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Abstract.

This note is an announcement of the paper [BC16]. We derive a
Laurent series expansion in d for the structure coefficients appearing
in the dual basis corresponding to the Kauffman diagram basis of the
Temperley-Lieb algebra TLk(d), converging for all complex loop pa-
rameters d with |d| > 2 cos

(
π
k+1

)
. The coefficients appearing in each

Laurent expansion are shown to have a natural combinatorial interpre-
tation and their sign is explicitly understood. As an application, we
solve a series of questions raised by Jones and improve substantially
our understanding of the Jones Wenzl projection.

§1. Temperley-Lieb algebras, Markov traces, dual bases and
a question of Jones

The Temperley-Lieb algebras form a very important class of finite-
dimensional algebras, arising in a remarkable variety of mathemati-
cal and physical contexts including lattice models [TL71], knot theory
[KL94], subfactors and planar algebras [JS97], quantum groups [Ban96,
CFS95, Wor87b], and topological quantum computation [Abr08, Zha09,
DRW16].

Definition 1. Given a complex number d ∈ C∗ and a natural
number k ∈ N, the kth Temperley-Lieb algebra TLk(d) (with loop pa-
rameter d) is the unital finite-dimensional complex associative algebra
given by the finite set of generators 1, u1, . . . , uk subject to the relations
uiuj = ujui when |i− j| ≥ 2, uiui+1ui = ui, and u2i = dui.

With k ∈ N and d ∈ C∗ fixed as above, we plot the set [2k] =
{1, . . . , 2k} on a square clockwise with {1, . . . , k} on the top edge and
{2k, . . . , k+1} on the bottom edge. If we connect these points by a non-
crossing pairing p ∈ NC2(2k) (where NC2(2k) is the set of non-crossing
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partitions on {1, . . . , 2k} endowed with its natural order [NiSp06]), this
results in a planar diagram Dp, called a Temperley-Lieb diagram (or
Kauffman diagram). The collection of all such diagrams spans a basis
for TLk(d), known as the Kauffman diagram basis. For example, when
k = 3 there are C3 = 5 Temperley-Lieb diagrams:

, , , , and .

In this description of the Temperley-Lieb algebra, the product DpDq

of diagrams Dp and Dq is obtained by first stacking diagram Dq on top
of Dp, connecting the bottom row of k points on Dq to the top row of
k points on Dp. The result is a new planar diagram, which may have a
certain number c of internal loops. By removing these loops, we obtain
a new diagram Dr for some r ∈ NC2(2k) (which is unique up to planar
isotopy). The product DpDq is then defined to be dcDr. For example,
we have

× = d

The Markov trace is the tracial linear functional Tr : TLk(d) 7→ C
that sends a diagram D ∈ TLk(d) to the tracial closure of D:

D

· · ·

· · ·

· · ·

Specifically, we connect the k points on the top of D to the k points
on the bottom of D as indicated in the above picture. The result is a
system of loops in the plane. The number of resulting loops is denoted
by #loops(D), and then we have

Tr(D) = d#loops(D).

We refer to [KL94] for more details. The Temperley-Lieb algebra comes
equipped with a natural transpose t which is a linear, antimultipica-
tive map, obtained by replacing a Temperley-Lieb diagram Dp with its
symmetric image Dt

p under an horizontal plane symmetry. Using the
Markov trace and the transpose t, we can define a symmetric bilinear
pairing 〈·, ·〉 : TLk(d)× TLk(d)→ C given by

〈D,D′〉 = Tr(DtD′) (D,D′ ∈ TLk(d)).
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This bilinear form turns out to be non-degenerate precisely when TLk(d)
is semisimple, and this is guaranteed to happen when d 6= 2 cos(πn ) for
n 6= 2, 3, 4, . . . , k + 1. See for example [Wen87, Lic91, BC10].

Given a finite-dimensional vector space E equipped with a non-
degenerate bilinear form 〈·, ·〉 and a linear basis B = {x1, . . . , xn} for
E, recall that the dual basis associated to B is the unique linear basis
B̂ = {x̂1, . . . , x̂n} of E with the property that

〈xi, x̂j〉 = δij . (1 ≤ i, j ≤ n).

For TLk(d) (with k ∈ N, d ∈ C\{2 cos(πn )}2≤n≤k+1), equipped with
its non-degenerate bilinear form induced by the Markov trace, we con-
sider the canonical Kauffman diagram basis B = {Dp}p∈NC2(2k) and

the corresponding dual basis B̂ = {D̂p}p∈NC2(2k). Within this non-
degenerate regime, a fundamental problem of interest is to compute
explicitly this dual basis. More precisely, Vaughan Jones asked us the
following

Question 1. Does each Temperley-Lieb diagram Dq appear with

non-zero coefficient in the expansion of each dual basis element D̂p?

In the sequel of this note, we describe a general result that answers
this question as a byproduct.

§2. Main result

On the set of non-crossing pair partitions NC2(2k), we introduce a
(non-symmetric) relation p→ p′ as follows.

Definition 2. Fix k ≥ 2. Given two non-crossing pairings p 6= p′ ∈
NC2(2k), we say that p′ is a non-crossing neighbor of p (denoted by
p→ p′), if there exists an interval block {t, t+ 1} ∈ p and another pair
block {x, y} ∈ p with the property that

(1) The partition

p′′ = {t, t+ 1, x, y} ∪
⋃

{r,s}∈p
{r,s}6={t,t+1},{x,y}

{r, s}

(obtained by merging the two blocks {t, t+ 1} and {x, y} into
one and keeping all other blocks of p the same) is non-crossing,
and

(2) p′ ≤ p′′ is the unique element of NC2(2k) such that p′ 6= p.
Here ≤ refers to the refinement order on the lattice of partitions
of [2k].
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In other words, given p ∈ NC2(2k), all non-crossing neighbors p→
p′ can be constructed via the following four-step algorithm:

(1) Select an interval {t, t+ 1} of p.
(2) Find another pair-block {x, y} of p with the property if we

merge the two blocks {t, t+ 1} and {x, y}, we produce a non-
crossing partition p′′ ∈ NC(2k).

(3) The partition p′′ ∈ NC(2k) admits precisely two refinements
contained in NC2(2k): We have the original pairing p ≤ p′′

that we started with, as well as one one other pairing p′ ≤ p′′.
(4) Find this other pairing p′ and declare p→ p′.

The above definition is understandably hard to digest, so let us
further illustrate it with an example.

Example 1. Consider the pairing p =
{
{1, 4}, {2, 3}, {5, 6}

}
∈ NC2(6),

which we depict using a typical non-crossing arch diagram:

(1) p =

If we select the interval {5, 6} ∈ p, our only choice is to merge {5, 6}
with the pair {1, 4} ∈ p to produce the non-crossing partition p′′ ={
{1, 4, 5, 6}, {2, 3}

}
. The unique p′ 6= p ∈ NC2(6) that is a refinement

of p′′ is p′ =
{
{1, 6}, {2, 3}, {4, 5}

}
. Pictorially, we have

(2)

p = = p′

If, on the other hand, we selected the interval {2, 3} ∈ p and follow
the same procedure as above, we arrive at the only other non-crossing
neighbor p→ p′:
(3)
p = = p′

Given the notion of non-crossing neighbors, we next define an infinite
directed graph G = (VG , EG) as follows. The vertex set is given by

VG =
⊔
k∈N0

NC2(2k)×NC2(2k),

where by convention we define NC2(0)×NC2(0) = {(∅, ∅)}. The set of
directed edges EG ⊂ VG × VG is given by the following two rules.

(1) If p, q, p′, q′ ∈ NC2(2k), then ((p, q), (p′, q′)) ∈ EG if and only
if
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(a) p→ p′ and q = q′, or
(b) q → q′ and p = p′

(2) If p, q ∈ NC2(2k) and p′, q′ ∈ NC2(2k−2), then ((p, q), (p′, q′)) ∈
EG if and only if there exists a common interval {t, t+1} ∈ p, q
and p′, q′ are the pairings obtained from p, q by removing this
common interval.

We call G the Weingarten graph. In our paper [BC16], we prove that
that every vertex in G is connected to (∅, ∅). Therefore, we can introduce
the following definition.

Definition 3. Given (p, q) ∈ NC2(2k)×NC2(2k) ⊂ VG , we denote
by L(p, q) ∈ N0 the length of the geodesic ( = shortest directed path)
from (p, q) to (∅, ∅). This is an integer.

Next, we describe a connected subgraph H of the Weingarten graph
G. It has the same vertex set VH = VG , but fewer edges. More specif-
ically, to each vertex (p, q) different from (∅, ∅), we chose one of the
non-crossing partitions involved (let’s say p for the sake of an example),
one block {t, t+ 1} of this non-crossing partition (p in our example) and
we just keep the directed edges starting from (p, q) that are obtained
with the help of this specific block {t, t+ 1}.

Definition 4. Fix a Weingarten subgraph H ⊂ G. For each vertex
(p, q) ∈ VH and each r ∈ N0, we denote by mr(p, q) the number of di-
rected paths from (p, q) to (∅, ∅) of length L(p, q)+2r that are contained
in H.

With the above definitions, we are now able to state our main the-
orem

Theorem 2.1. Let {Dp}p∈NC2(2k) ⊂ TLk(d) denote the Kauffman

basis, and denote by {D̂p}p∈NC2(2k) the corresponding dual basis with
respect to the bilinear form 〈·, ·〉 induced by the Markov trace. For each

p, write D̂p =
∑
q Wgd(p, q)Dq, with Wgd(p, q) ∈ C. Then the function

d 7→ Wgd(p, q) has the following absolutely convergent Laurent series
expansion

Wgd(p, q) = (−1)|p∨q|+k
∑
r≥0

mr(p, q)d
−L(p,q)−2r

(
|d| > 2 cos

( π

k + 1

))
,

(4)

where L(p, q) and (mr(p, q))r∈N0
are the integer quantities defined pre-

viously.

This theorem has the following important corollary:
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Theorem 2.2. For generic loop parameters d, every coefficient in
the diagram expansion of the dual basis (in particular, the Jones-Wenzl
projection – c.f. Section 4) of TLk(d) is non-zero. More precisely, we
have Wgd(p, q) 6= 0 when

d ∈ R\
[
− 2 cos

( π

k + 1

)
, 2 cos

( π

k + 1

)]
or |d|,∀d ∈ C, dlarge enough.

§3. Relation to quantum groups

Our proof of Theorem 2.1 relies on connecting the problem of com-
puting the values of the coefficients of each Temperley-Lieb diagram
appearing in the expansion of a dual basis element in TLk(d) to a seem-
ingly different problem of computing polynomial integrals over a class
of compact quantum groups, called free orthogonal quantum groups. Us-
ing a combinatorial tool called the Weingarten calculus, we are able to
interpret generic coefficients of dual basis elements in terms of certain
moments of coordinate functions over free orthogonal quantum groups
taken with respect to the Haar integral. This new operator algebraic
quantum group perspective has the advantage of revealing “hidden” al-
gebraic relations between the structure coefficients of the dual basis.

Very roughly, the problem of computing polynomial integrals over
this class of quantum groups is encoded in a family of functions indexed
by pairs of non-crossing pairings called Weingarten functions, which turn
out to be exactly the coefficients Wgd(p, q), when viewed as functions
of d ∈ C. With regards to the asymptotics of the Weingarten function,
estimates were given [BCS12, CS11] in an attempt to isolate the order
and the value of the leading term in the 1

d -expansion of Wgd(p, q). The
best among these prior works was Theorem 4.6 in [CS11], which iso-
lates the leading non-zero term in Wgd(p, q) for certain pairs of pairings
(p, q). On the other hand, it is clear that the Laurent series expansion
for Wgd(p, q) in Theorem A provides the first explicit description of the
leading term for all possible pairs (p, q). In fact, in some cases, the
leading order of Wgd(p, q) that one might anticipate based on an exam-
ination of Theorem 4.6 in [CS11] can differ from the true value given by
Theorem A. See [BC16, Example 3].

§4. Historical remarks and application to Jones-Wenzl pro-
jections

In this section we make some connections between our work and
prior works on the computation of special elements of TLk(d) called
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Jones-Wenzl projections. We begin with a definition/theorem describing
these objects. See [Wen87, KL94] for details.

Definition 5. Let k ∈ N and d ∈ C\{2 cos(πn )}2≤n≤k+1 be as above.
Then there exists a unique non-zero idempotent qk ∈ TLk(d), called the
Jones-Wenzl projection, with the property that

uiqk = qkui = 0 (i = 1, . . . , k − 1).(5)

The Jones-Wenzl projections are certain “highest weight” idempo-
tents qk ∈ TLk(d), and are key to the structure and applications of
Temperley-Lieb algebras in representation theory, operator algebras and
mathematical physics. Despite the importance of the Jones-Wenzl pro-
jections, remarkably very little is known about these idempotents be-
yond the fundamental Wenzl recursion formula [Wen87] and its various
generalizations and extensions. See for example [FK97, Mor15, Ocn02].

The problem of explicitly determining the expansion of qk in terms of
the Kauffman basis {Dp}p∈NC2(2k), as well as the problem of determin-
ing when the structure coefficients appearing in this expansion vanish
arose in many contexts: from subfactor theory and representation theory
[Ocn02], to topological quantum computation [DRW16, Problem 3.15].
Over the years, some progress on these problems has been made. Per-
haps the most notable is the announcement of a closed formula for the
coefficients of the Jones-Wenzl projection qk by Ocneanu [Ocn02] which
solves both problems in the affirmative, at least for real-valued loop pa-
rameters. This formula of Ocneanu was later verified in certain special
cases by Reznikoff [Rez02, Rez07]. Another complementary approach to
the computation of the coefficients of qk was developed independently
by Morrison [Mor15] and Frenkel-Khovanov [FK97].

The above problems concerning the Jones-Wenzl projection qk are
in fact just special cases of the more general problem of computing
structure coefficients of the dual diagram basis {D̂p}p∈NC2(2k) that we

address with Theorem 2.1. Indeed, one has the qk = D̂1

〈D̂1,D̂1〉
, where

1 ∈ NC2(2k) is the pairing corresponding to the unit of TLk(d). See
[BC16, Lemma 2.1] for details.

Specializing Theorem 2.1 to the case of the Jones-Wenzl projec-
tion qk, we see that it confirms the non-zero coefficients result of Oc-
neanu [Ocn02], and complements the previous works of Morrison [Mor15,
Proposition 5.1] and Frenkel-Khovanov [FK97]. With regards to the
more general problem of computing the coefficients of arbitrary dual ba-
sis elements in TLk(d), we note that essentially no prior progress seems
to have been made.
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[BC16] Michael Brannan and Benôıt Collins. Dual bases in Temperley-
Lieb algebras, quantum groups, and a question of Jones. Preprint,
arXiv:1608.03885, 2016.

[BK16] Michael Brannan and Kay Kirkpatrick. Quantum groups and generalized
circular elements. Pacific J. Math., 282(1):35–61, 2016.

[BS09] Teodor Banica and Roland Speicher. Liberation of orthogonal Lie groups.
Adv. Math., 222(4):1461–1501, 2009.

[Cai11] Xuanting Cai. A Gram determinant of Lickorish’s bilinear form. Math.
Proc. Cambridge Philos. Soc., 151(1):83–94, 2011.

[CFS95] J. Scott Carter, Daniel E. Flath, and Masahico Saito. The classical
and quantum 6j-symbols, volume 43 of Mathematical Notes. Princeton
University Press, Princeton, NJ, 1995.

[CS11] Stephen Curran and Roland Speicher. Asymptotic infinitesimal freeness
with amalgamation for Haar quantum unitary random matrices. Comm.
Math. Phys., 301(3):627–659, 2011.

[Cur10] Stephen Curran. Quantum rotatability. Trans. Amer. Math. Soc.,
362(9):4831–4851, 2010.

[DF98] P. Di Francesco. Meander determinants. Comm. Math. Phys.,
191(3):543–583, 1998.

[DRW16] Colleen Delaney, Eric C. Rowell, and Zhenghan Wang. Local unitary
representations of the braid group and their applications to quantum
computing. Preprint, arXiv:1604.06429, 2016.

[FK97] Igor B. Frenkel and Mikhail G. Khovanov. Canonical bases in tensor
products and graphical calculus for Uq(sl2). Duke Math. J., 87(3):409–
480, 1997.



Dual bases in TL algebras 9

[GdlHJ89] Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones.
Coxeter graphs and towers of algebras, volume 14 of Mathematical Sci-
ences Research Institute Publications. Springer-Verlag, New York, 1989.

[Jon83] V. F. R. Jones. Index for subfactors. Invent. Math., 72(1):1–25, 1983.
[JS97] V. Jones and V. S. Sunder. Introduction to subfactors, volume 234 of

London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, 1997.

[Kau87] Louis H. Kauffman. State models and the Jones polynomial. Topology,
26(3):395–407, 1987.
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