. Fix u ∈ A(G) and ε > 0. As it is shown
in [12, Theorem 3.3], there is a compact, normal subgroup N of G and a bounded idempotent
P :A(G) → A(G) such that G/N is a Lie group and

‖u − Pu‖A(G) � ε. (11)

In fact, P is a projection onto A(G : N), the subalgebra of A(G) consisting of those functions
that are constant on the left cosets of N . Since A(G : N)∗ can be identified as a von Neu-
mann algebra with VN(G/N), A(G : N) is completely isometrically isomorphic to A(G/N) [10,
Proposition 3.25]. Now let q :G → G/N be the canonical quotient map. By [15, Theorems 5.18
and 7.12], the connected component (G/N)e of G/N is q(Ge). Thus (G/N)e is a SIN group.
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On the other hand, since G/N is a Lie group, (G/N)e is an open subgroup of G/N . Therefore,
identifying A(G : N) ∼= A(G/N) completely isometrically, Lemma 24 implies that the com-
pletely contractive representation π |A(G:N) : A(G : N) → B(H) is in fact a ∗-representation of
A(G : N). In particular π(Pu)∗ = π(Pu). It follows from (11) and the triangle inequality that

∥∥π(u) − π(u)∗
∥∥ �

∥∥π(u − Pu)
∥∥ + ∥∥π(Pu) − π(u)∗

∥∥
= ∥∥π(u − Pu)

∥∥ + ∥∥π(Pu − u)∗
∥∥

� ‖u − Pu‖A(G) + ‖Pu − u‖A(G)

� 2ε.

Since ε > 0 and u ∈ A(G) was arbitrary, we have the result. �
The following corollary is an immediate consequence of the preceding theorem. Recall that

a locally compact group G is maximally almost periodic if the finite-dimensional irreducible
representations of G separate points in G. For connected groups, the class of maximally almost
periodic groups coincides with the class of SIN groups (see [13, Theorem 2.9]). Also recall that
G is said to be totally disconnected if Ge = {e}.

Corollary 26. Let G be a locally compact group. Then every completely contractive representa-
tion of A(G) on a Hilbert space H is a ∗-representation in either of the following cases:

(i) G is a SIN group;
(ii) G is maximally almost periodic;

(iii) G is totally disconnected.
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