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Abstract. In this paper, we consider various extension problems asso-
ciated with elements in the the closure with respect to either the mul-
tiplier norm or the completely bounded multiplier norm of the Fourier
algebra of a locally compact group. In particular, we show that it is
not always possible to extend an element in the closure with respect
to the multiplier norm of the Fourier algebra of the free group on two
generators, to a multiplier of the Fourier algebra of SL(2,R).

1. Introduction

Let G be a locally compact group. We let A(G) and B(G) denote the
Fourier and Fourier-Stieltjes algebras of G. These Banach algebras of con-
tinuous functions on G, introduced in by Eymard in [6], are central objects
in non-commutative harmonic analysis.

A multiplier of A(G) is a (necessarily bounded and continuous) function
v : G → C such that vA(G) ⊆ A(G). For each multiplier v of A(G), the
linear operator Mv on A(G) defined by Mv(u) = vu for each u ∈ A(G) is
bounded via the Closed Graph Theorem. The multiplier algebra of A(G) is
the closed subalgebra

MA(G) := {Mv : v is a multiplier of A(G)}

of B(A(G)), where B(A(G)) denotes the algebra of all bounded linear oper-
ators from A(G) to A(G). Throughout this paper we will generally use v in
place of the operator Mv and we will write ‖v‖MA(G) to represent the norm
of Mv in B(A(G)).

Let G be a locally compact group and let V N(G) its group von Neumann
algebra. That is, V N(G) is the von Neumann algebra generated by the left
regular representation λG : G→ U(L2(G)). The duality

A(G) = V N(G)∗
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equips A(G) with a natural operator space structure. With this operator
space structure we can define the cb-multiplier algebra of A(G) to be

McbA(G) := CB(A(G)) ∩MA(G),

where CB(A(G)) denotes the (quantized) Banach algebra of all completely
bounded linear maps from A(G) into itself. We let ‖v‖McbA(G) denote the
cb-norm of the operator Mv. It is well known that McbA(G) is a closed
subalgebra of CB(A(G)) and is thus a (quantized) Banach algebra with
respect to the norm ‖ · ‖McbA(G).

It is known that in general,

A(G) ⊆ B(G) ⊆McbA(G) ⊆MA(G)

and that for v ∈ B(G)

‖v‖B(G) ≥ ‖v‖McbA(G) ≥ ‖v‖MA(G).

Moreover, if v ∈ A(G), then

‖v‖A(G) = ‖v‖B(G).

In case G is an amenable group, we have

B(G) = McbA(G) = MA(G)

and that

‖v‖B(G) = ‖v‖McbA(G) = ‖v‖MA(G)

for any v ∈ B(G).
In [7], the first author introduced the following algebra which was denoted

in that paper by AM0(G):

Definition 1.1. Given a locally compact group G, let

Acb(G)
def
= A(G)

‖·‖McbA(G) ⊆McbA(G).

Clearly, if G is amenable, then A(G) = Acb(G) and the norms agree.
However, in general if G is non-amenable, then A(G) ( Acb(G). Moreover,
it can be shown that for a large class of locally compact groups, which
contains many interesting non-amenable groups including the free group on
two generators F2 and SL(2,R), that Acb(G) behaves in much the same
manner as does the Fourier algebra of an amenable group [4, 8]. For this
class, the so called weakly amenable groups, Acb(G) has proven to be a
rather interesting object to study.

In this paper, we will also be interested in multipliers of A(G) that may
or may not be completely bounded but can none the less be approximated
by elements of A(G). This leads us to the following algebras:

Definition 1.2. Given a locally compact group G, let

AM (G)
def
= A(G)

‖·‖MA(G) ⊆MA(G).
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As we have seen, if G is amenable, then A(G) = Acb(G) = AM (G) with
equality holding for the various norms. Moreover, in [14] Losert has shown
that G is amenable if and only if A(G) = AM (G). In fact, Losert showed
that G is amenable whenever the ‖ · ‖B(G) and the ‖ · ‖MA(G) norms are
equivalent on A(G) .

Typically, we have

A(G) ⊂ Acb(G) ⊂ AM (G).

Since it is well known that Mcb(A(G)) (M(A(G)) for many non-amenable
groups, it would be reasonable to speculate that for non-amenable groups
that the second inclusion is proper. While this was recently shown in [2]
to be the case for the group F2, in what can only be described as a re-
markable result, Losert has shown that for the group SL(2,R), we have
McbA(SL(2,R)) = MA(SL(2,R)) and hence that

A(SL(2,R)) ( Acb(SL(2,R)) = AM (SL(2,R)).

2. Some general results on restrictions and extensions of
completely bounded multipliers

Let G be a locally compact group and let A(G) be any of the algebras
A(G), B(G), MA(G), McbA(G), AM (G), or Acb(G). Denote by Lg, the left
translation operator on A(G), by g ∈ G (i.e. (Lgϕ)(x) = ϕ(g−1x)).

Let H ≤ G be a closed subgroup. We will denote by A(G)|H , the space
of all restrictions of elements of A(G) to H. In each case, it is known that

A(G)|H ⊆ A(H),

and that the restriction map R : A(G)→ A(H) given by

R(u) = u|H
is contractive.

A natural question arises:

Question 2.1. For which pairs H ≤ G is the map R : A(G) → A(H)
surjective? Equivalently, for which pairs H ≤ G will it be that every element
in A(H) extends to an element in A(H).

It is well known, that in general B(G)|H ( B(H) (see for example [5, Pg.
92]). Since this can happen even when G is amenable, we do not expect
the restriction mapping to be surjective in general for either of MA(G) or
McbA(G).

In stark contrast, Herz [11] has shown that for any closed subgroup H of
any locally compact group G

A(G)|H = A(H).

Herz’s result (which we refer to as Herz’s restriction theorem) has proved
to be a powerful tool in the study of the Fourier algebra. It’s usefulness
leads us to ask specifically:
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Question 2.2. If A(G) is either AM (G), or Acb(G), does A(G)|H = A(H)?

Here it is natural to focus our attention on the case where H is non-
amenable, since if H is amenable, A(H) = A(H) and Herz’s restriction
theorem establishes the result in the affirmative. In the general case, since
A(H) is always dense in A(H), if we could show that the restriction map R
has closed range, then we would be done.

Now, while we have noted that B(G)|H ( B(H) in many situations, we at
least know that the range of the restriction map is closed. This statement,
may well be part of the folklore. A similar result was proved by Ghandehari
[9, Lemma 3.2.6] for the algebra B0(G) = B(G) ∩ C0(G). We include the
short proof for completeness.

Proposition 2.3. For any closed subgroup H ≤ G, B(G)|H is a closed
subalgebra of B(H).

Proof. Let π : G→ U(Hπ) be any weakly continuous unitary representation
of G. Then we denote by Aπ(G), the ‖ · ‖B(G)-closed linear span of the
coefficient functions {g 7→ 〈π(g)ξ|η〉 : ξ, η ∈ Hπ} [1].

Let ω : G → U(Hω) denote the universal unitary representation of
G. Then B(G) = {g 7→ 〈ω(g)ξ|η〉 : ξ, η ∈ Hω}. On the other hand,
we have B(G)|H = {h 7→ 〈ω|H(h)ξ|η〉 : ξ, η ∈ Hω} ⊆ Aω|H (H), where
ω|H : H → U(Hω) is the restricted representation. Since Aω|H (H) is by

definition norm closed, then B(G)|H
‖·‖B(H) ⊆ Aω|H (H). On the other hand

we have Aω|H (H) ⊆ B(G)|H . To see this, let v ∈ Aω|H (H), then there exist

{ξi}i=1|∞, {ηi}∞i=1 ⊂ Hω such that
∑∞

i=1 ‖ξi‖2 <∞,
∑∞

i=1 ‖ξi‖2 <∞, and

v =

∞∑
i=1

〈ω|H(·)ξi|ηi〉.

Clearly

u =
∞∑
i=1

〈ω(·)ξi|ηi〉 ∈ Aω(G) = B(G),

satisfies u|H = v. �

Remark 2.4. The proof above can be clearly modified to show that for any
weakly continuous unitary representation π of G, we have

Aπ(G)|H = Aπ|H (G).

In particular, if λG is the left regular repreesntation of G, then Herz’s theo-
rem can be interpreted as

A(G)|H = AλG(G)|H = AλG|H (G) = A(H).

Proposition 2.3 leads naturally to the analogous question for multipliers.

Question 2.5. Let H ≤ G be closed. Is the restriction algebra McbA(G)|H
always closed in McbA(H)? Is MA(G)|H always closed in MA(H)?
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Before going on we wish to remark that in the case that H is an open
subgroup of G, then it is a relatively straight forward exercise to show that
the answer to the previous question is yes for both the multipliers and the
completely bounded mutipliers respectively. Indeed if u ∈ McbA(H), then
it is easy to show that

v(x) :=

{
u(x) if x ∈ H,
0 if x 6∈ H.

is in McbA(H). A similar statement can be made if u ∈MA(H). It follows
that if H is open, then in each case the restriction map is a surjection.

3. [SIN ]H Groups

Let G be a locally compact group and H ≤ G a closed subgroup. We say
that G ∈ [SIN ]H if there exists an open neighbourhood base {V }V ∈V of the
identity in e ∈ G which is invariant under inner automorphisms by H. In
this section, we show that for G ∈ [SIN ]H , we can provide partial answers
to the above questions for c.b. multipliers. In particular, we prove a version
of Herz’s restriction theorem for the algebra Acb(G). Our main tool is the
following construction due to Haagerup and Kraus [10].

Theorem 3.1. ([10, Lemma 1.16]) Let H be a closed subgroup of a locally
compact group G and suppose that the Haar modular functions satisfy the
relation ∆H = ∆G|H . Fix ξ ∈ Cc(G). Define a linear map Φξ : Cb(H) →
Cb(G) by the equation

Φξ(ϕ) = ξ ∗ (ϕdh) ∗ ξ̃, (ϕ ∈ Cb(H)),

where ξ̃(g) = ξ(g−1) . Then Φξ(McbA(H)) ⊆McbA(G), and

‖Φξ‖McbA(H)→McbA(G) ≤
∫
G/H

(∫
H
ξ(gh)dh

)2
d(gH),

where d(gH) is the left translation-invariant measure on G/H induced by
Haar measure dg in G, and normalized so that∫

G
f(g)dg =

∫
G/H

∫
H
f(gh)dhd(gH), (f ∈ Cc(G)).

Our next result, the main result of this section, is inspired by the work of
Cowling and Rodway [5] on extending elements of B(H) to B(G) when G
is a SIN-group and H ≤ G is closed.

Theorem 3.2. Let G ∈ [SIN ]H , and suppose ϕ ∈ McbA(H) has the prop-
erty that the map

H → McbA(H)

h 7→ Lhϕ

is continuous. Then ϕ ∈McbA(G)|H . Moreover, for any ε > 0, there exists
u ∈McbA(G) such that u|H = ϕ and ‖u‖McbA(G) ≤ (1 + ε)‖ϕ‖McbA(H).
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Remark 3.3. Observe that if H is discrete and G ∈ [SIN ]H , then every ϕ ∈
McbA(H) trivially satisfies the hypothesis of Theorem 3.2, so McbA(H) =
McbA(G)|H in this case. When H is not discrete or amenable, it is unknown
whether or not every element of McbA(H) satisfies the translation-continuity
condition of this theorem. Other examples of ϕ ∈McbA(H) which do satisfy
the hypothesis of Theorem 3.2 are given by coefficient functions of uniformly
bounded (not necessarily unitary) representations of H, and elements which

belong to the closure B(H)
‖·‖McbA(H) ⊆McbA(H).

Proof. (Of Theorem 3.2.) Fix ϕ ∈McbA(H) satisfying the above hypothesis.
As in the proof of the open mapping theorem (see for example [17, Theorem
5.9]), it suffices to prove that for any ε > 0 there exists u ∈McbA(G) with

‖u‖McbA(G) ≤ ‖ϕ‖McbA(H),

and

‖u|H − ϕ‖McbA(H) < ε.

Let V be an open neighbourhood of the identity e ∈ G such that

‖Lh−1ϕ− ϕ‖McbA(H) < ε, (h ∈ V −1V ∩H).

Let 0 ≤ ξ ∈ Cc(G) be a function which is H-central (i.e. ξ(hxh−1) = ξ(x)
for all h ∈ H, x ∈ G) and suppose suppξ ⊆ V . This is always possible, since
G ∈ [SIN ]H . Finally normalize ξ so that∫

G/H

(∫
H
ξ(gh)dh

)2
d(gH) = 1.

Let u ∈McbA(G) be defined by u = Φξ(ϕ), where Φξ is the map given in
Theorem 3.1. Then

‖u‖McbA(G) ≤ ‖ϕ‖McbA(H)

∫
G/H

(∫
H
ξ(gh)dh

)2
d(gH) = ‖ϕ‖McbA(H).

We now consider the restriction u|H ∈McbA(H). For k ∈ H we have

u(k) = (ξ ∗ (ϕdh) ∗ ξ̃)(k)

=

∫
G

∫
H
ξ(g)ϕ(h)ξ(k−1gh)dhdg

=

∫
G

∫
H
ξ(g)ϕ(h)ξ(ghk−1)dhdg (since ξ is H-central)

=

∫
G

∫
H
ξ(g)ϕ(hk)ξ(gh)dhdg (since H is unimodular)

=

∫
G

∫
H
ξ(g)ξ(gh)(Lh−1ϕ)(k)dhdg.
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On the other hand, note that∫
G

∫
H
ξ(g)ξ(gh)dhdg

=

∫
G/H

∫
H

∫
H
ξ(gh′)ξ(gh′h)dhdh′d(gH)

=

∫
G/H

∫
H

∫
H
ξ(gh′)ξ(gh)dhdh′d(gH)

=

∫
G/H

(∫
H
ξ(gh)dh

)2
d(gH) = 1.

Therefore, for all k ∈ H, we have

u(k)− ϕ(k) =

∫
G

∫
H
ξ(g)ξ(gh)[(Lh−1ϕ)(k)− ϕ(k)]dhdg.

Since the function

G×H 3 (g, h) 7→ v(g)v(gh),

is non-negative, continuous, and compactly supported, we can interpret the
difference u|H − ϕ as the vector valued integral

u|H − ϕ =

∫
G

∫
H
ξ(g)ξ(gh)[Lh−1ϕ− ϕ]dhdg ∈McbA(H).

Furthermore, we have the norm estimate

‖u|H − ϕ‖McbA(H) ≤
∫
G

∫
H
ξ(g)ξ(gh)‖Lh−1ϕ− ϕ‖McbA(H)dhdg

≤ sup
{(g,h)∈G×H: v(g)v(gh)6=0}

‖Lh−1ϕ− ϕ‖McbA(H)

≤ sup
{g∈V, h∈V −1V ∩H}

‖Lh−1ϕ− ϕ‖McbA(H)

< ε.

This completes the proof. �

As a consequence of Theorem 3.2, we get an analogue of Herz’s restriction
theorem for Acb(G) when G ∈ [SIN ]H .

Corollary 3.4. If G ∈ [SIN ]H , then the restriction map R : Acb(G) →
Acb(H) is a completely contractive surjection.

Proof. It is well known that the restriction map R : McbA(G) → McbA(H)
is a complete contraction (see [18, Corollary 6.3]). We therefore only need
to show that R : Acb(G)→ Acb(H) is surjective.

Let ϕ ∈ Acb(H) and ε > 0 be arbitrary. We want to show that ϕ ∈
R(Acb(G)). Using the same open mapping theorem argument that was used
at the start of the proof of Theorem 3.2, our problem reduces to finding
u ∈ Acb(G) such that ‖u‖Acb(G) ≤ ‖ϕ‖Acb(H), and ‖u|H − ϕ‖Acb(H) < ε.

Since ϕ ∈ Acb(H) ⊆ B(H)
‖·‖McbA(H)

, ϕ satisfies the hypothesis of Theorem



8 MICHAEL BRANNAN AND BRIAN FORREST

3.2 (see Remark 3.3). Let u = Φξ(ϕ) ∈ McbA(G) be the c.b. multiplier
constructed in the proof of Theorem 3.2. Then ‖u‖McbA(G) ≤ ‖ϕ‖Acb(H),
and ‖u|H − ϕ‖Acb(H) < ε. So to complete the proof, we need to show that
u ∈ Acb(G). This, however, is easy: using the density of A(H) ∩ Cc(H) in
Acb(H), we can find a sequence {ϕn}n∈N ⊂ A(H) ∩ Cc(H) such that

lim
n→∞

‖ϕ− ϕn‖McbA(H) = 0.

Since Φξ : McbA(H)→McbA(G) is a continuous map, which evidently maps
compactly supported functions to compactly supported functions, we have

u = Φξ(ϕ) = lim
n→∞

Φξ(ϕn) ∈McbA(G) ∩ Cc(G)︸ ︷︷ ︸
=A(G)∩Cc(G)

‖·‖McbA(G)
= Acb(G).

�

It turns out that when G ∈ [SIN ]H and H is a discrete subgroup, we can
improve on Theorem 3.2 and Corollary 3.4 a bit:

Theorem 3.5. Suppose that G ∈ [SIN ]H and that H is a discrete subgroup.
Then there exists an isometry Γ : McbA(H)→McbA(G) which maps Acb(H)
into Acb(G), and is a right inverse for the restriction map. That is, Γϕ|H =
ϕ for all ϕ ∈McbA(H).

An immediate consequence of this theorem is the following:

Corollary 3.6. Let H ≤ G be as in Theorem 3.5, and let A(G) (resp.
A(H)) be either the algebra McbA(G) or Acb(G) (resp. McbA(H) or Acb(H)).
Let IG(H) denote the ideal of functions ψ ∈ A(G), which vanish on H. Then
IG(H) is complemented in A(G). Furthermore, this is also true with H re-
placed by any set E ⊆ H for which IH(E), the ideal of those functions in
A(H) vanishing on E, is complemented in A(H).

Remark 3.7. We suspect that the above results may well be true with “com-
plete isometry” replacing isometry and “completely complemented” replac-
ing complemented. However, we are at this time unable to prove this asser-
tion.

It is also worth noting that the previous two results are new even if G is
amenable.

We will now prove Theorem 3.5.

Proof. Choose an open symmetric neighborhood V of the identity e ∈ G
with compact closure such that H ∩ V = H ∩ V 2 = {e}. This can always be
done because H is a discrete subgroup of G. Next, let 0 ≤ ξ ∈ Cc(G) be a
function which is H-central (i.e. ξ(hxh−1) = ξ(x) for all h ∈ H, x ∈ G) and
suppose suppξ ⊆ V . This is possible because G ∈ [SIN ]H .

Let u = ξ∗ ξ̃ ∈ A(G)∩Cc(G) and normalize ξ so that u(e) = ‖ξ‖2L2(G) = 1.

Note that supp(u) ⊆ V 2. Define

Γ : `∞(H)→ Cb(G)
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by the equation

(Γϕ)(x) =
∑
h∈H

ϕ(h)u(h−1x).

Then Γ maps finitely supported functions to compactly supported functions,
and Γϕ|H = ϕ for all ϕ ∈ `∞(H). To verify this last statement, note that for
any h, k ∈ H, u = ξ ∗ ξ̌ has been chosen so that u(h−1k) = δh,k. Therefore

(Γϕ)(k) =
∑
h∈H

ϕ(h)u(h−1k) = ϕ(k), (ϕ ∈ `∞(H), k ∈ H).

Next we observe that Γ = Φξ : McbA(H)→McbA(G).
For ϕ ∈McbA(H), and x ∈ G we have

Γϕ(x) =
∑
h∈H

ϕ(h)u(h−1x)

=

∫
G

∑
h∈H

ξ(g)ϕ(h)ξ(x−1hg)dg

=

∫
G

∑
h∈H

ξ(h−1g)ϕ(h)ξ(x−1g)dg

=

∫
G

∑
h∈H

ξ(gh−1)ϕ(h)ξ(x−1g)dg

=

∫
G

∑
h∈H

ξ(g)ϕ(h)ξ(x−1gh)dg

=

∫
G

∑
h∈H

ξ(g)ϕ(h)ξ̃(h−1g−1x)dg

=

∫
G
ξ(g)[(ϕdh) ∗ ξ̃](g−1x)dg

= [ξ ∗ (ϕdh) ∗ ξ̃](x) = [Φξ(ϕ)](x).

So Γ = Φξ : McbA(H)→McbA(G) and by Theorem 3.1,

‖Γ‖ = ‖Φξ‖

≤
∫
G/H

(∑
h∈H

ξ(gh)
)2
d(gH)

=

∫
G/H

∑
h,h′∈H

ξ(gh)ξ(gh′)d(gH)

=

∫
G/H

∑
h∈H

ξ(gh)2d(gH)

(since g 7→ ξ(gh) and g 7→ ξ(gh′) have disjoint supports for h 6= h′.)

=

∫
G
ξ(g)2dg = ‖ξ‖2L2(G) = 1.
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The fact that Γ is an isometry now follows from the contractivity of Γ
and the fact that restriction to H is a complete contraction from McbA(G)
to McbA(H). Indeed, for ϕ ∈McbA(H),

‖Γϕ‖McbA(G) ≤ ‖ϕ‖McbA(H) = ‖Γϕ|H‖McbA(H) ≤ ‖Γϕ‖McbA(G).

�

4. The group SL(2,R)

Let’s consider now the case where G is the connected Lie group SL(2,R),
and H ≤ G is a copy of the discrete subgroup F2. For example, we may take
H to be the discrete subgroup generated by the (algebraically free) pair of
matrices

g1 =

(
1 2
0 1

)
, g2 =

(
1 0
2 1

)
.

Our main tool will be the following result due to Losert:

Theorem 4.1. ([15, Theorem]) For G = SL(2,R), we have MA(G) =
McbA(G), and A(G) is dense in MA(G)∩C0(G) with respect to ‖ · ‖MA(G).
For any u ∈ MA(G), λ = limx→∞ u(x) exists, u − λ ∈ MA(G) ∩ C0(G),
and ‖u‖MA(G) = ‖u− λ‖MA(G) + λ.

In particular, this result says that AM (G) = Acb(G) = McbA(G)∩C0(G),
and

McbA(G) = C1G ⊕1 Acb(G).

Losert’s result gives immediately a negative answer to Question 2.2 for
AM (G) and Question 2.5 for MA(G) with this choice of G and H. To see
why this is the case, we first need the following proposition.

Proposition 4.2. For the free group on two generators F2, we have that

Acb(F2) ( AM (F2).

Proof. Since ‖v‖McbA(F2) ≥ ‖v‖MA(F2), if Acb(F2) = AM (F2), then it follows
immediately that the two norms are equivalent on A(F2). This is impossible
since, in [3, Theorem 6.3.3] the first author constructs a set E ⊂ F2 such
that the ideal

I(E) = {u ∈ A(F2) | u(g) = 0 for all g ∈ E} ⊂ A(F2)

has an approximate identity that is bounded in the the ‖ · ‖MA(F2) norm but
not in the ‖ · ‖McbA(F2) norm. �

Theorem 4.3. The restriction map from AM (G) to AM (H) is not surjec-
tive, and MA(G)|H is not closed in MA(H).

Proof. Consider the first statement concerning restriction from AM (G) to
AM (H). By Theorem 4.1, AM (G) = Acb(G) ⊂ McbA(G). Since restriction
from G to H induces a complete contraction from McbA(G) into McbA(H),
we also have AM (G)|H ⊆ Acb(H). On the other hand, for H = F2, we
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know that AM (H) ( Acb(H), so AM (G)|H ( AM (H). This proves the first
statement.

Consider now the restriction algebra MA(G)|H . Take any element ϕ ∈
AM (H)\McbA(H). Then, by Theorem 4.1, MA(G)|H ⊆McbA(H), so

ϕ /∈MA(G)|H .

On the other hand, we claim that

ϕ ∈MA(G)|H
‖·‖MA(H)

.

To see this, let {ϕn}n∈N ⊆ A(H) be a sequence such that limn→∞ ‖ϕn −
ϕ‖MA(H) → 0. Then, by Herz’s restriction theorem,

{ϕn}n∈N ⊆ A(G)|H ⊆MA(G)|H .

Therefore ϕ ∈MA(G)|H
‖·‖MA(H)

. �

On the level of c.b. multipliers, with the choice of G and H as above, the
situation is quite different than it is for [SIN ]H groups (c.f. Theorem 3.5).

Theorem 4.4. The restriction map from McbA(G) to McbA(H) is not sur-
jective.

Proof. Let g1, g2 be the free generators of H = F2. Then the set E =
{gn1 g2g

−n
1 }n∈N ⊂ H is algebraically free. It follows from the work of Leinert

[13] (or more recently [16, Theorem 0.1]), that

{ϕ ∈McbA(H) : suppϕ ⊆ E} = `∞(E),

completely isomorphically.
Now choose any ϕ ∈ `∞(E) such that limn→∞ ϕ(gn1 g2g

−n
1 ) does not exist.

(For example, take ϕ(gn1 g2g
−n
1 ) = (−1)n). We claim that there is no u ∈

McbA(G) such that u|H = ϕ. Indeed, if such a u existed, Theorem 4.1 would
imply that

lim
x→∞

u(x) = λ ∈ C.

But since

gn1 g2g
−n
1 →∞, (n→∞),

this would mean that

lim
n→∞

ϕ(gn1 g2g
−n
1 ) = lim

n→∞
u(gn1 g2g

−n
1 ) = λ,

which is a contradiction. �

Remark 4.5. At this point we do not know if McbA(SL(2,R))|F2 is closed in
McbA(F2), and hence whether or not Acb(F2) = Acb(SL(2,R))|F2?

We note that it may well be possible that equality does hold above. One
suggestive piece of evidence in this direction arises from the representation
theorem for c.b. multipliers. Let ξ ∈ L2(G) be any unit vector, and let
(ω,Hω) be the universal unitary representation of G. Examining the proof
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of Jolissaint [12], we see that for ϕ ∈ McbA(G), there exist bounded maps
V1, V2 : L2(G)→ Hω such that

‖ϕ‖McbA(G) = ‖V1‖‖V2‖,

and such that ϕ is represented by the “twisted coefficient” function

ϕ(y−1x) = 〈ω(x)V1λ(x−1)ξ|ω(y)V2λ(y−1)ξ〉, (x, y ∈ G).(4.1)

So any restriction, ψ ∈McbA(G)|H will be a “twisted coefficient” associated
to ω|H . This is somewhat reminiscent of the situation for B(G), though of
course we are lacking anything as complete as Arsac’s work on B(G) [1] in
our understanding of McbA(G) to help us complete the argument

References

[1] G. Arsac, Sur l’espaces de Banach engendré par les coefficients d’une représentation
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