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Abstract. We survey some recent results from [BC18b], where a class of highly entan-
gled subspaces of bipartite quantum systems is described, which arises from unitary fiber
functors on the Temperley-Lieb category associated to the representation theory of free or-
thogonal quantum groups. By exploiting the rich structure of the Temperley-Lieb category
and this particular fiber functor, we are able to precisely determine the largest singular
values for these subspaces and obtain lower bounds for the minimum output entropy of the
corresponding quantum channels. Future research directions and some open problems are
also discussed.

1. Introduction

Entanglement is a fundamental notion in quantum mechanics that does not have an ana-
logue in the classical world. Within the framework of quantum computation and quantum
information, entanglement in bipartite or multipartite systems produces, on the one hand,
many counterintuitive phenomena, while on the other hand, can be used to design new com-
munications protocols which admit no classical analogues [Eis06, Gro96, CLSZ95, EJ96].

Throughout this paper we will focus on entanglement in bipartite quantum systems.
Within the formalism of quantum mechanics, a quantum mechanical system is described
by a complex Hilbert space H: the (pure) states of the system are described by unit norm
vectors ξ ∈ H, taken up to a complex phase factor. (In this paper, all Hilbert spaces are
taken to be finite-dimensional, unless otherwise specified.) Equivalenty, a pure state of the
system can be described by the rank one projector ρ = |ξ〉〈ξ| onto the subspace Cξ ⊂ H.
The (closed) convex hull of pure states is denoted by D(H), and elements ρ ∈ D(H) are
called mixed states. D(H) is a convex compact set (with respect to the weak ∗-topology in-
duced by the trace duality B(H) = S1(H)∗, where S1(H) = spanCD(H)), and the extremal
points of D(H) are the rank one projectors, i.e., pure states. In the quantum context, a
bipartite system AB, built from subsystems A,B, is modeled by the tensor product Hilbert
space H = HA⊗HB, where the Hilbert spaces HA and HB describe the states of systems A
and B, respectively.

Given a bipartite system modeled by the Hilbert space tensor product H = HA ⊗ HB,
a mixed state ρ ∈ D(H) is said to separable if it belongs to the convex hull of the set of
product states ρ = ρA ⊗ ρB, where ρA ∈ D(HA) and ρB ∈ D(HB). A state ρ is called
entangled if it is not separable. We shall call a Hilbert subspace H0 ⊂ HA⊗HB an entangled
subspace if all of its associated pure states are entangled. In this paper, we are concerned
with studying non-trivial examples of highly-entangled subspaces H0 ⊂ H = HA ⊗HB. By
highly-entangled, we shall mean that set of pure states on H associated to the subspace H0

are uniformly “far away” from the set of product states ρA ⊗ ρB ∈ D(H) with respect to
some suitable measure of distance. The choice of distance here is not unique, and our choice
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is based on the largest singular value of pure states - precise details will be given in the next
section.

A trivial example of a highly-entangled subspace is the one-dimensional subspace H0 =
Cξ ⊂ HA ⊗HB spanned by a maximally entangled (Bell) state ξ. I.e., a state ξ of the form

ξ = d−1/2
∑d

i=1 ei ⊗ fi, where d = min{dimHA, dimHB} and (ei)i ⊂ HA, (fi)i ⊂ HB are
orthonormal systems. Naturally, the larger the dimension of subspace H0 ⊆ H, the less
likely it will be highly entangled, as per the above notion of entanglement. In recent years
it has become a very important problem in Quantum Information Theory (QIT) to do the
following: Find subspaces H0 of large relative dimension in a tensor product H = HA ⊗HB

such that all states are highly entangled.
One rich source of highly entangled subspaces comes from random techniques. The idea

of studying random subspaces of tensor products dates back to the work of Hayden, Leung,
Shor, Winter, Hastings [HLSW04, HW08, HLW06, Has09], among others, and it was ex-
plored in great detail by Aubrun, Belinschi, Collins, Fukuda, King, Nechita, Szarek, Werner
[ASW11, ASY14, BCN12, FK10], and others. The general outcome of these works was the
conclusion that (at least in certain asymptotic dimension regimes) highly entangled subspaces
of large relative dimension are ubiquitous: with high probability, a randomly selected sub-
space will be highly entangled. These random constructions have had a profound impact on
the field, solving several open problems, most notably the minimum output entropy additiv-
ity problem [Has09, ASW11, BCN16]. The downside to these these highly random techniques
is that they provide no information on finding concrete examples that are predicted to exist
by these methods. In fact, there seems to be embarrassingly few known examples of such
subspaces (beyond the well-known antisymmetric subspace H∧H ⊂ H⊗H [GHP10].) Thus,
there is a need for a systematic development of non-random examples of highly entangled
subspaces.

One natural place to search of examples of highly entangled subspaces is within the frame-
work of representation thoery. More precisely, given a (compact) group G, one can consider a
pair of (irreducible) unitary representations Hπ, Hσ, form their tensor product representation
Hπ⊗Hσ, and then attempt to quantify the entanglement of the irreducible subrepresentations
Hν ⊂ Hπ ⊗Hσ that arise in the decomposition of Hπ ⊗Hσ into irreducibles.

A first attempt was made in this direction by M. Al Nuwairan [AN13, AN14], by study-
ing the entanglement of subrepresentations of tensor products of irreducible representations
of the group SU(2). Here, Al Nuwairan showed that entanglement always achieved (ex-
cept when one takes the highest weight subrepresentation of a tensor product of SU(2)-
irreducibles). However, as is evidenced by the results in [AN13, Section 3], a high degree of
entanglement is unfortunately not achieved when working with SU(2).

In order to use representation theory to obtain examples of entangled subspaces exhibiting
a higher level of entanglement, there are two natural approaches: The first approach would
be to consider more complicated examples of compact groups and their representations. The
significant downside of this approach is that for most examples of groups G, one lacks the
complete understanding of the representation category Rep(G) that one has for SU(2). The
second approach, which we follow in this paper, is to instead consider “q-deformations” of
the representation category Rep(SU(2)) arising from certain quantum group constructions.

Perhaps the most well-known examples of such deformations are the canonical realizations
of (i.e., unitary fiber functors on) the Temperley-Lieb Categories TL(d) that are associated
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to the Drinfeld-Jimbo-Woronowcz q-deformations of SU(2), where q + q−1 = d ∈ C\{0}
[Dri87, Jim85, Wor88, Wor87]. In this paper, we consider a very different realization of the
Temperley-Lieb categories TL(d) which act on higher dimensional spaces, and come from
another class of quantum groups (more closely linked with operator algebra theory and free
probability theory), called free orthogonal quantum groups.

Given an integer N ≥ 2, the free orthogonal quatum group O+
N is the compact quantum

group whose Hopf ∗-algebra of polynomial functions O(O+
N) is given as a certain natural

non-commutative (or free) version of the algebra of polynomial functions on the classical
N × N orthogonal matrix group ON . A remarkable observation of Banica [Ban96] showed
that the representation category Rep(O+

N) gives a faithful realization (unitary fiber functor)
of the Temperley-Lieb Category TL(N) with generating object given by the N -dimensional
fundamental representation space CN (in contrast to C2 given by the usual q-deformation
of SU(2) (or sl2)). It is the entanglement phenomena associated to this higher dimensional
fiber functor on the Temperley-Lieb category that we study here.

Our motivation to study entaglement in the context of Rep(O+
N) ∼= TL(N) comes from

the pioneering work of Vergnioux [Ver07] on the seemingly unrelated property of rapid decay
(propety RD) for quantum groups. The property of rapid decay is a geometric-analytic
property posessed by certain (quantum) groups and corresponds the existence of poynomial
bounds relating non-commutative L∞-norms of polynomial functions on quantum groups to
their (much easier to calculate) L2-norms. The operator algebraic notion of property RD
has its origins in the groundbreaking work of Haagerup [Haa79] on approximation properties
of free group C∗-algebras. Unlike in the case of ordinary groups, where property RD is
connected to the combinatorial geometry of a discrete group G, in the quantum world,
property RD was observed by Vergnioux to be intrinsically connected to the geometry of
the relative position of a subrepresentation of a tensor product of irreducible representations
of a given quantum group. More precisely, Vergnioux [Ver07, Section 4] points out that
property RD for a given quantum group G is related to the following geometric requirement:
Given any pair of irreducible representations HA, HB of G, all multiplicity-free irreducible
subrepresentations H0 ⊂ HA⊗HB must be asymptotically far from the cone of decomposable
tensors in HA ⊗HB.

The work [BC18b] that we survey here is largely an in-depth exploration of this passing
remark of Vergnioux [Ver07], and our goal is to show how a rather modest understanding of
the structure of the Temperley-Lieb category can be extremely fruitful when analyzing the
entanglement problem for Rep(O+

N). In this context, we show that one can describe very
precisely the largest singular values of states that appear in irreducible subrepresentations
of tensor product representations (see Theorem 3.3). As a result we produce a new non-
random class of subspaces of tensor products with the property of being highly entangled and
of large relative dimension. We also deduce from our entanglement results some interesting
properties for the class of quantum channels associated to these subspaces. We compute
explicitly the S1 → S∞ norms of these channels, and obtain large lower bounds on their
minimum output entropies (see Section 4). We also show in Section 5 how one can use “planar
algebraic” arguments to study further properties of our quantum channels, including their
entanglement breaking property, and constructing positive maps on matrix algebras which
are not completely positive.
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It is our hope that this survey will inspire others to view quantum groups/symmetries
and their associated tensor categories as a new, rich source of entangled subspaces with
interesting geometric properties.

The remainder of this work is organized as follows: We recall in the first part of Section
2 some concepts related to entangled subspaces, quantum channels, and minimum output
entropy of quantum channels. The second half of Section 2 introduces the free orthogonal
quantum groups, describes some aspects of their representations theory, and explains the
connection with the Temperley-Lieb category. Section 3 is the main section where we study
the entanglement of irreducible subrepresentations of tensor products of O+

N -representations.
There we present the property RD-entanglement inequality (Proposition 3.1), establishing
high entanglement for the subspaces under consideration (Theorem 3.2). We then go on to
generalize this rapid decay inequality to a higher rank version (Theorem 3.3) and discuss
its optimality. We apply this strengthened rapid decay property in Section 4 to study the
quantum channels that are naturally associated to our entangled subspaces. Here we obtain
lower bounds for the MOE’s of these channels (Corollary 4.2) and discuss their sharpness.
In Section 5, we use planar algebra arguments to describe the Choi maps for our quantum
channels, and use these observations in subsections 5.1 and 5.2 to construct new deterministic
examples of d-positive maps between matrix algebras, and study the entanglement breaking
property of our channels. Finally, in Section 6 we outline some problems and future work
related to our results.
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2. Preliminaries

2.1. Entangled subspaces of a tensor product. Consider a pair of finite-dimensional
complex Hilbert spaces HA and HB. We call the fundamental fact that unit vector ξ be-
longing to the tensor product Hilbert space HA⊗HB admits a singular value decomposition:
There are unique constants λ1 ≥ λ2 ≥ . . . λd ≥ 0 (with d = min{dimHA, dimHB}) and
orthonormal systems (ei)

d
i=1 ⊂ HA and (fi)

d
i=1 ⊂ HB such that

ξ =
d∑
i=1

√
λiei ⊗ fi.

The sequence of numbers (λi)i is uniquely determined (as a multi-set) by ξ and these numbers

are called the singular values (or Schmidt coefficients) of ξ. Note that ‖ξ‖2 =
∑d

i=1 λi.
We shall call a non-zero vector ξ ∈ HA⊗HB separable if there exist vectors η ∈ HA, ζ ∈ HB

such that ξ = η ⊗ ζ. If ξ is not separable, it is called entangled. Note that a unit vector
ξ ∈ HA ⊗ HB is separable if and only if its corresponding sequence of Schmidt coefficients
is (1, 0, 0, . . . , 0). We shall similarly call a linear subspace H0 ⊆ HA ⊗ HB separable (resp.
entangled) if H0 contains (resp. does not contain) separable vectors. We note that the
maximally entangled unit vector in HA ⊗ HB is the so-called Bell vector (Bell state) ξB,

4



whose singular value decomposition is given by

ξB =
1√
d

d∑
i=1

ei ⊗ fi (d ≥ 2).

Note that the Schmidt coefficients of the Bell vector are given by
(

1√
d
, 1√

d
, . . . , 1√

d
, 0, 0, . . .

)
.

In particular, the largest Schmidt coefficient λ1 associated to a unit vector ξ ∈ HA ⊗HB is
maximized at 1 precisely when it is separable, and it is minimized at d−1/2 when ξ = ξB is
a Bell state. In this sense, the singular value decomposition is a useful tool for measuring
measure how entangled a unit vector ξ ∈ HA⊗HB is: If λ1 << 1, then ξ is highly entangled.
With this in mind, we call a linear subspace H0 ⊆ HA⊗HB highly entangled if the supremum
of all maximal Schmidt coefficients associated to all unit vectors in H0 is bounded away from
one. That is,

sup
ξ∈H0, ‖ξ‖=1

λ1 << 1.

Equivalently, H0 ⊆ HA ⊗HB is highly entangled if and only if

sup
‖ξ‖H0

=‖η‖HA
=‖ζ‖HB

=1

|〈ξ|η ⊗ ζ〉| << 1.(1)

2.2. Quantum channels. Given a finite dimensional Hilbert space H, denote by B(H) the
∗-algebra of linear operators on H, and denote by D(H) ⊆ B(H) the collection of states on
H: positive semidefinite operators 0 ≤ ρ ∈ B(H) satisfying Tr(ρ) = 1, where Tr denotes
the canonical trace on B(H). A state ρ ∈ D(H) is called a pure state if there exists a
unit vector ξ ∈ H so that ρ is given by the rank-one projector ρξ = |ξ〉〈ξ|. We denote
by S1(H) the Banach algebra B(H), equipped with the trace norm ‖ρ‖S1(H) = Tr(|ρ|).
At times, we will also write S1(H) for the space B(H) equipped with the operator norm

x 7→ ‖x‖∞ = sup06=ξ∈H
‖xξ‖
‖ξ‖ .

Given two (finite-dimensional) Hilbert spaces HA and HB, a quantum channel is a linear,
completely positive and trace-preserving map (CPTP map) Φ : B(HA)→ B(HB) [NC00]. By
definition, we have Φ(D(HA)) ⊆ D(HB) for any quantum channel Φ. A natural model for the
construction of quantum channels comes from subspaces of Hilbert space tensor products.
Given a triple of finite dimensional Hilbert spaces (HA, HB, HC) and an isometric linear map

αB,CA : HA → HB ⊗HC , we can form a complementary pair of quantum channels

ΦB,C
A : B(HA)→ B(HC); ΦB,C

A (ρ) = (TrHB
⊗ ι)(αB,CA ρ(αB,CA )∗)

ΦB,C
A : B(HA)→ B(HB); ΦB,C

A (ρ) = (ι⊗ TrHC
)(αB,CA ρ(αB,CA )∗).

Remarkably, every quantum channel can be expressed in the above form, thanks to the well
known Stinespring Dilation Theorem for completely positive maps. In other words, given any
quantum channel Φ : B(HA)→ B(HB), the Stinespring Theorem guarantees the existence of

an essentially unique Stinespring pair (HC , α
B,C
A ), where HC is an auxiliary “environment”

Hilbert space and αB,CA : HA → HB⊗HC is a linear isometry, so that Φ = ΦB,C
A in the above

notation. See [HW08], for example.
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The minimum output entropy (MOE) of a quantum channel Φ : B(HA)→ B(HB) is given
by

Hmin(Φ) := min
ρ∈D(HA)

H(Φ(ρ)),

where H(·) denotes the von Neumann entropy of a state: H(ρ) = −Tr(ρ log ρ). Note that
by functional calculus, we have H(ρ) = −

∑
i λi log λi, where (λi)i ⊂ [0,∞) denotes the

spectrum of ρ. In other words, H(ρ) is nothing but the Shannon entropy of the probability
vector (λi)i corresponding to the eigenvalues of ρ. Note that here we use the usual convention
that 0 log 0 = 0. Since the von Neumann entropy functional H(·) is well-known to be convex,
it follows that the MOE Hmin(Φ) is minimized on the extreme points of the compact convex
set D(HA), which corresponds to the set of all pure states on H. In particular,

Hmin(Φ) = min
ξ∈HA, ‖ξ‖=1

H(Φ(|ξ〉〈ξ|)).

Using this fact together with the Stinespring Theorem, it follows that Hmin(Φ) depends

only on the relative position of the subspace αB,CA (HA) inside HB ⊗ HC coming from the

Stinespring representation Φ = ΦB,C
A = (ι⊗ TrHC

)(αB,CA (·)(αB,CA )∗). Indeed, in this case, we
have

Hmin(Φ) = min
ξ∈HA, ‖ξ‖=1

H(Φ(|ξ〉〈ξ|)) = min
ξ∈HA, ‖ξ‖=1

H((ι⊗ TrC)(|αB,CA (ξ)〉〈αB,CA (ξ)|))

= min
ξ∈HA, ‖ξ‖=1

−
∑
i

λi log λi,

where (λi)i are the Schmidt coefficients of αB,CA (ξ) =
∑

i

√
λiei⊗fi ∈ HB⊗HC . In particular,

Hmin(Φ) is zero if and only if αB,CA (HA) ⊆ HB ⊗HC is a separable subspace.

2.3. Free orthogonal quantum groups, their representations, and the Temperley-
Lieb Category. In this section we give a very light overview of the free orthogonal quantum
groups and some aspects of their finite dimensional representation theory. Much of what we
state below about quantum groups and their representations can be phrased in more general
terms, however this will not be needed for our purpose. The interested reader may refer to
[Tim08, Wor98].

The main idea behind the concept of a free orthogonal quantum group is to formulate a
non-commutative version of the commutative ∗-algebra of complex-valued polynomial func-
tions on the real orthogonal group ON . It turns out that if one formulates such a non-
commutative ∗-algebra in the right way, many of the nice group-theoretic structures associ-
ated to the fact that ON is a compact group persist (e.g., a unique “Haar measure”, a rich
finite-dimensional unitary representation theory, a Peter-Weyl theorem, and so on).

Definition (Free Orthogonal Quantum Groups). Let N ≥ 2, let A be a unital ∗-algebra over
C, and let u = [uij]1≤i,j≤N ∈MN(A) be a matrix with entries in A. Write u∗ = [u∗ji] ∈MN(A)
and ū = [u∗ij] ∈MN(A).

(1) The matrix u is called a quantum orthogonal matrix if u is invertible in MN(A),
u∗ = u−1, and ū = u

(2) The free orthogonal quantum group (of rankN) is given by the tripleO+
N := (O(O+

N), u,∆),
where
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(a) O(O+
N) is the universal unital ∗-algebra (over C) generated by the coefficients

(uij)1≤i,j≤N of a quantum orthogonal matrix u = [uij] ∈MN(O(O+
N)).

(b) ∆ : O(O+
N) → O(O+

N) ⊗ O(O+
N) is the unique unital ∗-algebra homomorphism,

called the co-product, given by

∆(uij) =
N∑
k=1

uik ⊗ ukj (1 ≤ i, j ≤ N).

Remark 1. If we quotient O(O+
N) by its commutator ideal, we obtain the abelianization of

O(O+
N), which is isomorphic to O(ON), the ∗-algebra of polynomial functions on the real

orthogonal group ON . The map O(O+
N) → O(ON) is given by uij 7→ vij, where v = [vij] ∈

MN(O(ON)) forms the matrix of basic coordinate functions on ON (a.k.a. the fundamental
representation of ON). In this context, the co-product map ∆ on O(O+

N) factors through the
quotient and induces a corresponding co-product map ∆ on O(ON) given by ∆(f)(s, t) =
f(st) for all f ∈ O(ON) and s, t ∈ ON . In this sense, we are justified in calling the quantum
group O+

N a “free analogue” of the classical orthogonal group ON .

Remark 2. For those readers who are familiar with the notion of a Hopf ∗-algebra, we note
that O(O+

N) is a natural example of one. Indeed the co-inverse S : O(O+
N) → O(O+

N)op is
the algebra morphism given by S(uij) = uji and the co-unit ε : O(O+

N) → C is the algebra
morphism given by ε(uij) = C. One can then readily check that the usual Hopf-algebra
identities (ε⊗ ι)∆ = ι, m(S ⊗ ι)∆ = m(ι⊗ S)∆ = ε(·)1 are satisfied.

We now turn to the concept of a representation of O+
N . A (finite-dimensional unitary)

representation of O+
N is given by a finite dimensional Hilbert space Hv and unitary matrix

v ∈ O(O+
N)⊗ B(Hv) satisfying

(∆⊗ ι)v = v13v23 ∈ O(O+
N)⊗O(O+

N)⊗ B(Hv),

where above we use the standard leg numbering notation for linear maps on tensor products.
If we fix an orthonormal basis (ei)

d
i=1 ⊂ Hv, then we can write v as the matrix [vij] ∈

Md(O(O+
N)) with respect to this basis, and the above formula translates to

∆vij =
d∑

k=1

vik ⊗ vkj (1 ≤ i, j ≤ d).

Observe that the above definition corresponds precisely to our usual notion of a unitary
representation if we were to assume that our Hopf ∗-algebra was commutative.

The first examples of representations of O+
N that come to mind are the one-dimensional

trivial representation (which corresponds to the unit 1 ∈ O(O+
N) = M1(O(O+

N))) and the
N -dimensional fundamental representation u = [uij] ∈ MN(O(O+

N)) (corresponding to the
matrix of generators for O(O+

N)). Given two representations v = [vij] and w = [wkl], we can
naturally form their direct sum v⊕w ∈ O(O+

N)⊗B(Hv⊕Hw) and their tensor product v⊗w =
v12w13 = [vijwkl] ∈ O(O+

N) ⊗ B(Hv ⊗ Hw) to obtain new examples of representations from
known ones. From a unitary representation v = [vij], we may also form the contragredient
representation v̄ := [v∗ij] ∈ O(O+

N)⊗ B(Hv).

In order to study the structure of various representations of O+
N , we use the concept of

intertwiner spaces. Given two representations u and v of O+
N , define the space of intertwiners
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between u and v as

Hom(u, v) = {T ∈ B(Hu, Hv) : (ι⊗ T )u = v(ι⊗ T ).}

Two representations u, v are called equivalent (written u ∼= v) if Hom(u, v) contains an in-
vertible operator, and a representation u is called irreducible if Hom(u, u) = C1. It is a
consequence of a general fact about compact quantum groups that every unitary represen-
tation of O+

N is equivalent to a direct sum of irreducible unitary representations [Wor87].
It is known from [Ban96] that the irreducible corepresentations of O+

N can be labelled
(vk)k∈N0 (up to unitary equivalence) in such a way that v0 = 1, v1 = u (u being the

fundamental representation), vl ∼= vl, and the following fusion rules hold:

vl ⊗ vm ∼= v|l−m| ⊕ v|l−m|+2 ⊕ . . .⊕ vl+m =
⊕

0≤r≤min{l,m}

vl+m−2r.(2)

Denote by Hk the Hilbert space associated to vk. Then H0 = C, H1 = CN , and (2) shows that
the dimensions dimHk satisfy the recursion relations dimH1 dimHk = dimHk+1 +dimHk−1.
Defining the quantum parameter

q = q(N) :=
1

N

( 2

1 +
√

1− 4/N2

)
∈ (0, 1],

one can inductively show that the dimensions dimHk are given by the quantum integers

dimHk = [k + 1]q := q−k
(1− q2k+2

1− q2

)
(N ≥ 3).

When N = 2, we have q = 1, and then dimHk = k + 1 = limq→1− [k + 1]q. Note that for
N ≥ 3, we have the exponential growth asymptotic [k + 1]q ∼ Nk (as N → ∞). For our
purposes, this exponential growth is crucial and therefore we generally assume N ≥ 3 in the
sequel.

The striking resemblence of fusion rules for the irreducible representations of O+
N to those

of SU(2) in no coincidence. This turns out to be a consequence of the fact (observed
by Banica) that both representation categories are described by Temperley-Lieb categories
[TL71]. Let d ∈ C\{0}. Recall that the Temperley-Lieb Category TL(d) is the strict tensor
category with duals whose (self-dual) irreducible objects are labelled by N0 = {0, 1, 2, . . .}
and whose morphism spaces TLk,l(d) := Hom(1⊗k, 1⊗l) are generated by the identity map
ι ∈ Hom(1, 1) and a unique morphism ∪ ∈ Hom(0, 1⊗ 1) satisfying ∩◦∪ = d ∈ Hom(0, 0) =
C. Here ∩ := ∪∗ ∈ Hom(1⊗1, 0). The Temperley-Lieb category admits a nice diagrammatic
presentation [KL94] in terms of the so-called Kauffman (or Temperley-Lieb) diagrams. Let
k, l ∈ N and d ∈ C\{0} be as above. If k + l is odd, we have TLk,l(d) = 0. Otherwise
we plot the set [k + l] = {1, . . . , k + l} on a rectangle clockwise with {1, . . . , k} on the top
edge and {k + l, . . . , k + 1} on the bottom edge. We connect these points by a non-crossing
pairing p ∈ NC2(k+ l). The collection of all such Kauffman diagrams (Dp)p∈NC2(k+l) spans a
basis for TLk,l(d). For example, when k = l = 3 there are |NC2(6)| = 5 Kauffman diagrams
spanning TLk,k(d):

, , , , and .
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In this description of the Temperley-Lieb algebra, the product DpDq of diagrams Dp and
Dq is obtained by first stacking diagram Dp on top of Dq, connecting the bottom row of k
points on Dp to the top row of k points on Dq. The result is a new planar diagram, which
may have a certain number, c, of internal loops. By removing these loops, we obtain a new
diagram Dr for some r ∈ NC2(2k) (which is unique up to planar isotopy). The product
DpDq is then defined to be dcDr. For example, we have

× = d

We leave it to the reader to verify how each of the above diagrams is obtained from sequences
of the the basic operations of tensoring and composing the basic maps ∪,∩, and ι.

Returning to the connection with Rep(O+
N) - observe that we can produce a natural tensor

category morphism (fiber functor) TL(N) → Rep(O+
N) given by ι ∈ TL1,1(N) 7→ idCN ∈

Hom(u, u) and ∪ ∈ TL0,2(N) 7→
∑N

i=1 ei⊗ei ∈ Hom(1, u⊗u), where (ei)
N
i=1 is an orthonormal

basis for CN . The key point here is that the universal properties of O+
N gaurantee that this

morphism is injective and surjective. More precisely, we have the following theorem of
Banica.

Theorem 2.1 (Banica [Ban96]). The above morphism gives a faithful unitary fiber functor
TL(N) ∼= Rep(O+

N).

With the connection between TL(N) and Rep(O+
N), an explicit construction of the irre-

ducible representation spaces (Hk)k∈N0 of O+
N can now proceed as follows [Ban96, VV07,

BDRV06]. Denote by (ei)
N
i=1 a fixed orthonormal basis for H1 := CN , and as above, put

∪ =
∑N

i=1 ei ⊗ ei ∈ Hom(1, u ⊗ u). (I.e., u⊗2(1 ⊗ ∪) = (1 ⊗ ∪).) Next, we consider the
intertwiner space Hom(u⊗k, u⊗k) ⊆ B((CN)⊗k), which can be shown (using its identification
with TLk,k(N)) to contain a unique non-zero self-adjoint projection pk (the Jones-Wenzl
projection) [Wen87] with the defining property that

(ιH⊗i−1
1
⊗ ∪ ∪∗ ⊗ιH⊗k−i−1

1
)pk = 0 (1 ≤ i ≤ k − 1).

The projections pk are known to satisfy the Wenzl recursion

p1 = ιH1 , pk = ιH1 ⊗ pk−1 −
[k − 1]q

[k]q
(ιH1 ⊗ pk−1)(∪ ∪∗ ⊗ιH⊗k−2

1
)(ιH1 ⊗ pk−1) (k ≥ 2),

which can be used to determine pk. In passing, we point out that the problem of obtaining
explicit formulas for Jones-Wenzl projections (beyond the above recursion) has attracted a
lot of attention over the years from various mathematical communities. See [BC18a, Mor15,
FK97] and the references therein.

We conclude this section with a description of the non-empty intertwiner spaces Hom(vk, vl⊗
vm) that arise from the fusion rules (2). To begin, let us call a triple (k, l,m) ∈ N3

0 admis-
sible if there exists an integer 0 ≤ r ≤ min{l,m} such that k = l + m − 2r. In other
words, (k, l,m) ∈ N3

0 is admissible if and only if the tensor product representation vl ⊗ vm
contains a (multiplicity-free) subrepresentation equivalent to vk. It is easy to see that the
set of admissible triples is invariant under coordinate permutations: (k1, k2, k3) is admissible
iff (kσ(1), kσ(2), kσ(3)) is admissible for all σ ∈ S3. Fix an admissible triple (k, l,m) ∈ N3

0.

Then Hom(vk, vl ⊗ vm) ⊆ B(Hk, Hl ⊗Hm) ⊆ B(H⊗k1 , H⊗l1 ⊗H⊗m1 ) is one-dimensional and is
9



spanned by the following canonical non-zero intertwiner

Al,mk = (pl ⊗ pm)
(
ιHl−r

⊗ ∪r ⊗ ιm−r
)
pk,(3)

where ∪r ∈ Hom(1, u⊗2r) is defined recursively from ∪1 := ∪
∑N

i=1 ei⊗ei via ∪r = (ιH1⊗∪1⊗
ιH1)∩r−1. In terms of the planar diagrammatics, ∪r is simply r nested cups, viewed as an ele-

ment of TL0,2r(N). The maps Al,mk are well studied in the Temperley-Lieb recoupling theory
[KL94], and are known there as three-vertices. A three-vertex is typically diagrammatically
represented as follows:

Al,mk =

l m

k

Here, the solid dots at the vertices are meant to depict the Jones-Wenzl projectors at the
inputs/outputs. In the following we will simply omit these solid dots in our pictures, simple
draw the three-vertex as

Al,mk =

l m

k

.

In order to find the unique O+
N -equivariant isometry αl,mk : Hk → Hl ⊗Hm (up to multi-

plication by T), we simply have to renormalize Al,mk , which amounts to computing the norm

of Al,mk . To do this, we define (following the terminology and diagrammatics from [KL94])
the θ-net

θq(k, l,m) = TrHk
((Al,mk )∗Al,mk ) = l m

k

k

.

Note that the trace on B(Hk) corresponds to the usual Markov trace on TL(N) [KL94,
Ban96].

Now, since Al,mk is a multiple of an isometry, it easily follows that ‖Al,mk ‖2[k + 1]q =
θq(k, l,m). θ-net evaluations are well known [KL94, Ver05, VV07], and are given by

θq(k, l,m) :=
[r]q![l − r]q![m− r]q![k + r + 1]q!

[l]q![m]q![k]q!
,(4)

10



where k = l + m − 2r and [x]q! = [x]q[x − 1]q . . . [2]q[1]q denotes the quantum factorial. We

thus arrive at the following formula for our isometry αl,mk :

αl,mk = ‖Al,mk ‖
−1Al,mk =

( [k + 1]q
θq(k, l,m)

)1/2

Al,mk .(5)

Pictorially, we have

αl,mk =
(

[k+1]q
θq(k,l,m)

)1/2

l m

k

3. Entanglement analysis

In this section we begin our study of the entanglement geometry of irreducible subrep-
resentations of tensor products of irreducible representations of O+

N . The general setup we
will consider is a fixed N ≥ 3 and an admissible triple (k, l,m) ∈ N3

0. This corresponds
to irreducible representations (vk, vl, vm) of O+

N with corresponding representation Hilbert

spaces (Hk, Hl, Hm), and a O+
N -equivariant isometry αl,mk : Hk → Hl ⊗Hm as constructed in

the previous section. Recall that we set q = 1
N

(
2

1+
√

1−4/N2

)
∈ (0, 1). Our main interest is to

study the entanglement of the subspace αl,mk (Hk) ⊆ Hl ⊗Hm, and the following proposition
yields a measure of this.

Proposition 3.1 ([BC18b]). Fix N ≥ 3 and let (k, l,m) ∈ N3
0 be an admissible triple. Then

for any unit vectors ξ ∈ Hk, η ∈ Hl, ζ ∈ Hm, we have

|〈αl,mk (ξ)|η ⊗ ζ〉| ≤
( [k + 1]q
θq(k, l,m)

)1/2

≤ C(q)q
l+m−k

4 ,

where

C(q) = (1− q2)−1/2
( ∞∏
s=1

1

1− q2s

)3/2

Remark 3. We note that the bound C(q)q
l+m−k

4 appearing in Proposition 3.1 is equivalent,

as N is large, to the fourth root of the relative dimension,
(

dimHk

dimHl dimHm

)1/4

.

Proposition 3.1 can be interpreted as giving a general upper bound on the largest Schmidt
coefficient of a unit vector belonging to the subspace αl,mk (Hk) ⊆ Hl⊗Hm. That is, if ξ ∈ Hk

is a unit vector and αl,mk (ξ) is represented by its singular value decomposition

αl,mk (ξ) =
∑
i

√
λiei ⊗ fi,

with (ei)i ⊂ Hl, (fi)i ⊂ Hm orthonormal systems, and λ1 ≥ λ2 ≥ . . . ≥ 0 satisfy
∑

i λi = 1,
then

λ1 ≤ C(q)2q
l+m−k

2 .(6)

11



Since the above quantity is much smaller than 1 when k < l+m, we conclude that αl,mk (Hk)
is “far” from containing separable unit vectors of the form η ⊗ ζ ∈ Hl ⊗ Hm. That is,
αl,mk (Hk) ⊂ Hl ⊗Hm is highly entangled. We summarize this in the following theorem.

Theorem 3.2 ([BC18b]). For k, l,m as above, the subspaces αl,mk (Hk) ⊆ Hl ⊗ Hm are
(highly) entangled provided k < l + m. When k = l + m, the highest weight subspace
αl+m(Hl+m) ⊂ Hl ⊗Hk is a separable subspace.

Proof. The first statement follows from the previous proposition and the remarks that follow.
The second statement follows from the observation that if one considers the elementary
(separable) tensors

(. . . ξ ⊗ η ⊗ ξ ⊗ η)⊗ (ξ ⊗ η ⊗ ξ ⊗ . . .) ∈ (CN)⊗l ⊗ (CN)⊗m (ξ ⊥ η),

then they always lie in the subspace Hl ⊗ Hm (thanks to the algebraic properties of the
Jones-Wenzl projections!). �

In fact it turns out that one can say quite a lot more about the largest possible Schmidt
coefficients for irreducible subspaces of tensor products than what is said in Proposition 3.1.
The following theorem shows that the bound given above is in fact optimal in a very strong
sense: For any d ∈ N, we can find a unit vector ξ ∈ Hk (provided N is sufficiently large) with

the property that αl,mk (ξ) admits at least d Schmidt coefficients with the same magnitude as
that predicted by (6).

Theorem 3.3 ([BC18b]). Let (k, l,m) ∈ N3
0 be an admissible triple, N ≥ 3, and d ≤

(N − 2)(N − 1)
l+m−k−2

2 . Then there exists a unit vector ξ ∈ Hk such that αl,mk (ξ) has a

singular value decomposition αl,mk (ξ) =
∑

i

√
λiei ⊗ fi with λ1 ≥ λ2 ≥ . . . satisfying

λ1 = λ2 = . . . = λd =
[k + 1]q
θq(k, l,m)

≥ q
l+m−k

2 .

Remark 4. For various applications of the above theorem, it is of critical importance to
understand if the above result is optimal in the sense that the number d of maximal Schmidt
coefficients that is obtainable is indeed given by the above bound. At this stage, we are
unable to fully answer this question. However, we can show that the upper bound d(N) :=

(N − 2)(N − 1)
m+l−k−2

2 of maximal Schmidt coefficients λmax = [k+1]q
θq(k,l,m)

is asymptotically

maximal in the sense that

lim
N→∞

d(N)
[k + 1]q
θq(k, l,m)

= 1.

This shows that in the limit as N → ∞, the vector ξ ∈ Hk which is asserted to exist by
Theorem 3.3 becomes maximally entangled, with the bulk of its Schmidt coefficients equaling
the maximal value λmax allowed by Proposition 3.1.

4. O+
N-equivariant quantum channels and minimum output entropy estimates

In this section we consider some applications of the entanglement results of the preceding
section to study the outputs of the canonical quantum channels related to our subspaces.

Following Section 2, we form, for any admissible triple (k, l,m) ∈ N3
0, the complementary

pair of quantum channels

Φl,m
k : B(Hk)→ B(Hm); ρ 7→ (Tr⊗ ι)(αl,mk ρ(αl,mk )∗),
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Φl,m
k : B(Hk)→ B(Hl); ρ 7→ (ι⊗ Tr)(αl,mk ρ(αl,mk )∗).

In terms of the planar diagramatics of the Temperley-Lieb category, we have

Φl,m
k (ρ) =

[k + 1]q
θq(k, l,m)

m

m

l

k

k

ρ and Φl,m
k (ρ) =

[k + 1]q
θq(k, l,m)

l

l

m

k

k

ρ .

We then have the following proposition concerning the S1 → S∞ behavior of these chan-
nels.

Proposition 4.1. Given any admissible triple (k, l,m) ∈ N3
0 and N ≥ 3, we have

‖Φl,m
k ‖S1(Hk)→S∞(Hm) = ‖Φl,m

k ‖S1(Hk)→S∞(Hl)

=
[k + 1]q
θq(k, l,m)

∈
[
q

l+m−k
2 , C(q)2q

l+m−k
2

]
.

Proof. We shall only consider Φl,m
k as the proof of the other case is identical. To prove the

upper bound ‖Φl,m
k ‖S1(Hk)→S∞(Hm) ≤ [k+1]q

θq(k,l,m)
, note that by complete positivity, convexity and

the triangle inequality, it suffices to consider a pure state ρ = |ξ〉〈ξ| ∈ D(Hk) and show that

‖Φl,m
k (ρ)‖S∞(Hm) ≤ [k+1]q

θq(k,l,m)
. But in this case, we have

Φl,m
k (ρ) = (Tr⊗ ι)(|αl,mk ξ〉〈αl,mk ξ|) =

∑
i

λi|fi〉〈fi|,

where αl,mk (ξ) =
∑

i

√
λiei⊗fi is the corresponding singular value decomposition. In particu-

lar, ‖Φl,m
k (ρ)‖S∞(Hm) = maxi λi, which by Proposition 3.1 is bounded above by [k+1]q

θq(k,l,m)
. This

upper bound is obtained by taking ρ = |ξ〉〈ξ|, where ξ satisfies the hypotheses of Theorem
3.3. �

The preceeding norm computation for the channels Φl,m
k ,Φl,m

k allows for an easy estimate
of a lower bound on their minimum output entropies.

Corollary 4.2. Given any admissible triple (k, l,m) ∈ N3
0 and N ≥ 3, we have

Hmin(Φl,m
k ), Hmin(Φl,m

k ) ≥ log
(θq(k, l,m)

[k + 1]q

)
≥ −

( l +m− k
2

)
log(q)− 2 log(C(q)).

Proof. Given a quantum channel Φ : B(H)→ B(K) and ρ ∈ D(H), we note that H(Φ(ρ)) =
−
∑

i λi log λi, where (λi)i is the spectrum of Φ(ρ). In particular, we have the estimate

H(Φ(ρ)) ≥ − log
(

max
i
λi

)
= − log ‖Φ(ρ)‖B(K) ≥ − log ‖Φ‖S1(H)→B(K).
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The first inequality in the corollary now follows immediately from Proposition 4.1. The

second inequality is just a consequence of the inequality [k+1]q
θq(k,l,m)

≤ C(q)2q
l+m−k

2 . �

Remark 5. The above estimates show that for N large and k < l + m fixed, the minimum
output entropy of the channels is quite large and grows logarithmically in N .

On the other hand, if we fix N ≥ 3 and consider, for example, the sequence of channels(
Φk,1
k−1 : B(Hk−1)→ B(Hk)

)
k∈N, then Corollary 4.2 yields the uniform positive lower bound

Hmin(Φk,1
k−1) ≥ − log(q)− 2 log(C(q)) > 0 (k ∈ N).

This phenomenon stands in sharp contrast to what happens in the case of the SU(2)-
equivariant quantum channels studied by Al Nuwairan in [AN13, Section 2]. Indeed, in

the corresponding SU(2) setting one has Hmin(Φk,1
k−1) ≈ log(k+1)

k+1
→ 0 as k →∞.

In the case where k = l +m (the highest weight case), we note that

Hmin(Φl,m
k ) = Hmin(Φl,m

k ) = 0,

which follows from the fact that αl,mk (Hk) ⊆ Hl ⊗Hm is a separable subspace (cf. Theorem
3.2).

Remark 6. We expect that the lower bound for the minimum output entropies given in
Corollary 4.2 to be asymptotically optimal as N →∞, at least in some cases (e.g. m fixed).

Evidence for this is provided by Theorem 3.3 and Remark 4, which shows that αl,mk (Hk)
contains unit vectors which are asymptotically maximally entangled with the bulk of their

Schmidt coefficients equal to [k+1]q
θq(k,l,m)

.

5. The Choi map and Planar Isotopy

In this final section we indicate how the planar structure of our representation theoretic
model for highly entangled subspaces can be used to easily describe the Choi maps associated
to our quantum channels. As applications of this description, we construct non-random
examples of d-positive maps between matrix algebras that fail to be completely positive, and
we also study the entanglement breaking property for our channels.

First we recall the definition of the Choi map associated to a linear map Φ : B(HA) →
B(HB). Let (ei)i∈I , (fi)i∈I be two fixed orthonomal bases for HA, and let (eij)i,j∈I , (fij)i,j∈I
be the corresponding matrix units in B(HA). Then the Choi map is the operator CΦ ∈
B(HA ⊗HB) given by

CΦ =
∑
i,j∈I

Φ(eij)⊗ fij = (Φ⊗ ι)(|ψ〉〈ψ|),(7)

where ψ =
∑

i∈I ei ⊗ fi ∈ HA ⊗HA (which is an unnormalized Bell state in HA ⊗HA). Of
course, CΦ is only defined uniquely up to the choice of matrix units eij and fij. Moreover,

one could also define a “right-handed” version of C̃Φ of CΦ given by C̃Φ = (ι⊗Φ)|ψ〉〈ψ| (i.e.,
slicing on the right instead of the left). However, for our purposes, the relevant properties
of CΦ (e.g., entanglement, positivity, etc.) do not depend the choice of matrix units or side
of the tensor product on which one slices |ψ〉〈ψ| by Φ. We also note the obvious fact that
the map Φ 7→ CΦ is linear in Φ.
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Turning back to our representation category Rep(O+
N) and our quantum channels Φl,m

k :
B(Hk) → B(Hm) ((k, l,m) ∈ N3

0 admissible), we judiciously choose orthonormal bases (ei)i
and (fi)i of Hk so that the unnormalized Bell vector ψk =

∑
i ei ⊗ fi ∈ Hk ⊗ Hk belongs

to the one-dimensional Hom-space Hom(u0, uk ⊗ uk) (this is always possible, thanks to the
fact that O+

N is a compact quantum group of Kac type. See for example [Ver07]). Using
our identification Rep(O+

N) ∼= TL(N), we can depict ψk (in terms of planar diagrams) as
a three-vertex corresponding to the admissible triple (0, k, k), which is explicitly given by
(pk ⊗ pk) ◦ ∪k ∈ TL0,2k(N), where pk is the kth Jones-Wenzl projector. Considering the
projection |ψk〉〈ψk|, we have

|ψk〉〈ψk| =
k

k

k

k

Then we can compute the corresponding Choi map C
Φl,m

k

=
(
Φl,m
k ⊗ ι

)
(|ψk〉〈ψk|) diagram-

matically by

θq(k, l,m)

[k + 1]q
C

Φl,m
k

=

m

m

l

k

k

k

k

|ψk〉〈ψk| =

m

m

l

k

k

k

k

,

Since the linear map defined by the above planar tangle is invariant under planar isotopy

(by construction it belong to the Temperley-Lieb category!), we see that θq(k,l,m)

[k+1]q
C

Φl,m
k

also

correpsonds to the following planar tangle:

k

k

m

m

l =
θq(k, l,m)

[l + 1]q
αm,kl (αm,kl )∗,

Note here that αm,kl (αm,kl )∗ is simply the orthogonal equivariant projection fromHm⊗Hk onto
the unique subspace equivalent to Hl. We have therefore arrived at the following theorem.
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Theorem 5.1. For the O+
N -equivariant quantum channel Φl,m

k : B(Hk)→ B(Hm), we have

C
Φl,m

k

=
[k + 1]q
[l + 1]q

αm,kl (αm,kl )∗.(8)

A similar argument for the complementary channel Φl,m
k : B(Hk)→ B(Hl), yields

C̃Φl,m
k

=
[k + 1]q
[m+ 1]q

αk,lm (αk,lm )∗.(9)

In the following subsections, we show the utility of Theorem 5.1.

5.1. Examples of positive but not completely positive maps. A crucial property of
the Choi map CΦ associated to a linear map Φ : B(HA) → B(HB) is that it can be used
to detect positivity properties of Φ. More precisely, we have that Φ is completely positive
if and only if CΦ is positive semidefinite [Cho75]. More generally, CΦ can be used to detect
whether or not Φ is d-positive for any d ∈ N [HLPS12]: Φ is d-positive if and only if

〈CΦx|x〉 ≥ 0

for all x ∈ HA ⊗HB with a Schmidt rank of at most d. (That is, x admits a singular value
decomposition x =

∑s
i=1

√
λiei ⊗ fi with mini λi > 0 and s ≤ d).

Let us now return to our usual setup of an admissible triple (k, l,m) ∈ N3
0 corresponding

to a non-highest-weight inclusion αl,mk : Hk ↪→ Hl⊗Hm of irreducible representations of O+
N ,

N ≥ 3. For each t ≥ 0, we can consider the linear map Φt : B(Hk)→ B(Hm) given by

Φt = TrHk
(·)1B(Hl) − t

[l + 1]q
[k + 1]q

Φl,m
k .(10)

Using Theorem 5.1 together with the simple fact that the Choi map associated to B(Hk) 3
ρ 7→ TrHk

(ρ)1B(Hl) is given by 1B(Hm⊗Hk), we conclude that the Choi map of Φt is given by

CΦt = 1B(Hm⊗Hk) − tαm,kl (αm,kl )∗.(11)

From this expression for CΦt , it is clear that Φt is completely positive iff CΦt ≥ 0 iff t ≤ 1.
On the other hand, we can prove the following result on d-positivity of Φt.

Theorem 5.2. Fix N ≥ 3 and (k, l,m) ∈ N3
0, and fix a natural number d ≤ (N − 2)(N −

1)
k+m−l−2

2 . Then the map Φt : B(Hk) → B(Hm) is d-positive (but not completely positive) if
and only if

1 < t ≤ θq(k, l,m)

d[l + 1]q
≤ C(q)−2q−

k+m−l
2 d−1.

Sketch. We have already observed that Φt is not completely positive when t > 1. Now fix
d ∈ N and x =

∑s
i=1

√
λiei ⊗ fi ∈ Hm ⊗ Hk with Schmidt-rank at most d. Using the

inequality of Proposition 3.1, the triangle inequality, and the Cauchy-Schwarz inequality, we
16



have

〈CΦtx|x〉 = ‖x‖2 − t〈αm,kl (αm,kl )∗(x)|x〉

≥ ‖x‖2 − t [l + 1]q
θq(k, l,m)

( ∑
1≤i≤s

√
λi‖ei‖‖fi‖

)2

≥ ‖x‖2 − t [l + 1]q
θq(k, l,m)

( ∑
1≤i≤s

√
λi

)2

≥ ‖x‖2 − t [l + 1]q
θq(k, l,m)

s‖x‖2

≥ ‖x‖2
(

1− td [l + 1]q
θq(k, l,m)

)
.

From this inequality, we obtain d-positivity of Φt provided 1− td [l+1]q
θq(k,l,m)

≥ 0, as claimed.

To show failure of d-positivity when t > θq(k,l,m)

d[l+1]q
, one has to find x =

∑d
i=1 ηi⊗ζi ∈ Hl⊗Hm

with Schmidt rank d satisfying 〈CΦtx|x〉 < 0. It turns out that such an x can be canonically
constructed - see [BC18b] for details. �

Remark 7. The above theorem can readily be used to construct maps on matrix algebras
that are d positive but not d + 1 positive. Indeed, one just has to choose t > 1, N ≥ 3 and
an admissible triple (k, l,m) ∈ N3

0 so that

θq(k, l,m)

(d+ 1)[l + 1]q
< t ≤ θq(k, l,m)

d[l + 1]q
.

Then the corresponding Φt will do the job.

5.2. Entanglement breaking channels. We now turn to another application of Theorem

5.1 to the entanglement breaking property of our quantum channels Φl,m
k .

Definition. A quantum channel Φ : B(HA) → B(HB) is called entanglement breaking (or
EBT) if for any finite-dimensional auxiliary Hilbert space H0, and any state ρ ∈ D(H0⊗HA),
we have that (ι⊗ Φ)(ρ) ∈ D(H0 ⊗HB) is a separable state.

The class of EBT channels are precisely those which eliminate entanglement between
the input states of composite systems. These channels form an important class which are
amenable to analysis. For example, it is known that for EBT channels, both the minimum
output entropy and the Holevo capacity (i.e., the capacity of a quantum channel used for
classical communication with product inputs) is additive [Hol01, Sho02].

In order to detect whether or not a given quantum channel is EBT, it suffices to check
whether or not the corresponding Choi map is a multiple of an entangled state. The following
result is well known: see for example [AN13, Proposition 3.4].

Proposition 5.3. For a quantum channel Φ : B(HA) → B(HB), the following conditions
are equivalent.

(1) Φ is EBT.
(2) The state ρ := 1

dimHA
CΦ ∈ D(HB ⊗HA) is separable.
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Before coming to our main result of this section characterizing the EBT property for the

channels Φl,m
k , we first need an elementary lemma.

Lemma 5.4. Let HA and HB be finite dimensional Hilbert spaces, let 0 6= p ∈ B(HB ⊗HA)
be an orthogonal projection, and let H0 ⊆ HB ⊗ HA denote the range of p. If H0 is an
entangled subspace of HB ⊗HA, then the state ρ := 1

dimH0
p is entangled.

Proof. We prove the contrapositive. If ρ is separable, then we can write

p =
∑
i

|ξi〉〈ξi| ⊗ |ηi〉〈ηi| (0 6= ξi ∈ HB, 0 6= ηi ∈ HA).

For each i put xi = |ξi〉〈ξi| ⊗ |ηi〉〈ηi|. Then since xi ≤ p and p is a projection, it follows that
xi = pxip, which implies that the range of xi is contained in the range of p. In particular,
ξi ⊗ ηi ∈ H0, so H0 is separable. �

Theorem 5.5. Let (k, l,m) ∈ N3
0 be an admissible triple. If k 6= l −m, then the quantum

channel Φl,m
k is not EBT.

Proof. We have from Theorem 5.1 that C
Φl,m

k

= [k+1]q
[l+1]q

αm,kl (αm,kl )∗ ∈ B(Hm⊗Hk). Consider the

orthogonal projection p = αm,kl (αm,kl )∗. The range of p is the subrepresentation of Hm ⊗Hk

equivalent to Hl, and by Theorem 3.2 this subspace is entangled iff l 6= k + m. Applying

Lemma 5.4 and Proposition 5.3, we conclude that Φl,m
k is not EBT whenever k 6= l−m. �

Remark 8. We note that Theorem 5.5 leaves open whether or not the channels Φl,m
l−m are

EBT. In this case, the corresponding Choi map is a multiple of a projection onto a separable
subspace, and we do not know if this projection is a multiple of an entangled state.

6. Future work and open problems

We conclude this survey with a list of open problems and directions for future work.

(1) A major problem in QIT is to find explicit examples of quantum channels Φ,Ψ which
are strictly MOE-subbaditive: Hmin(Φ ⊗ Ψ) < Hmin(Φ) + Hmin(Ψ). Such channels
are known to exist with high probability [Has09, ASW11, BCN16], but no explicit
examples are known. It is therefore tempting to wonder whether or not the channels
considered in this work might be MOE subadditive. The first step in considering this
question is to have an effective means of estimating the MOE of tensor products of
our channels. In this context some compuations are actually possible. In particular, if
one takes one of our Temperley-Lieb chanels Φ, then it is always possible to explicitly
compute the von Neumann entropy H(Φ ⊗ Φc)(ρ)) of the output of a Bell state ρ,
where Φc denotes the so-called complementary channel associated to Φ. It turns out
that this computation involves the quantum 6j-symbols associated to the Temperley-
Lieb category. This particular calculation is the topic of work in preparation [BC17].
At the present time, it seems that in order to have any hope of whitnessing strict
MOE subadditivity in our channels, more tensor products beyond simply channels
and their complements need to be studied, and at this time, a new idea is needed.

(2) Another important question related to our quantum channels is the problem of com-
puting their classical and quantum capacities. This is another completely open and
important research direction.
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(3) As we have seen in this work, the Temperley-Lieb category provides a tractable
concrete model for highly entangled subspaces. It is natural to wonder what other
nice tensor categories or related structures give nice models of entanglement. Perhaps
certain examples coming from planar algebras [Jon99] might give some interesting
results?

(4) It would be interesting to make a further study of the family of d-positive maps
Φt given here. The importance of such maps in QIT is for entanglement detection
in bipartite systems: Positive maps that are not completely positive can be used to
distinguish entangled states from separable ones. Of particular interest is the problem
of detecting entangled states from the positive partial transpose (PPT) states. In this
context, the relevant maps for entanglement detection are the indecomposable maps.
I.e., positive maps Φ which are not of the form Φ = Φ1 + Φ2 ◦ t, where Φ1,2 are
completely positive, and t denotes the transpose map. In this context, we ask: Are
our families of maps Φt indecomposable?
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[BC18b] Michael Brannan and Benôıt Collins. Highly entangled, non-random subspaces of tensor products
from quantum groups. Preprint, arXiv:1612.09598, to appear in Comm. Math. Phys., 2018.
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[BCN16] Serban T. Belinschi, Benôıt Collins, and Ion Nechita. Almost one bit violation for the additivity
of the minimum output entropy. Comm. Math. Phys., 341(3):885–909, 2016.

[BDRV06] Julien Bichon, An De Rijdt, and Stefaan Vaes. Ergodic coactions with large multiplicity and
monoidal equivalence of quantum groups. Comm. Math. Phys., 262(3):703–728, 2006.

[Cho75] Man Duen Choi. Completely positive linear maps on complex matrices. Linear Algebra and Appl.,
10:285–290, 1975.

[CLSZ95] I. L. Chuang, R. Laflamme, P. W. Shor, and W. H. Zurek. Quantum computers, factoring, and
decoherence. Science, 270(5242):1633–1635, 1995.

[Dri87] V. G. Drinfel′d. Quantum groups. In Proceedings of the International Congress of Mathemati-
cians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 798–820. Amer. Math. Soc., Providence, RI,
1987.

[Eis06] Jens Eisert. Entanglement in quantum information theory. Ph.D. Thesis, arXiv:quant-
ph/0610253v1, 2006.

[EJ96] Artur Ekert and Richard Jozsa. Quantum computation and Shor’s factoring algorithm. Rev.
Modern Phys., 68(3):733–753, 1996.

19



[FK97] Igor B. Frenkel and Mikhail G. Khovanov. Canonical bases in tensor products and graphical
calculus for Uq(sl2). Duke Math. J., 87(3):409–480, 1997.

[FK10] Motohisa Fukuda and Christopher King. Entanglement of random subspaces via the Hastings
bound. J. Math. Phys., 51(4):042201, 19, 2010.

[GHP10] Andrzej Grudka, Michal Horodecki, and Lukasz Pankowski. Constructive counterexamples to
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