
ANZIAM J. 50(2009), 550–561
doi:10.1017/S1446181109000273

ERROR ESTIMATES FOR DOMINICI’S HERMITE
FUNCTION ASYMPTOTIC FORMULA AND

SOME APPLICATIONS

R. KERMAN1, M. L. HUANG ˛ 1 and M. BRANNAN1

(Received 11 October, 2007; revised 24 August, 2009)

Abstract
The aim of this paper is to find a concrete bound for the error involved when
approximating the nth Hermite function (in the oscillating range) by an asymptotic
formula due to D. Dominici. This bound is then used to study the accuracy of certain
approximations to Hermite expansions and to Fourier transforms. A way of estimating
an unknown probability density is proposed.
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1. Introduction

Let

hn(x)= (−1)nγnex2/2 dn

dxn e−x2
, γn = π

−1/42−n/2(n!)−1/2, (1.1)

be the nth Hermite function, n = 0, 1, . . . . Dominici [2] obtained an asymptotic
formula for the Hermite polynomial, Hn , which yields for hn in the oscillatory range
|x |<

√
2n (or, writing x =

√
2n sin θ , |θ |< π/2),

hn(x)= hn(
√

2n sin θ)∼
(

2n

e

)n/2

γn

√
2

cos θ
cos

(
n

2
sin θ +

(
n +

1
2

)
θ −

nπ

2

)
.

(1.2)

As will be seen in Examples 1, 2 and 5 below, this asymptotic formula leads to
remarkably accurate results.

Our aim in this paper is to estimate the error incurred when hn(x) is replaced by
the right side of (1.2). We go on to apply this new information to the approximation of
Hermite expansions and Fourier transforms and then to density estimation.

1Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S 3A1;
e-mail: mhuang@brockU.CA.
c© Australian Mathematical Society 2009, Serial-fee code 1446-1811/2009 $16.00

550



[2] Error estimates for Dominici’s Hermite function asymptotic formula and applications 551

In fact, we work with a slightly modified version of the asymptotic function. Our
principal result is given in Theorem 1.1.

THEOREM 1.1. Let hn be the nth Hermite function, n = 0, 1, . . . and fix A > 0.
Then, with x =

√
2n sin θ , one has, for |x | ≤ A,

hn(x)= dn(x)+ en(x),

where

dn(x)= dn(
√

2n sin θ)= cn

√
2

cos θ
cos

(
n

2
sin θ +

(
n +

1
2

)
θ −

nπ

2

)
, (1.3)

cn =


n!

√
20 ((n/2)+ 1)

π−1/42−n/2(n!)−1/2, n even,

2(n!)(√
2n + 1/(

√
2n)

)
0 (n + 1/2)

π−1/42−n/2(n!)−1/2, n odd,
(1.4)

and

en(x)=
rn(x)

n7/4 + O

(
1

n9/4

)
, (1.5)

in which |rn(x)| ≤ 2A, n ≥ 5.

The constant cn in (1.4) has been chosen to guarantee dn(0)= hn(0), and d ′n(0)=
h′n(0), n = 0, 1, . . . . Now, hn satisfies the differential equation

Ln y = 0, Ln :=
d2

dx2 + (−x2
+ 2n + 1).

Defining fn =−Lndn , we get that en = hn − dn is the unique solution of the initial
value problem

Ln y = fn, y(0)= y′(0)= 0.

Thus,

en(x)=
∫ x

0
Gn(x, y) fn(y) dy, x ∈R, (1.6)

Gn being the Green’s function of the differential operator Ln .
In Sections 2–4 we successively estimate | fn(x)|, Gn(x, y) and, finally, using (1.5),

|en(x)|. Section 5 has an application of the latter estimate to Hermite expansions and
Section 6 has one to the Fourier transform. In Section 7 we briefly discuss density
estimation.

2. A uniform bound for fn on [−
√

n,
√

n]

Setting θ = sin−1(x/
√

2n) in formula (1.3) for dn(
√

2n sin θ) gives

dn(x)=
cn cos(ρ(x))(

4− (2x2/n)
)1/4 ,
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in which

ρ(x)=
1
4

√
2nx

√
4−

2x2

n
+

(
n +

1
2

)
sin−1

(
x
√

2n

)
−

nπ

2
.

Next,

(Lndn) (x)=
2−1/4n1/4cn(
2n − x2

)7/4√(2n − x2)(−4x4 + 2(4n + 1)x2 + n),

so

| fn(x)| =
∣∣∣(Lndn) (

√
2n sin θ)

∣∣∣
≤

cn

8n cos11/2 θ

√
16 sin6 θ − 40 sin4 θ + 47 sin2 θ + 2

≤ 2−3/4
√

35
cn

n
, (2.1)

when |θ |< π/2 or |x |<
√

n.

3. The Green’s function of Ln

As observed in Arfken [1, Pages 637–638], two linearly independent solutions of
Ln y = 0 are

φ1n(x)= 1 F1

(
−

n

2
;

1
2
; x2

)
e−x2/2

and

φ2n(x)= 1 F1

(
−
(n − 1)

2
;

3
2
; x2

)
xe−x2/2,

where the confluent hypergeometric function of the first kind

1 F1 (a; b; x) :=
∞∑

k=0

(a)k
(b)k

xk

k!
, a, b, x ∈R, b 6= 0,−1, . . .

and

(λ)k =
0(λ+ k)

0(λ)
.

Indeed, φ1n(0)= 1, φ′1n(0)= 0 and φ2n(0)= 1, φ′2n(0)= 1, which means the Green’s
function of Ln is

Gn(x, y)= φ1n(y)φ2n(x)− φ1n(x)φ2n(y).

Slater [5, Page 68] gives the following asymptotic formula of Tricomi for the
confluent hypergeometric function:

1 F1(a; b; x)= 0(b)(kx)(1−b)/2ex/2 Jb−1

(
2
√

kx
) [

1+ O

(
1
√

k

)]
,

in which a ∈R, b > 0, x ≥ 0 and k = b/2− a. As usual, Jν denotes the νth order
Bessel function of the first kind.
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As

J−1/2(y)=

(
2
πy

)1/2

cos y and J1/2(y)=

(
2
πy

)1/2

sin y,

the principal term in Gn(x, y) will be

cos
(√

2n + 1y
) sin

(√
2n + 1x

)
√

2n + 1
− cos

(√
2n + 1x

) sin
(√

2n + 1y
)

√
2n + 1

=
sin

(√
2n + 1(x − y)

)
√

2n + 1
;

more precisely, for |x |, |y| ≤ A, A > 0 being fixed,

Gn(x, y)=
sin

(√
2n + 1(x − y)

)
√

2n + 1

[
1+ O

(
1
√

n

)]
. (3.1)

4. The proof of Theorem 1.1

According to (1.6) and (3.1), for |x | ≤ A, A > 0 being fixed,

en(x)=
rn(x)

n7/4

[
1+ O

(
1
√

n

)]
,

where

rn(x) := n7/4
∫ x

0

sin
(√

2n + 1(x − y)
)

√
2n + 1

fn(y) dy.

In view of (2.1), again, if |x | ≤ A,

|rn(x)| ≤
n7/4
√

2n + 1
2−3/4

√
35

cn

n
A < 2−5/4

√
35n1/4cn A.

However, Stirling’s formula in the form

0(x)= x x−1/2e−x−1
√

2π exp
(
θ

12x

)
, 0< θ < 1,

(see Whittaker and Watson [7, Page 253]) yields

cn ≤

√
2
π

exp
(

1
24(n + 1)

)
1

n1/4 .

Hence, for n ≥ 5,

|en(x)| ≤
2−3/4

n7/4

√
35
π

exp
(

1
144

)
A

[
1+ O

(
1
√

n

)]
≤

2A

n7/4

[
1+ O

(
1
√

n

)]
. 2
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5. Hermite series

As is well known, any square-integrable function f on R can be represented in
terms of its Hermite series. That is,

f =
∞∑

n=0

〈 f, hn〉 hn with 〈 f, hn〉 =

∫
∞

−∞

f (x)hn(x) dx, (5.1)

the convergence in (5.1) being both almost everywhere and in the mean of order two.
For the purpose of computation we will replace the square-integrable function f by

f A := f χ(−A,A), A > 0. The assumption is that f has its essentially compact support
contained in (−A, A). This can be gauged by how small

∫
|x |≥A | f (x)|

2 dx is.
Next, we observe that one can compute hn and 〈 f, hn〉 quickly and accurately,

using, say, the formula (1.1) for hn , only when n ≤ N , with N somewhat less
than 100. Fortunately, when n > N , dn and 〈 f, dn〉 are readily calculated and they
approximate hn and 〈 f, hn〉 extremely well.

We will use the root-mean-square norm

M2(g; A)=

[
1

2A

∫ A

−A
|g(x)|2 dx

]1/2

to measure how well
N∑

n=0

〈 f A, hn〉 hn +

∞∑
n=N+1

〈 f A, dn〉 dn

approximates f . Applying Theorem 1.1 we obtain the following theorem.

THEOREM 5.1. Suppose f is square-integrable on R and set f A := f χ(−A,A) for a
chosen A > 0. Given N ∈ Z+, N 2

� A, consider the approximation

DN f :=
N∑

n=0

〈 f A, hn〉 hn +

∞∑
n=N+1

〈 f A, dn〉 dn (5.2)

to the Hermite series of f A. Then, for |x | ≤ A,

M2

(
∞∑

n=0

〈 f A, hn〉 hn − DN f ; A

)
≤

[
c1(A)

N 5/4 +
c2(A)

N 5/2

] [
1+ O

(
1
√

N

)]
, (5.3)

where

c1(A)=
2
√

5
A1/2
‖ f A‖1 + 2

√
2
5

A

(
‖ f A‖

2
2 −

N∑
n=0

|〈 f A, hn〉|
2

)1/2

,

c2(A)=
8
5

A2
‖ f A‖1 ,

‖ f A‖2 =

[∫ A

−A
| f (x)|2 dx

]1/2

and ‖ f A‖1 =

∫ A

−A
| f (x)| dx .
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PROOF. One readily shows
∞∑

n=0

〈 f A, hn〉 hn − DN f

=

∞∑
n=N+1

〈 f A, en〉 hn +

∞∑
n=N+1

〈 f A, hn〉 en −

∞∑
n=N+1

〈 f A, en〉 en.

Now,

1
2A

∫ A

−A

∣∣∣∣∣ ∞∑
n=N+1

〈 f A, en〉 hn(x)

∣∣∣∣∣
2

dx ≤
1

2A

∫
∞

−∞

∣∣∣∣∣ ∞∑
n=N+1

〈 f A, en〉 hn(x)

∣∣∣∣∣
2

dx

≤
1

2A

∞∑
n=N+1

|〈 f A, en〉|
2 (by Parseval’s theorem)

≤
1

2A

∞∑
n=N+1

4A2 ‖ f A‖
2
1

n7/2

[
1+ O

(
1
√

n

)]
≤

4A

5
‖ f A‖

2
1

1

N 5/2

[
1+ O

(
1
√

N

)]
.

Again,

1
2A

∫ A

−A

∣∣∣∣∣ ∞∑
n=N+1

〈 f A, hn〉 en(x)

∣∣∣∣∣
2

dx

≤
1

2A

∫ A

−A

(
∞∑

n=N+1

|〈 f A, hn〉|
2

) (
∞∑

n=N+1

|en(x)|
2

)
dx

≤

(
‖ f A‖

2
2 −

N∑
n=0

|〈 f A, hn〉|
2

)1/2
 1

2A

∫ A

−A

(
∞∑

n=N+1

|en(x)|
2

)2

dx

1/2

≤

(
‖ f A‖

2
2 −

N∑
n=0

|〈 f A, hn〉|
2

)1/2
∞∑

n=N+1

4A2

n7/2

[
1+ O

(
1
√

n

)]

≤
8
5

A2

(
‖ f A‖

2
2 −

N∑
n=0

|〈 f A, hn〉|
2

)1/2
1

N 5/2

[
1+ O

(
1
√

N

)]
.

Finally,

1
2A

∫ A

−A

∣∣∣∣∣ ∞∑
n=N+1

〈 f A, en〉 en(x)

∣∣∣∣∣
2

dx

≤
1

2A

∫ A

−A

[
∞∑

n=N+1

|〈 f A, en〉| |en(x)|

]2

dx
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≤
1

2A

∫ A

−A

[
∞∑

n=N+1

2A ‖ f A‖1

n7/4

2A

n7/4

]2

dx

[
1+ O

(
1
√

N

)]

≤ 16A4
‖ f A‖

2
1

[
∞∑

n=N+1

1

n7/4

]2 [
1+ O

(
1
√

N

)]

≤ 16A4
‖ f A‖

2
1

[
2
5

1

N 5/2

]2 [
1+ O

(
1
√

N

)]
.

We conclude from Minkowski’s inequality that

M2

(∫ A

−A

∞∑
n=0

〈 f A, hn〉 hn − DN f ; A

)
≤

[
c1(A)

N 5/4 +
c2(A)

N 5/2

] [
1+ O

(
1
√

N

)]
,

as asserted. 2

EXAMPLE 1. We study the Hermite series approximation of the trimodal density
function treated in Härdle et al. [3, Pages 176–181], namely,

f (x)= 0.5φ(x)+ 3φ(10(x − 0.8))+ 2φ(10(x − 1.2)), (5.4)

in which

φ(x)=
1
√

2π
e−x2/2, −∞< x <∞,

is the standard normal density. As is seen from its graph in Figure 1, f is essentially
supported in [−3, 3]. Now, the graphs of f and

∑40
n=0〈 f, hn〉hn in Figure 2(a)

show that many more than 40 terms of its Hermite series are required to accurately
represent f . Accordingly, we take N = 40 in (5.2) and sum the second series there
from n = 41 to n = 500 to get the asymptotic Hermite approximation to f , shown in
Figure 2(b) to be almost indistinguishable from the trimodal density function given in
Figure 1.

1.4

1.2

1

0.8

0.6

0.4

0.2

–3–4 –2 –1 0 1 2 3 4
x

FIGURE 1. Trimodal density function.
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x

–3 –2 –1 0 1 2 3
x

FIGURE 2. Approximations to the trimodal density function. (a) Hermite series approximation with 40
terms, (b) an approximation using a Hermite series for the first 40 terms and the Dominici approximation
in the next 460 terms. The solid line shows the trimodal density function, the dashed line shows the
approximation. In (b) the trimodal density function is not shown as it is visually indistinguishable from
the approximation.

(a) (b)

0.4 0.002

43

0.2

210 0

0.001

–0.001

–0.002

–1

–0.2

–2

–0.4

–3 4321–4 –1–2–3
x x

–4

FIGURE 3. Error function of (a) Hermite series approximation with 40 terms and (b) the Hermite series
approximation up to 40 terms with the Dominici approximation in the next 460 terms.

Figures 3(a) and (b) display the error function involved when approximating the
trimodal density by using Hermite series up to 40 terms and the above-described
asymptotic Hermite series, respectively. In connection with Figure 3(b), we observe
that the error estimate of (5.3), when A = 3 and N = 40, is 0.02689, while the absolute
maximum error is about 0.0025.

6. Fourier transforms

Let f be both absolutely integrable and square-integrable on R. Following
Wiener [8], we define f̂ , the Fourier transform of f , by

f̂ (λ) :=
1
√

2π

∫
∞

−∞

f (x)e−iλx dx, λ ∈R.

Recall that with this definition, ĥn(λ)= (−i)nhn(λ), and, hence,

f̂ (λ)=
∞∑

n=0

(−i)n 〈 f, hn〉 hn(λ), λ ∈R.

This suggests approximating f̂ by an asymptotic Hermite series.
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We choose A > 0 in Theorem 6.1 below so that f is essentially supported in
(−A, A). Indeed, we replace f by f A := f χ(−A,A), provided that∫

∞

−∞

∣∣ f̂ (λ)− f̂ A(λ)
∣∣2 dλ=

∫
∞

−∞

| f (x)− f A(x)|
2 dx =

∫
|x |≥A

| f (x)|2 dx

is as small as deemed necessary. The constant B > 0 in the theorem is selected after
the approximation to f̂ A has been computed.

THEOREM 6.1. Suppose f is square-integrable on R and set f A := f χ(−A,A) for a
chosen A > 0. Given N ∈ Z+, N � A2, consider the approximation to f̂ A(λ), λ ∈R,

F̂A,N (λ) :=

N∑
n=0

(−i)n 〈 f A, hn〉 hn(λ)+

∞∑
n=N+1

(−i)n 〈 f A, dn〉 dn(λ).

Then,

M2
(

f̂ A − F̂A,N ; B
)
≤

[
c1(A, B)

N 5/4 +
c2(A, B)

N 5/2

] [
1+ O

(
1
√

N

)]
,

where

c1(A, B) :=
2A
√

5B
‖ f A‖1 + 2

√
2
5

B

√√√√‖ f A‖
2
2 −

N∑
n=0

|〈 f A, hn〉|
2 and

c2(A, B) :=
8
5

AB ‖ f A‖1 .

PROOF. The proof is similar to that of Theorem 5.1 and is omitted. 2

EXAMPLE 2. Let f be the trimodal density function from Example 1. Figures 4(a)–(c)
display the graphs of Re F̂A,N , Im F̂A,N and |F̂A,N |, respectively, for A = 3, N = 40.
They indicate that f̂ A is essentially supported in (−8, 8), for which interval

M2
(

f̂ A − F̂A,N ; 8
)
≤ 0.0401.

The graph of | f̂ A(λ)− F̂A,N (λ)| in Figure 5 reveals the actual maximum absolute
error is approximately 0.0003.

7. Hermite density estimation

One method of estimating an unknown density function f involves the use of
orthogonal expansions. In particular, Hermite series were used in this connection by
Schwartz [4] and Walter [6].

The idea is to suppose the density function f is square-integrable on R,
with Hermite expansion f (x)=

∑
∞

n=0 〈 f, hn〉 hn(x). One then takes a sequence
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–0.1

–0.15

0.15

0.1
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0.4

0.1
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(c)

FIGURE 4. The (a) real part, (b) imaginary part and (c) absolute value of the approximate Fourier
transform of the trimodal density.

0.0003

0.0002

0.0001

–8 –4 0

x
4 8

FIGURE 5. Absolute value of the error of the approximate Fourier transform of the trimodal density.

of m independent identically distributed random samples X1, X2, . . . , Xm from the
population random variable X with density f and computes the sums

En,m :=
1
m

m∑
i=1

hn(X i ).

Now, the law of large numbers ensures that, almost surely,

lim
m→∞

En,m = Expected value of hn(X)≡
∫
∞

−∞

hn(x) f (x) dx = 〈 f, hn〉.
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This leads to the following definition.

DEFINITION 3. The Hermite series density estimate obtained with a sequence of
random samples from a population with square-integrable density f is given by

fHS(x; m) :=
q(m)∑
n=1

(
1
m

m∑
i=1

hn(X i )

)
hn(x), m = 1, 2, . . . . (7.1)

In (7.1), {q(m)} is an increasing sequence of positive integers satisfying q(m)/m→ 0
as m→∞.

To avoid the numerical problems associated with computing high-degree Hermite
polynomials, we make a further definition.

DEFINITION 4. Suppose the vast majority of the sample values of Definition 3 lie
in (−A, A), A > 0, and let N ∈ Z+ be such that A2

� N < q(m). The asymptotic
Hermite series estimate of the density f is defined to be

fAHS(x; m) : =
N∑

n=1

(
1
m

m∑
i=1

hn(X i )

)
hn(x)

+

q(m)∑
n=N+1

(
1
m

m∑
i=1

dn(X i )

)
dn(x), m = 1, 2, . . . . (7.2)

EXAMPLE 5. We illustrate our method with the trimodal density function again. A
Monte Carlo simulation (with MAPLE11 software) of the distribution defined by (5.4)
was used to generate m = 1000 random samples. The graph of fHS in (7.1), when
m = 1000, q(m)= 64 is shown, together with the density, in Figure 6(a).

Taking N = 40 in (7.2) and summing the second series from n = 41 to 500 yields
for fAHS in Figure 6(b) a graph that, except for the tails, fits the true density f well.

The error functions involved in the two approximations appear in Figure 7(a)
and (b). In the first case the maximum absolute error is about 0.4, while in the second
case it is about 0.15.

(a) (b)
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1

0.8

0.6

0.4

0.2

1.4

1.2

1

0.8

0.6

0.4

0.2

–3 –2 –1 0 1 2 3
x

–3 –2 –1 0 1 2 3
x

FIGURE 6. Sample density estimation using (a) a Hermite series of 64 terms and (b) the Dominici
approximation on the next 460 terms. In each case the solid line shows the trimodal density function,
the dashed line shows the approximation.
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FIGURE 7. Error function of the density estimate using (a) Hermite series and (b) the Dominici
approximation.
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