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Abstract. We study the boundary structure of closed convex cones, with a focus on facially5
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Understanding the facial structure of convex cones as it relates to the dual cones17

is fundamentally useful in convex optimization and analysis. Let K be a closed convex18

cone in a finite dimensional Euclidean space E. For a given scalar product 〈·, ·〉, the19

dual cone is20

K∗ := {s ∈ E∗ : 〈s, x〉 ≥ 0 ∀x ∈ K} ,21

where E∗ denotes the dual space. Let C ⊆ E be a closed convex set. A closed convex22

subset F ⊆ C is called a face of C if for every x ∈ F and every y, z ∈ C such that23

x ∈ (y, z), we have y, z ∈ F . The fact that F is a face of C is denoted by F E C.24

Observe that the empty set and the set C are both faces of C. Just like other partial25

orders in this paper, if we write F CC, then we mean F is a face of C but is not equal26

to C. A nonempty face F CC is called proper. Note that if K is a closed convex cone27

and F EK, then F is a closed convex cone.28

We say that a face F of a closed convex set C is exposed if there exists a supporting29

hyperplane H to the set C such that F = C ∩H. Many convex sets have unexposed30

faces, e.g., convex hull of a torus (see Fig. 1). Another example of a convex set with31

unexposed faces is the convex hull of a closed unit ball and a disjoint point (see for32

instance [18] and Fig. 2 here).33

A closed convex set is facially exposed if every proper face of C is exposed. Facial34

exposedness is fundamental in understanding the boundary structure of convex sets; it35

even has consequences in the theory of convex representations [3,6]. Symmetric cones36

and homogeneous cones are facially exposed (see [5, 28, 30]). Hyperbolicity cones are37

facially exposed too [24], and they represent a powerful and interesting generalization38
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2 V. ROSHCHINA AND L. TUNÇEL

Fig. 1. Convex hull of a torus is not facially exposed: the dashed line shows the set the extreme
points which are not exposed (see [25]).

unexposed faces

Fig. 2. An example of a two dimensional set and a three dimensional cone that have an
unexposed face.

of symmetric cones and homogeneous cones for convex optimization [7, 24] and for39

many other research areas.40

Now we turn to another property of faces. We first motivate the concept and then41

define it rigorously. Suppose that for a given family of convex optimization problems42

in conic form, we know that there is at least an optimal solution that is contained in a43

face F of K. We may not have a direct access to the face F , but perhaps we know the44

linear span of the face F : span(F ). Then, to compute an optimal solution, we may45

replace the cone constraint x ∈ K, by x ∈ (K ∩ span(F )). Now, if we write down the46

dual problem, the dual cone constraint (for the dual slack variable s) becomes (see47

Proposition 1.1):48

s ∈ (K ∩ span(F ))
∗

= cl
(
K∗ + F⊥

)
49

where F⊥ := {s ∈ E∗ : 〈s, x〉 = 0 ∀x ∈ F}. Indeed, if
(
K∗ + F⊥

)
happens to be50

closed, then we can remove the closure operation; otherwise, we would have to deal51

with this closure operation in some way. Beginning with this observation, we have52

our first hints for the uses of the concept of Facially Dual Complete convex cones.53

Closed convex cones K with the property that54 (
K∗ + F⊥

)
is closed for every proper face F CK,55

are called Facially Dual Complete (FDC). Pataki [17,18] called such cones nice. FDC56

property is one of the main concepts that we study in this paper. Our interest in57

FDCness is motivated by many factors:58

• FDC property is very important in duality theory. Presence of facial dual59

completeness makes various facial reduction algorithms behave well, e.g. see60

Borwein and Wolkowicz [1], Waki and Muramatsu [32] and Pataki [19] (where61

it is shown explicitly how facial reduction can be specialised for the case of62
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FACIALLY DUAL COMPLETE CONES, LEXICOGRAPHIC TANGENTS 3

FDC cones). Currently, the only exact characterization of FDCness is via63

facial reduction (see Liu and Pataki [13]). For some other recent work related64

to facial reduction, see [2, 4, 10–12,15,19–22,31,33].65

• FDC property is also relevant in the fundamental subject of closedness of the66

image of a convex set under a linear map. See Pataki [17] and the references67

therein.68

• FDC property comes up in the area of lifted convex representations (see [6])69

and in representations of a family of convex cones as a slice of another family70

of convex cones (see [3]).71

• FDC property seems to have a rather mysterious connection (see Pataki [18])72

to facial exposedness of the underlying cone which is an intriguing and rather73

beautiful geometric property. Moreover, better understanding of FDC prop-74

erty contributes to our understanding of the boundary structure of convex75

sets.76

Our paper is organized as follows. In Section 2 we recall some notation and77

some of the known results related to the facial structure of convex cones, then we78

state and prove the necessary and sufficient conditions for facial dual completeness79

(Theorems 2.1 and 2.7). Throughout this process, we introduce some new notions for80

exposure of faces. In Figure 3 we summarize some of the relationships among various81

exposure properties. Up to and including 3-dimensions, for convex cones, all of the82

four properties we listed in Fig. 3 are precisely the same. Starting in 4-dimensions,83

these four properties identify different sets of convex cones. We are able to illustrate84

these 4-dimensional convex cones, by taking 3-dimensional slices.85

facially exposed

tangentially exposed

strongly 
tangentially 
exposed

facially dual complete

Example 3 Example 2 Example 1

Fig. 3. Relationships among various notions of facial exposure and FDCness. The graphics
represent the examples discussed in this paper.

1. Preliminaries. Let E denote a finite dimensional Euclidean vector space,86

and let E∗ be its dual. Throughout this section by K we denote a closed convex cone87

in E. We call K regular if K is pointed (does not contain whole lines), closed, convex88

and has nonempty interior in E. If K is a regular cone then so is its dual cone K∗.89

Let C ⊆ E and x ∈ C. The cone of feasible directions of C at x is90

Dir(x;C) := {d ∈ E : (x+ εd) ∈ C for some ε > 0} .91
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4 V. ROSHCHINA AND L. TUNÇEL

The tangent cone for C at x is92

Tangent(x;C) := cl Dir(x;C).93

Note that this definition can be restated in terms of the Painlevé–Kuratowski outer
limit (see [26]),

Tangent(x;C) = Lim sup
t→+∞

t(C − x).

The direction s ∈ E∗ is said to be normal to a closed convex set C at a point x if

〈s, y − x〉 ≤ 0 ∀ y ∈ C.

The set of all such directions is called the normal cone at x to C, denoted by94

Normal(x;C).95

In addition to the notion of dual cone, we also use the closely related concept of96

polar of a set. For a subset C of E, the polar of C is97

C◦ := {s ∈ E∗ : 〈s, x〉 ≤ 1 ∀x ∈ C} .98

Note that for cones the notions of dual cone and polar are equivalent. For example,99

for every convex set C and for every x ∈ C, we have100

Normal(x;C) = [Tangent(x;C)]
◦

and Tangent(x;C) = − [Normal(x;C)]
∗
.101

The following fact is used many times in this paper.102

Proposition 1.1. For every pair of closed convex cones K1 and K2 in E, we103

have104

(K1 ∩K2)∗ = cl (K∗1 +K∗2 ) .105

If the relative interiors of K1 and K2 have nonempty intersection, then K∗1 + K∗2 is106

a closed set and therefore the closure operation can be omitted.107

Proof. See Corollary 16.4.2 in Rockafellar [25] and Remark 5.3.1. in [8].108

Our results can be established in a coordinate-free way by keeping the operations109

on sets in the primal space and the dual space separate1. However, for reducing the110

amount of notation and for better readability, we pick a basis for E, define an inner111

product on E from the scalar product above so that with this fixed inner-product112

E = E∗ = Rn. From now on, 〈·, ·〉 denotes an inner-product on Rn.113

Let C be a closed convex set and let S be a nonempty subset of C. We define the
minimal face of C containing S as follows:

face(S;C) :=
⋂
{F : F E C, S ⊆ F}.

1 Let F ⊂ E. Then we may consider the dual cone of F with respect to any Euclidean space L
such that span(F ) ⊆ L ⊆ E. We could denote by F |∗L the dual cone of F in E∗/L⊥; i.e.,

F |∗L :=
{
s ∈ E∗/L⊥ : 〈s, x〉 ≥ 0 ∀x ∈ F

}
.

Next, we would define the projection map in the dual space. For C ⊆ E∗,

ΠE∗/L⊥ (C) := {[v] : v ∈ C} ,

where [v] is the equivalence class of v ∈ E∗ with respect to L⊥.
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The following facts are elementary (and a few are well-known), we present all but one114

without proof. For u ∈ Rn, we denote115

u⊥ := {x ∈ Rn : 〈u, x〉 = 0} .116

117

Proposition 1.2 (Properties of faces). Let C be a closed convex set in Rn.118

Then the following properties are true:119

(i) face of a face of C is a face of C (i.e., GE F E C implies GE C);120

(ii) for every x ∈ C and every u ∈ Normal(x;C) with F := face({x}, C), the set121

Tangent(x;F ) ∩ u⊥ is a face of Tangent(x;F );122

(iii) for every S ⊆ C, we have relint (convS) ∩ relint (face(S;C)) 6= ∅.123

Proposition 1.3. Let K be a closed convex cone in Rn. Then, for every pair124

(u, x) with u ∈ K∗ and x ∈
(
K ∩ u⊥

)
, with F := face({x},K), we have u ∈125

[Tangent(x;F )]
∗
.126

Proof. Since u defines a supporting hyperplane to F at x, this hyperplane is also127

supporting for the tangent cone, and hence u ∈ [Tangent(x;F )]
∗
.128

Proposition 1.4. A closed convex cone K ⊆ Rn is FDC if and only if for every
face F CK

F ∗ ∩ spanF = ΠspanF (K∗).

Here by ΠL we denote the orthogonal projection onto a linear subspace L ⊆ Rn,
i.e. for each x ∈ Rn the projection p = ΠL(x) is the unique point p ∈ L such that

‖p− x‖ = min
y∈L
‖y − x‖.

Above, we used the Euclidean norm induced by the inner product, hence, for p =129

ΠL(x) we have, in particular, (x− p) ∈ L⊥, a fact utilised heavily in the sequel.130

2. Facially Dual Complete Cones and Tangential Exposure. We say that131

a closed convex set C in Rn has tangential exposure property if132

(2.1) Tangent(x;C) ∩ span(F − x) = Tangent(x;F ) ∀F C C, ∀x ∈ F.133

If C is a convex cone then span(F − x) = spanF for every x ∈ F . So, in this special134

case, we may write spanF instead of span(F − x).135

Tangential exposure is a stronger property than facial exposure. We discuss the136

relation between these two notions and provide illustrative examples later in this137

section. Tangential exposure property can be related to subtransversality of the set C138

and the affine span of the face F (see [9]). We also note that while this paper was being139

revised, a similar condition was used to derive error bounds for conic problems [14].140

Next, we prove Theorem 2.1 which gives a necessary condition for the FDC property,141

establishing that every FDC cone is tangentially exposed.142

2.1. Proof of the necessary condition.143

Theorem 2.1. If a closed convex cone K ⊆ Rn is facially dual complete, then144

for every F CK and every x ∈ F , we have145

(2.2) Tangent(x;K) ∩ spanF = Tangent(x;F ).146
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6 V. ROSHCHINA AND L. TUNÇEL

Proof. Since Tangent(x;F ) is a subset of both Tangent(x;K) and spanF , the147

inclusion148

Tangent(x;K) ∩ spanF ⊇ Tangent(x;F )149

follows. For the reverse inclusion, for the sake of reaching a contradiction, assume150

the contrary: K is facially dual complete, but there exist F / K and x ∈ F such151

that (2.2) does not hold. Then, there exists g ∈ Tangent(x;K) ∩ spanF such that152

g /∈ Tangent(x;F ). Without loss of generality, we may assume ‖g‖ = 1. Since153

g ∈ spanF =: L, applying the hyperplane separation theorem to g and Tangent(x;F ),154

in the space of spanF , we deduce that there exists p ∈ Normal(x;F ) ∩ L such that155

〈p, g〉 > 0.156

Since F is a cone, we have Normal(x;F ) ⊆ Normal(0;F ) = −F ∗, hence, p ∈ −F ∗.
Since K is facially dual complete, by Remark 1 in [18] we have F ∗ = K∗+F⊥; hence,
there exist y ∈ −K∗ and z ∈ F⊥ such that y = p− z. Since g ∈ spanF and z ∈ F⊥,
we have

〈y, g〉 = 〈p− z, g〉 = 〈p, g〉 > 0.

Since g ∈ Tangent(x;K), there exists a sequence {sk}, such that sk ∈ K and

lim
k→∞

sk − x
‖sk − x‖

= g.

Therefore,

lim
k→∞

〈sk − x, y〉
‖sk − x‖

= 〈g, y〉 > 0,

and there exists k large enough such that

〈sk − x, y〉 > 0.

Now observe that since F is a cone, and x ∈ F , we also have 1
2x ∈ F and 3

2x ∈ F ,
hence, by the definition of the tangent cone,

−1

2
x,

1

2
x ∈ Tangent(x;F ).

Since p ∈ Normal(x;F ), this yields 〈p, x〉 = 0. Then 〈x, y〉 = 〈x, p〉 − 〈x, z〉 = 0, and
we have

0 < 〈sk − x, y〉 = 〈sk, y〉.
However, this is impossible, as sk ∈ K, y ∈ −K∗, and hence 〈sk, y〉 ≤ 0. Therefore,157

our assumption is not true, and by the arbitrariness of F and x we have shown that158

(2.2) holds for all F CK and all x ∈ F .159

For the sake of completeness of our exposition, we prove that the tangential160

exposure yields facial exposure.161

Proposition 2.2. Let C ⊆ Rn be a closed, convex, tangentially exposed set.162

Then every proper face F C C is exposed.163

Proof. Let C be as in the statement of the proposition, and assume that F is164

its proper face. Without loss of generality assume that 0 ∈ relintF . Let E be the165

smallest exposed face of C that contains F . If E = F , there is nothing to prove, so166

assume that F 6= E. Thus, F ∩ relintE = ∅.167

For every p ∈ relintE we have−αp /∈ E for all α > 0 (otherwise (p,−αp) ⊂ C, and168

by the definition of a face [p,−αp] ⊆ F , which is impossible due to F ∩ relintE = ∅).169

It follows that −p /∈ Tangent(0;E).170
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By the tangential exposure property, −p /∈ Tangent(0;C), hence, −p can be
separated from Tangent(0;C): there exists some g 6= 0 such that

〈g,−p〉 > sup
v∈Tangent(0;C)

〈g, v〉 = 0.

Observe that the normal g defines a supporting hyperplane to Tangent(0;C) (and171

hence to C) that contains zero, but does not contain E (since 〈g, p〉 < 0 for p ∈172

relintE). This supporting hyperplane exposes some face G of C which contains F ,173

because 0 ∈ relintF . The intersection G∩E is a nonempty face of C that contains F .174

Since both G and E are exposed, their intersection is also exposed. The face G ∩ E175

is exposed, contains F and is strictly smaller than E. This contradicts the definition176

of E.177

There are regular cones which are facially exposed, not FDC and not tangentially178

exposed. The example from [27] satisfies these properties, see Figure 4. Nevertheless,179

there are facially exposed regular cones that are also tangentially exposed, but not180

FDC. We can prove this by modifying the aforementioned example.181

Example 1. We revisit the example from [27]. The closed convex cone K ⊂ R4182

is a standard homogenization K = cone{C × {1}} of a compact convex set C ⊂ R3183

whose construction and Mathematica rendering are shown in Fig. 4. The set C is a

γ1

x3

x2

x1γ2

γ4
γ3

Fig. 4. A slice of a closed convex cone that is facially exposed but not FDC. Notice that this
set is not strongly facially exposed (i.e., there exists at least a face that is not facially exposed).

184

nonsingular affine transformation of the convex hull of four curves. In particular, it185

is conv{γ1, γ2, γ3, γ4}, where186

γ1(t) := (0,− sin t, cos t− 1) , γ2(t) := (0, cos t− 1,− sin t) ,187

γ3(t) := (− sin t, 1− cos t, 0) , γ4(t) := (cos t− 1, sin t, 0) ,188189

and t ∈ [0, π/4]. It is not difficult to observe that if C fails the tangential expo-
sure property, then its homogenization K does as well (if the convex set C is not
tangentially exposed then the certificate of this fact—a face F and x ∈ F—leads
to a corresponding certificate for K failing the tangential exposure property). The
failure of tangential exposure for the set C is evident from considering tangents to
the face F = conv{γ3, γ4} and C at the point (0, 0, 0). Indeed, it is clear that
g := (0,−1, 0) ∈ Tangent(x;K) since

(0,−1, 0) = Lim sup
t→∞

tγ1(t−1) = lim
s↓0

(0,− sin s, cos s− 1)

s
.

On the other hand,

〈g, γ3(t)〉 = cos t− 1 ≤ 0, 〈g, γ4(t)〉 = − sin t ≤ 0 ∀t ∈ [0, π/4],
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8 V. ROSHCHINA AND L. TUNÇEL

hence g is separated strictly from Tangent(x;F ). This is illustrated geometrically in190

Fig. 5.

F

x

Tangent(x;C)∩span(F-x)

Tangent(x;F)

Fig. 5. Failure of tangential exposure

191

Example 2. We construct a modified example of a closed convex cone that is
facially and tangentially exposed, but is not facially dual complete. This cone is a
homogenization of the three-dimensional set C that is a convex hull of two curves,
one is a piece of a parabola, and the other one is a twisted cubic (see Fig. 6). So, we

x3

x2γ2

γ1
x1

Fig. 6. A rendering of construction of Example 2: A slice of a closed convex cone that is
tangentially exposed but not facially dual complete.

have K := cone{C × {1}}, C := conv{γ1, γ2}, where

γ1(s) = (−s,−s2,−s3), s ∈ [0, 1] and γ2(t) = (−t, t2, 0), t ∈ [0, 1/3(2 +
√

7)].

It is a technical exercise to show that the cone K (or equivalently the set C) is tan-192

gentially exposed, but not FDC. We leave the detailed algebraic computations, as well193

as the proof that the set is not FDC, to the Appendix.194

2.2. Lexicographic tangent cones. The last example leads us to the next195

idea. The above regular cone is facially exposed and tangentially exposed, but it is196

not FDC. Also, its tangent cone to C at x = (0, 0, 0) is not tangentially exposed197

itself. This is intuitively clear from Fig. 7, where the dotted line in the left-hand-side198

graphic shows the set of points for which the tangential exposure property fails (on199

the tangent cone at (0, 0, 0)) with respect to the adjacent flat face, and the right-200

hand-side plot shows the slice of this second-order tangent cone. So, we consider a201

stronger property defined by enforcing tangential exposure condition (2.1) recursively202
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0

-1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

y

z

Fig. 7. An illustration of how the tangent cone at the origin for Example 2 is not tangentially
exposed.

on all tangent cones. For example, a second-order tangent cone for C at x ∈ C and203

v ∈ Tangent(x;C) is:204

Tangent [v; Tangent(x;C)] = Lim sup
t2→+∞

t2 [Tangent(x;C)− v]205

= Lim sup
t2→+∞

t2

{[
Lim sup
t1→+∞

t1(C − x)

]
− v
}
.206

We may recursively apply this construction to generate kth-order tangent cones for207

every nonnegative integer k. This geometric notion is a geometric counterpart of208

Nesterov’s lexicographic derivatives (see [16] for this analytic notion, and the references209

therein). Any tangent cone obtained as a result of the above recursive procedure (of210

any order) is called a lexicographic tangent cone of C. We say that a closed convex211

set is strongly tangentially exposed if it is tangentially exposed along with all of its212

lexicographic tangent cones.213

Next, we investigate some fundamental properties of the family of lexicographic214

tangent cones of closed convex sets. Observe that for u, v ∈ C such that face(u;C) =215

face(v;C) =: F , we have216

Tangent(u;C) = Tangent(v;C) =: Tangent(F ;C).217

That is, Tangent(F ;C) denotes the tangent cone for C at any x ∈ relintF for F EC.218

Thus, the cardinality of distinct tangent cones of C is bounded by the cardinality of219

the set of faces of C. With this notation, our Theorem 2.1 can be restated as:220

Let K be a regular cone that is FDC. Then for every pair of faces F,G such that221

GC F EK, we have222

Tangent(G;K) ∩ spanF = Tangent(G;F ).223

Let T : families of non-empty closed convex sets in Rn → families of non-empty224

closed convex cones in Rn, defined by225

T (K) := {Tangent(F ;K) : ∀F EK, F 6= ∅, ∀K ∈ K} ,226

i.e.227

T (K) = the set of all tangent cones of convex sets in K.228

We define T 0(K) := K and for every positive integer k, T k(K) := T
[
T k−1(K)

]
. Note229

that, if for some family of convex sets K, we have T (K) = K, then230

(2.3) T k(K) = K, for every nonnegative integer k.231
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10 V. ROSHCHINA AND L. TUNÇEL

Let C be a closed convex set. We abuse the notation slightly and write T (C) for232

T ({C}) (when K is a singleton C, we write T k(C) instead of T k({C})). Then, the233

tangential depth of C is the smallest nonnegative integer k such that T k+1(C) =234

T k(C). The tangential depth of Rn is zero for every nonnegative integer n and the235

tangential depth of Rn+ is one for every positive integer n. For example, T (R+) =236

{R+,R} = T 2(R+), and,237

T (R3
+) = {R3

+,R2
+ × R,R+ × R2,R3} = T 2(R3

+).238

In the above, we listed the elements of T (R3
+) up to linear isomorphism (there are239

eight cones in T (R3
+); three of them are isomorphic to R2

+ × R, and another group240

of three are isomorphic to R+ × R2). Next, for every positive integer n, consider the241

second order cone SOCn.242

T (SOCn) = {SOCn, a closed half space,Rn} = T 2(SOCn).243

Thus, the tangential depth of SOCn is one, for every positive integer n. Note that244

for n = 1, the first two elements listed in T (SOCn) are linearly isomorphic, and for245

n ≥ 2, the second element represents infinitely many such cones (one for each extreme246

ray of SOCn).247

We call a nonempty regular cone smooth if every boundary point of K is on an248

extreme ray of K and the normal cone of K at every extreme ray of K has dimension249

one so that every extreme ray of K is exposed by a unique supporting hyperplane of250

K. All smooth cones have tangential depth one. Using the fact that almost all regular251

cones are smooth (in the space of all regular cones), we can conclude that almost all252

regular cones have tangential depth one. Indeed, we must caution the reader that253

this last statement is measure theoretic in nature and many of the interesting regular254

cones we encounter in optimization are not smooth.255

Given a nonempty closed convex cone K, suppose there exists a nonnegative256

integer k such that T k+1(K) \ T k(K) contains only polyhedral cones and cones C257

with the property that when we express C = C̄ + L with L being the lineality space258

of C, the cone C̄ is a smooth cone. Then, using the above ideas, we can prove that259

the tangential depth of K is at most (k + 2).260

Next, we prove that the tangential depth of every regular cone is bounded by its261

dimension.262

Theorem 2.3. Let K ∈ RN be a nonempty closed convex cone. Then, the tan-263

gential depth of K is at most (d − `), where d is the dimension of K and ` is the264

dimension of the lineality space of K.265

Proof. Let K be as in the statement of the theorem and let L denote the lineality266

space of K. For every proper face F C K, span(F ) ⊇ L. If span(F ) = L, then267

Tangent(F ;K) = K. However, if span(F ) \ L 6= ∅, then since span(F ) is a linear268

subspace, and Tangent(F ;K) contains span(F ), the dimension of the lineality space269

of Tangent(F ;K) is at least (`+1). Now, let k be a nonnegative integer and apply this270

observation to every cone in T k(K). We conclude that every cone K ′ in T k+1(K) \271

T k(K) is Tangent(F ; K̃) for some parent cone K̃ ∈ T k(K) and for a proper face F272

of K̃. Now, combining this with the observation (2.3), we see that for k := d − `,273

T k+1(K) \ T k(K) = ∅. Therefore, the tangential depth of K is at most (d− `).274

Therefore, a regular cone K is strongly tangentially exposed iff every cone in the275

set T d(K) is tangentially exposed, where d := dim(K). Our next goal is to prove that276

strongly tangentially exposed closed convex cones are FDC.277
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2.3. Proof of the sufficient condition. We use several technical claims in the278

proof. The next proposition immediately follows from the above definitions.279

Proposition 2.4. Tangent cones inherit strong tangential exposure property from280

the original object. That is, if C is strongly tangentially exposed, then every T ∈281

T k(C) is strongly tangentially exposed for every nonnegative integer k.282

Proposition 2.5. Let K be a regular cone in Rn, and let F CK be an exposed283

face of K, L := spanF . Then for every nonzero u ∈ F ∗ ∩ L such that u exposes {0}284

as a face of F , there exists g ∈ K∗ such that u = ΠLg.285

Proof. Let K,F, and L be as above, and let u ∈ F ∗ ∩ L be such that 〈u, x〉 > 0,286

∀x ∈ F \ {0}. Without loss of generality, we may assume ‖u‖ = 1. Since F is an287

exposed proper face of K, there exists s ∈ K∗ such that288

〈s, x〉
{

= 0, if x ∈ F ;
> 0, if x ∈ K \ F.289

Let gα := u+ αs, α ∈ R. If there exists α such that gα ∈ K∗, then we are done. So,290

we may assume that for every α ∈ R, there exists xα ∈ K such that291

0 > 〈gα, xα〉 = 〈u, xα〉+ α 〈s, xα〉 .292

Since K is a cone, we can choose xα to be unit norm. Now, as α→ +∞, the sequence293

{xα} must have a convergent subsequence with limit x̄ ∈ K which also has norm 1.294

If 〈s, x̄〉 > 0, then using295

−1 ≤ −‖u‖‖xα‖ ≤ 〈u, xα〉 < −α 〈s, xα〉296

and taking limits as α → +∞ along the subsequence of {xα} converging to x̄, we297

reach a contradiction. Hence, we may assume 〈s, x̄〉 = 0, i.e., x̄ ∈ F . Applying the298

above limit argument with this new information, we conclude 〈u, x̄〉 ≤ 0. Thus, by299

our choice of u, x̄ = 0, again leading to a contradiction. Therefore, there exists α300

such that gα ∈ K∗, and we are done.301

Next, we observe that FDCness and strong tangential exposedness are not affected302

by addition or removal of subspaces.303

Proposition 2.6. Let K = C+L, where L is a linear subspace and C is a closed304

convex cone such that spanC ⊆ L⊥. Then the following statements are true.305

(i) The cone K is strongly tangentially exposed if and only if C is;306

(ii) The cone K is FDC if and only if C is.307

Proof. For any x ∈ K and its unique projection p onto C we have

Tangent(x;K) = Tangent(p;K); Tangent(x;E) = Tangent(p;E) ∀E CK;

moreover, observing that the faces of C and K are in bijective correspondence with308

each other (F C C if and only if F + LCK), and that309

Tangent(x;K) = Tangent(p;C) + L,310

Tangent(x;F + L) = Tangent(p;F ) + L ∀F C C,311

span(F + L) = span(F ) + L ∀F C C,312313

we obtain (i) directly from the definition of tangential exposure.314

Proof of (ii) likewise follows from the definitions and fundamental properties.315
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12 V. ROSHCHINA AND L. TUNÇEL

Now, we are ready to prove our sufficient condition for FDCness.316

Theorem 2.7 (Sufficient condition). If a closed convex cone K ⊆ Rn is strongly317

tangentially exposed, then it is facially dual complete.318

Proof. We will prove the statement by induction in the dimension n of the under-319

lying space Rn. Observe that for n = 1 the statement is trivial: all three possible, at320

most one-dimensional, nonempty, closed convex cones are both strongly tangentially321

exposed and facially dual complete.322

Assume now that every closed convex cone of dimension at most (n − 1) that323

is strongly tangentially exposed is also FDC. We will prove the statement for n-324

dimensional closed convex cones. Let K ⊆ Rn be a strongly tangentially exposed325

closed convex cone. To prove that K is FDC, by Proposition 1.4 it suffices to show326

that for all F CK, with L := spanF , for every u ∈ F ∗ ∩ L, we have u ∈ ΠLK
∗.327

Let u ∈ F ∗ ∩ L, we may assume u is not zero, and define328

E := {x ∈ F : 〈u, x〉 = 0} .329

Observe that ECFCK, since u defines a supporting hyperplane to F at origin, and any
sub-face of a face is also a face (see Proposition 1.2), if E = {0}, the result follows from
Proposition 2.5. Otherwise dimE ≥ 1. Let x ∈ relintE and consider Tangent(x;K)
and Tangent(x;F ). Observe that spanE ⊂ Tangent(x;F ) ⊂ Tangent(x;K), so that
our cones decompose into a direct sum:

Tangent(x;K) = C + spanE,

where C ⊆ (spanE)⊥. Notice that since dimE ≥ 1, we have dimC ≤ n− 1.330

By Proposition 2.4, the cone Tangent(x;K) inherits strong tangential exposedness331

property from K. Applying Proposition 2.6 (i) to Tangent(x;K) and C, we deduce332

that C is strongly tangentially exposed as well, and since the dimension of C is less333

than n, it is FDC by the induction hypothesis. Applying Proposition 2.6 (ii) to334

Tangent(x;K) and C, we deduce that Tangent(x;K) is facially dual complete.335

We consider two cases based on whether Tangent(x;F ) is a face of Tangent(x;K)336

or not.337

Case 1: Tangent(x;F ) is a face of Tangent(x;K). Then from the FDCness of338

Tangent(x;K) there exists g ∈ (Tangent(x;K))∗ ⊂ K∗ such that with339

L = span Tangent(x;F ) = spanF , u = ΠL g, and we are done.340

Case 2: Tangent(x;F ) is not a face of Tangent(x;K). Then consider the minimal341

face G C Tangent(x;K) that contains Tangent(x;F ). By the property of minimal342

faces in Proposition 1.2 (iii) we have343

relint [Tangent(x;F )] ∩ relintG 6= ∅,344

and therefore345

{relint span [Tangent(x;F )]} ∩ relintG 6= ∅.346

Applying Proposition 1.1 to [span Tangent(x;F )] and G, we have347

(2.4) {[span Tangent(x;F )] ∩G}∗ = G∗ + [Tangent(x;F )]
⊥
.348

From the strong tangential exposure assumption we have349

Tangent(x;F ) = Tangent(x;K) ∩ span Tangent(x;F ),350
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and since Tangent(x;F ) ⊆ G ⊆ Tangent(x;K), this yields351

(2.5) [span Tangent(x;F )] ∩G = Tangent(x;F ).352

From (2.4) and (2.5) we have:353

(2.6) [Tangent(x;F )]
∗

= G∗ + [Tangent(x;F )]
⊥
.354

Furthermore, since G∗ is closed, and [spanG]⊥ ⊂ G∗, we have

G∗ = G∗ ∩ spanG+ [spanG]⊥.

Using this observation together with [spanG]⊥ ⊆ [Tangent(x;F )]⊥, we obtain from
(2.6)

[Tangent(x;F )]
∗

= G∗ ∩ spanG+ [Tangent(x;F )]
⊥
.

By our choice of x we have u ∈ [Tangent(x;F )]∗, hence, u is the orthogonal projection355

of some g ∈ G∗ ∩ spanG onto span Tangent(x;F ).356

Since G is a face of Tangent(x;K), and Tangent(x;K) is FDC, we can now find357

a point g′ in (Tangent(x;K))∗ ⊂ K∗ that projects onto spanG as g.358

Now g is the orthogonal projection of g′ ∈ K∗ onto spanG, and u is the orthogonal359

projection of g onto spanF ⊆ spanG. Hence u = ΠspanF (g′) ∈ ΠspanFK
∗.360

The sufficient condition for FDCness is not necessary, as is evident from the next361

example.362

Example 3. Let K = cone{C×{1}} ⊂ R4, where C ⊂ R3 is a closed convex set,
C := conv{γ1, γ2},

γ1(t) = (cos t, sin t, 1), t ∈ [0, π/2], γ2(t) = (cos t, sin t,−1) t ∈ [0, π].

The set C is shown in Fig. 8. Observe that the set C is tangentially (and fa-

γ1

γ2

x1

x2

x3(1,0,1)

(0,1,1)

(-1,0,-1)

Fig. 8. Construction of Example 3: A facially exposed set may have a tangent that is not
facially exposed

363
cially) exposed. However, strong tangential exposure fails for this set. In particular,364

Tangent(x̄;C), where x̄ = (0, 1, 1) is not facially exposed (see its Mathematica render-365

ing in the first image of Fig. 9), and hence it is not tangentially exposed either. At366

the same time this cone is facially dual complete. In this case we only need to check367

the identity ΠspanF (F⊥+K∗) = F ∗∩spanF for the faces of K that correspond to the368

top and bottom faces of C, and for both cases the relevant projections are the conic369

hulls of three dimensional sets shown in the last two images in Fig. 9. We provide all370

relevant technical computations in the Appendix.371

This manuscript is for review purposes only.



14 V. ROSHCHINA AND L. TUNÇEL

Fig. 9. Tangent cone of the cone from Example 3 at x̄ := (0, 1, 1). This tangent cone is
not facially exposed and the right-most pictures illustrate two closed convex sets whose conic hulls
represent the projections of the dual cones on the relevant subspaces.

3. Conclusion. We provided tighter, geometric, primal characterizations of fa-372

cial dual completeness of regular convex cones via tangential exposure property and373

strong tangential exposure property. In Figure 10 we present a schematic summary374

of our results. Each bubble in the figure corresponds to a property of convex cones375

(facial exposedness, facial dual completeness, etc.). A solid arrow from one bubble to376

another bubble illustrates the fact that the former property implies the latter (labels377

on solid arrows indicate where such a result was proved first; if the implication is378

trivial, the solid arrow has no label). A dashed arrow which is blocked indicates that379

proving the underlying implication is impossible (dashed, blocked arrows are labeled380

by a corresponding example proving this claim).381

Our results provide geometric tools for checking FDCness directly on the primal382

cone. However, we do not provide any provably efficient algorithmic tools for checking383

these properties. A related problem is whether Ramana’s Extended Lagrange-Slater384

Dual (ELSD) construction [23] can be extended to tangentially exposed cones. Some385

sufficient conditions for generalizing this construction were discussed in [29] and a386

geometric extension of ELSD to FDC cones was established in [19]. The cone of387

positive semidefinite matrices as well as any regular convex cone that can be expressed388

as the intersection of some positive semidefinite cone and a linear subspace is strongly389

tangentially exposed. Also, there are strongly tangentially exposed regular convex390

cones that are not semi-algebraic sets. The problems of characterizing the set of391

tangentially exposed convex cones and characterizing the set of strongly tangentially392

exposed convex cones are left for future research.393

As a by-product of our approach, we have introduced some new notions of expo-394

sure for faces of closed convex sets:395

(i) tangentially exposed convex sets396

(ii) convex sets with facially exposed tangent cones397

(iii) convex sets with every lexicographic tangent cone facially exposed398

(iv) strongly tangentially exposed convex sets.399

We can also apply these notions to the polars of convex sets. Also, we can ask for400

characterizations of closed convex sets C such that C and C◦ have a specific property401

(or a specific pair of the properties) from the above list.402

Appendix A. Technical details for Examples 2 and 3. The goal of this403

section is to demonstrate that the cones in Examples 2 and 3 satisfy the claimed404

properties. We use a substantial number of technical results which are listed below405

and precede the main statements (Propositions A.12 and A.13). In some of the proofs406

we only provide the ideas behind the computations, so that the tedious technical407
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Facially exposed 
along with every 
properly minimal 
face of each F*

Facially exposed

Strongly 
tangentially 

exposed

Tangentially
exposed

Facially dual
complete

Theorem 2.1

Theorem 2.7 Pataki [18]

Pataki [18]

Example 1

Example 1E
x
am

p
le

2

Example 3

Example 2

Example 3

Proposition 2.2

E
x
am

p
le

3

Fig. 10. A schematic summary of main results of this paper and their relation to other prior
results.

details can be reconstructed using the basic tools of linear algebra and real analysis.408

Proposition A.1. Suppose that E = F ∩G, where F and G are exposed faces of409

a closed convex set C ⊂ Rn. Then E is an exposed face of C.410

Proof. Since both F and G are exposed, there exist pF , pG ∈ Rn such that

Arg max
x∈C

〈pF , x〉 = F, Arg max
x∈C

〈pG, x〉 = G.

Denote
mF := max

x∈C
〈pF , x〉, mG := max

x∈C
〈pG, x〉.

Let pE := pF + pG. We have

〈pE , x〉 = 〈pF , x〉+ 〈pG, x〉 < mF +mG ∀x ∈ C \ (F ∩G);

〈pE , x〉 = 〈pF , x〉+ 〈pG, x〉 = mF +mG ∀x ∈ E = F ∩G.

Hence,
Arg max
x∈C

〈pE , x〉 = E,

and therefore E is an exposed face of C.411

Proposition A.2. Let C be a compact convex set with a nonempty interior, and
let H be a collection of half-spaces that contain C. If for every point on the boundary
of C there is at least one half-space H ∈ H whose boundary hyperplane contains this
point, then

C =
⋂
H∈H

H.

Proof. Assume the contrary, i.e. the conditions of the proposition are satisfied,412

but there is a point x ∈ (
⋂
H∈HH) \ C. Since intC 6= ∅, there is some y ∈ intC.413

The line segment [x, y] intersects the boundary of C at a unique point z ∈ (x, y)414

(see [8, Remark 2.1.7]). For some H ∈ H there is a boundary hyperplane that contains415

z. The half-space must have y in its interior, hence x /∈ H, and therefore x /∈
⋂
H∈HH,416

a contradiction.417
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16 V. ROSHCHINA AND L. TUNÇEL

Proposition A.3. Let F be a collection of proper faces of a compact convex set
C ⊂ R3, intC 6= ∅. If there exists a homeomorphism φ from the union U of the
relative interiors of the sets in F ,

U =
⋃
F∈F

relintF

to the Euclidean sphere S2, then the collection F contains all nonempty proper faces418

of C.419

Proof. It is not difficult to construct a homeomorphism ψ between the boundary420

of C and the unit sphere. This can be done by choosing an arbitrary point c ∈ intC421

and identifying each point u on the boundary of C with the point p = (u−c)/‖u−c‖.422

This mapping is continuous, and since the intersection of the ray c + cone p with423

the boundary of C is unique (see [8, Remark 2.1.7]), it is also a bijection, hence the424

mapping ψ is indeed a homeomorphism.425

We can compose the inverse of the homeomorphism φ (from the assumption) with
ψ to obtain another homeomorphism ψ ◦φ−1 that maps the unit sphere to its subset.
If there exists a point on the boundary of C that is not in U , then the set

ψ(φ−1(S2))

is a proper subset of the sphere. This is impossible by the standard argument involv-426

ing the stereographic projection and Borsuk-Ulam Theorem: if such homeomorphism427

existed, it is easy to construct another homeomorphism between the sphere and the428

Euclidean subspace of the same dimension by rotating the sphere and considering429

the stereographic projection. Being a homeomorphism, this is a continuous map-430

ping, which by Borsuk-Ulam Theorem has to have coincident images of two antipodal431

points.432

Proposition A.4. Let C be a compact convex set in Rn and let K be its lifting433

to Rn+1, K := cone{C×{1}}. The set C is facially (tangentially) exposed if and only434

if K is.435

Proof. The facial exposure part was proven in [27, Proposition 3.2]. The tangen-436

tial exposure can be shown in a similar fashion, using the face correspondence given437

in [27, Proposition 3.1].438

Proposition A.5. If a closed convex set C ⊂ Rn is facially exposed, then all439

zero- and one-dimensional faces of C are tangentially exposed, i.e.440

(A.1) span(F − x) ∩ Tangent(x;C) = Tangent(x;F ) ∀x ∈ F, ∀F, dimF < 2.441

Proof. Observe that all zero-dimensional faces are tangentially exposed due to442

the triviality of the relevant linear span, so we only need to prove the statement for443

one-dimensional faces.444

Assume that there exists a face [u, v], u 6= v of a closed facially exposed set C445

such that [u, v] is not tangentially exposed.446

This means that there exists x ∈ [u, v] that violates (A.1). Observe that x /∈ (u, v),447

as for the points in the relative interior of the interval we have Tangent(x; [u, v]) =448

span(u−x), and property (A.1) holds trivially. Without loss of generality we assume449

that x = u.450

There exists a sequence {xk} such that xk → u, xk ∈ C,

pk :=
xk − u
‖xk − u‖

→ p ∈ (Tangent(x;C) ∩ span{v − u}) \ Tangent(u;F ).

This manuscript is for review purposes only.



FACIALLY DUAL COMPLETE CONES, LEXICOGRAPHIC TANGENTS 17

Observe that from p /∈ Tangent(u;F ) = cone{v − u}, p ∈ span{v − u}, ‖p‖ = 1 we
deduce that

p =
u− v
‖u− v‖

.

Since {u} is an exposed face of C, there exists a normal q ∈ Rn such that

〈q, u〉 > 〈q, x〉 ∀x ∈ C.

We therefore have

〈q, p〉 = lim
k→∞

〈q, xk − u〉
‖xk − u‖

≤ 0,

and on the other hand

〈q, p〉 =
〈q, u− v〉
‖u− v‖

> 0,

a contradiction.451

Proposition A.6. Let F be a two-dimensional face of a three-dimensional com-452

pact convex set C. If for each x ∈ F and each q ∈ Normal(x;F ) ∩ span(F − x) there453

exists a corresponding normal h ∈ Normal(x;C) that projects onto the linear span of454

F − x as q, then F is tangentially exposed.455

Proof. Suppose that F is not tangentially exposed. This implies that there exists
x ∈ F and a sequence {xk}, xk → x, xk ∈ C such that

pk =
xk − x
‖xk − x‖

→ p ∈ (Tangent(x;C) ∩ span(F − x)) \ Tangent(x;F ).

Since p ∈ span(F−x)\Tangent(x;F ), there must be a normal q ∈ Normal(x;F )∩456

span(F − x) such that 〈p, q〉 < 0.457

If there is a normal h ∈ Normal(x;C) such that

ΠspanF (h) = q,

then for sufficiently large k

〈xk − x, h〉 < 0,

which is impossible.458

Proposition A.7. Given the representation for our set C as

C = {x̄ : 〈pt, x̄〉 ≤ dt, t ∈ T},

its lifting is

K = {x : 〈(pt,−dt), x〉 ≤ 0, t ∈ T},

and the dual cone of the lifting is

K∗ = cl cone{(pt,−dt) : t ∈ T}.

Proof. Straightforward from the definitions.459

Proposition A.8. Let L be a linear subspace and let C be a closed convex set.460

The set L⊥ + C is closed iff the projection of C onto L is closed.461
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Proof. First assume that ΠL(C) is closed. Consider any sequence {xk} such that
xk ∈ (L⊥ + C) for all k ∈ N and xk → x̄. Then ΠL(xk) → ΠL(x̄) ∈ ΠL(C) by our
assumption. Hence there exists ȳ ∈ C such that ΠL(x̄) = ΠL(ȳ). We have

x̄ = ΠL(x̄) + (x̄−ΠL(x̄)) = ΠL(ȳ) + (x̄−ΠL(x̄)) = ȳ + (ΠL(ȳ)− ȳ)︸ ︷︷ ︸
∈L⊥

+ (x̄−ΠL(x̄))︸ ︷︷ ︸
∈L⊥

,

hence, x̄ ∈ C + L⊥.462

Now assume that C + L⊥ is closed and let {xk} be such that xk ∈ ΠL(C) for all
k ∈ N and xk → x̄. For every k ∈ N there is some yk ∈ C such that xk = ΠL(yk). We
hence have

xk = yk + (xk − yk) = yk + (ΠL(yk)− yk) ∈ C + L⊥.

Since C + L⊥ is closed, we have x̄ = ȳ + z̄ with ȳ ∈ C, z̄ ∈ L⊥. Then x̄ = ΠL(ȳ) ∈463

ΠL(C), so ΠL(C) is closed.464

Proposition A.9. Let K ⊆ Rn be a cone, and assume that K is facially exposed.465

Then for every F C K such that F = cone{p1, p2}, where p1, p2 ∈ Rn are linearly466

independent, the set K∗ + F⊥ is closed.467

Proof. SinceK is facially exposed, the faces E1 = F∩span p1 and E2 = F∩span p2468

are exposed. Therefore, there are normals h1, h2 ∈ Rn such that469

(A.2) 〈hi, pi〉 = 0, 〈hi, x〉 < 0 ∀x ∈ K \ Ei, i ∈ {1, 2}.470

Observe that h1, h2 /∈ F⊥ (since they expose proper faces of F ). Hence,

gi := ΠspanF (hi) 6= 0 ∀i ∈ {1, 2}.

Moreover,471

(A.3) 〈gi, pi〉 = 〈gi − hi, pi〉+ 〈hi, pi〉 = 0 ∀i ∈ {1, 2},472

since gi − hi ∈ F⊥, and

〈gi, x〉 = 〈hi, x〉 < 0 ∀x ∈ F \ Ei, i ∈ {1, 2}.

Observe that an x ∈ spanF can be represented as

x = αp1 + βp2, α, β ∈ R,

with α, β ≥ 0 if and only if x ∈ F . We have from (A.3)

〈x, g1〉 = α〈p1, g1〉+β〈p2, g1〉 = β〈p2, g1〉, 〈x, g2〉 = α〈p1, g2〉+β〈p2, g2〉 = α〈p1, g2〉.

It follows from these relations that α ≥ 0 if and only if 〈x, g1〉 ≤ 0 and β ≥ 0 if and
only if 〈x, g2〉 ≤ 0. We have the representation

F = {x ∈ Rn : 〈x, g1〉 ≤ 0, 〈x, g2〉 ≤ 0} ∩ spanF.

For the dual face we have

F ∗ = − cl cone{g1, g2}+ F⊥ = − cone{g1, g2}+ F⊥,

hence, for any y ∈ F ∗ we have

y = −αg1 − βg2 + u,
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where α, β ∈ R+ and u ∈ F⊥. We can rewrite this as

y = −αg1 − βg2 + u = −αh1 − βh2 + (α(h1 − g1) + β(h2 − g2) + u),

where α(h1−g1)+β(h2−g2)+u ∈ F⊥, and since h1, h2 ∈ −K∗, we have y ∈ K∗+F⊥.473

By the arbitrariness of y this yields F ∗ ⊂ K∗+F⊥. Together with F ∗ = cl(K∗+F⊥)474

this yields K∗ + F⊥ = cl(K∗ + F⊥).475

Proposition A.10 (Pataki criterion). If a face F C K is such that all proper476

minimal faces of F ∗ are exposed, then F⊥ +K∗ is closed.477

Proof. This follows directly from Theorem 2 and the proof of Theorem 3 in [18].478

Proposition A.11. Let S ⊂ Rn be such that S is compact and can be strictly479

separated from zero. Then coneS is a closed convex cone.480

Proof. If coneS is not closed, then there must be a sequence {yk} such that
yk ∈ K for all k ∈ N and yk → y /∈ K. Therefore for each k ∈ N we have

yk =

pk∑
i=1

αikx
i
k,

pk∑
i=1

αik = 1, αik ≥ 0 ∀i ∈ {1, . . . , pk}, pk ≤ n+ 1.

Proposition A.12 (Properties of the cone K from Example 2). Let K :=481

cone{C × {1}}, where C := conv{γ1, γ2}, γ1(s) = (−s,−s2,−s3), s ∈ [0, 1] and482

γ2(t) = (−t, t2, 0), t ∈ [0, 1/3(2 +
√

7)]. The closed convex cone K is483

• facially exposed;484

• tangentially exposed;485

• not strongly tangentially exposed;486

• not FDC.487

Proof. To verify that K is facially and tangentially exposed by Proposition A.4488

it is sufficient to show that C satisfies these properties.489

To show facial exposure, first consider the parametric families of compact
convex sets

F11(s) = [0, γ1(s)], s ∈ (0, 1], F22(s) = [γ1(s), γ2(ϕ(s))], s ∈ (0, 1],

where ϕ(s) = 1/3(2 +
√

7)s, and

F1 = conv{0, γ1(1), γ2(ϕ(1))}, F2 = conv{γ2}.

To show that these sets are exposed one- and two-dimensional faces of C, it is sufficient490

to demonstrate that for each of these faces there exists a corresponding exposing491

hyperplane. This is a straightforward exercise in analysis, which we omit for brevity.492

It is evident that γ1 ∪ γ2 ⊆ extC, since all points in γ1 ∪ γ2 are subfaces of the493

higher dimensional faces listed above. All these zero-dimensional faces are exposed494

by Proposition A.1.495

It is evident from the diagram in Fig. 11 that the relative interiors of all faces that496

we came across so far can be mapped homeomorphically to a sphere, therefore, by497

Proposition A.3, there are no proper faces of the set C other than the listed exposed498

faces.499

Tangential exposure needs to be verified for two-dimensional faces only due to500

Proposition A.5. We only have two such faces, F1 and F2.501

This manuscript is for review purposes only.



20 V. ROSHCHINA AND L. TUNÇEL

γ1 γ2

γ1(1) γ2(φ(1))

0

a

a b

b

0

Fig. 11. Boundary of C identified with the unit sphere

For the triangular face F1 observe that all of its one-dimensional faces are exposed,502

hence the relevant normals project onto the normals at the points on these faces in503

the two-dimensional span of the face. The normals at the corner points are obtained504

as the convex hulls of these projections.505

For the top face F2 = conv γ2 the selection of the normals and the verification of506

the projections is a straightforward technical exercise.507

To show that the second-order tangential exposure is broken (and in
fact the tangent cone is not even facially exposed), consider the tangent to the set C
at 0. We have

Tangent(0;C) = Lim sup
t→∞

tC = cl cone{γ1 ∪ γ2}.

We scale our curves for convenience to obtain

κ1(s) = (−1,−s,−s2), κ2(t) = (−1, t, 0).

We hence have a slice of our tangent cone given by

conv{(−s,−s2), s ∈ [0, 1], (−1, t, 0), t ∈ [0, ϕ(1)]},

see Fig. 7. It is clear that the set has an unexposed face {(0, 0)}.508

To show that the cone K = cone{C×{1}} is not FDC, we explicitly identify
a parametrised family of points in the sum K∗ + F⊥ whose limit does not belong to
this set. Let

p(s) =
(

2(
√

7 + 1)s, (5−
√

7), 0, (
√

7 + 3)s2
)
.

We will show that p(s) ∈ K∗ + F⊥ for F = cone{F2 × {1}}, however, p(s) → p̄ /∈509

K∗ + F⊥.510

For the first relation, observe that F⊥ = span{(0, 0, 1, 0)}, and therefore

r(s) := (0, 0,
4

s
, 0) ∈ F⊥.

Hence, p(s) = q(s) + r(s), where r(s) ∈ F⊥, and we will next show that q(s) ∈ K∗.511

We have explicitly

q(s) =
(

2(
√

7 + 1)s, (5−
√

7),−4/s, (
√

7 + 3)s2
)
.

This manuscript is for review purposes only.



FACIALLY DUAL COMPLETE CONES, LEXICOGRAPHIC TANGENTS 21

Abusing the notation and denoting by γ1 the lifted version of the relevant curve,512

we have513

〈γ1(u), q(s)〉 = (
√

7 + 3 + 4
u

s
)(u− s)2 > 0514

515

when u 6= s, also for γ2 substituting ϕ(u) = 1/3(2 +
√

7)u,516

〈γ2(ϕ(u)), q(s)〉 = (3 +
√

7)(u− s)2,517518

which is greater than zero unless u = s. We have hence shown that the point q(s) is519

in the dual cone.520

Let
p̄ = lim

s↓0
p(s) = (0, 5−

√
7, 0, 0),

then
〈p̄, γ1(s)〉 = (

√
7− 5)s < 0,

and hence p̄ /∈ K∗.521

Proposition A.13 (Properties of K from Example 3). Let K := cone{C×{1}},522

where C := conv{γ1, γ2}, γ1(t) = (cos t, sin t, 1), t ∈ [0, π/2], γ2(t) = (cos t, sin t,−1),523

t ∈ [0, π]. The closed convex cone K is524

• facially exposed;525

• not strongly tangentially exposed;526

• FDC.527

Proof. To prove that the cone K is facially exposed, we use the same528

techniques as in the proof of Proposition A.12.529

The two-dimensional faces of C are

F1 = conv{γ1}, F2 = conv{γ2},

F3 = conv{γ1(0), γ2(0), γ2(π)}, F4 = conv{γ1(0), γ1(π/2), γ2(π)};

the one-dimensional faces are the line segments connecting γ1 and γ2,530

F11(t) = conv{γ1(t), γ2(t)}, t ∈ [0, π/2];531

F12(t) = conv{γ1(π/2), γ2(t)}, t ∈ (π/2, π];532533

and the remaining intersections of the two-dimensional faces,

F13 = conv{γ1(0), γ1(π/2)}, F14 = conv{γ2(0), γ2(π)}, F15 = conv{γ1(0), γ2(π)}.

It is a technical exercise to verify that the two-dimensional faces Fi, i ∈ {1, . . . , 4}
are exposed by the hyperplanes that correspond to the following half-spaces that
contain C,

〈(0, 0, 1)·〉 ≤ 1, 〈(0, 0,−1), ·〉 ≤ 1, 〈(−1,−1, 1), ·〉 ≤ 0, 〈(0,−1, 0), ·〉 ≤ 0.

This also proves that the one-dimensional faces F13, F14, F15 are exposed, by Propo-
sition A.1. The remaining families of one-dimensional faces F11 and F12 are exposed
by the following two families of half-spaces and relevant hyperplanes,

〈(cos t, sin t, 0), ·〉 ≤ 1 : t ∈ [0, π/2],
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γ2

(1,0,1) a (0,1,1)

(-1,0,-1)(1,0,-1)

(1,0,-1)

a
b

b

c

c

F1

F2

F4
F3

γ1

Fig. 12. Boundary of C identified with the unit sphere

〈(cos τ, sin τ,
1− sin τ

2
), ·〉 ≤ 1 + sin τ

2
, τ ∈ (π/2, π].

It is evident from using the same argument as in the proof of Proposition A.12534

and invoking Proposition A.3 together with the facial topology shown in Fig. 12,535

that the listed one- and two-dimensional faces together with their zero-dimensional536

intersections along the curves γ1 and γ2 comprise all nonempty proper faces of the537

set C. The exposure of the zero-dimensional faces follows from Proposition A.1.538

To prove that the cone K is FDC we begin with computing the polar cone539

explicitly. We can do this from the half-space description obtained earlier and using540

Propositions A.2 and A.7. The dual cone K∗ for K is541

K◦ = cone{{(− cos t,− sin t, 0, 1) : t ∈ [0, π/2]},542 {
(− cos τ,− sin τ,

sin τ − 1

2
,

1 + sin τ

2
), τ ∈ (π/2, π]

}
,543

(0, 0,−1, 1), (0, 0, 1, 1), (1, 1,−1, 0), (0, 1, 0, 0)}.544545

To check whether K is facially dual complete, it remains to consider all possible546

sums F⊥ + K∗ for orthogonal complements of faces of K and see if these sets are547

closed.548

Notice that whenever the face F is one-dimensional, its orthogonal complement549

is a three-dimensional subspace. Its sum with any closed cone is closed, since the550

relevant one-dimensional projection of a closed cone is closed. By Proposition A.9 all551

two-dimensional faces of K also verify the closedness condition.552

Due to our observation about one-dimensional faces and Proposition A.9 to prove553

that the cone K = cone{C × {1}} is FDC we only need to check the closedness of554

F⊥+K∗ for the three-dimensional faces of K (that correspond to the two dimensional555

faces of C shown in Fig 13).556

For the three-dimensional faces of K that correspond to the top and bottom faces557

F11 and F12 of the set C, we use Proposition A.8 to reduce checking that the sum558

F⊥ +K∗ is closed to checking that ΠspanF⊥K
∗ is closed.559

To compute the projections we use a coordinate transformation that rotates the560

space so that F⊥ coincides with span(0, 0, 0, 1). This allows us to obtain a three-561

dimensional graphic representation of the projection for each case.562

We use the representation K∗ = coneS, where

S = S1 ∪ S2 ∪ S3,

This manuscript is for review purposes only.



FACIALLY DUAL COMPLETE CONES, LEXICOGRAPHIC TANGENTS 23

x1

x2

x3(1,0,1)

(0,1,1)

(1,0,-1)

(-1,0,-1)

Fig. 13. Two dimensional faces of C

563

S1 = {(− cos t,− sin t, 0, 1) : t ∈ [0, π/2]},564

S2 =

{
(− cos τ,− sin τ,

sin τ − 1

2
,

1 + sin τ

2
), τ ∈ [π/2, π]

}
,565

S3 = {(0, 0,−1, 1), (0, 0, 1, 1), (1, 1,−1, 0), (0, 1, 0, 0), (0, 0, 0, 1)}.566567

For the top face we have the corresponding face F ′11 = cone{F11 × {1}} =
cone{γ1 × {1}}CK, and so

spanF ′11 = span{(1, 0, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1)}, F ′11
⊥

= span(0, 0, 1,−1).

It is a technical exercise in linear algebra to verify that U(F ′11) = coneS′, where568

S′ = {S′1, S′2, S′3},569

S′1 =
{
{(− cos t,− sin t, 1/

√
2) : t ∈ [0, π/2]}

}
,570

S′2 =
{

(− cos τ,− sin τ, 1/
√

2 sin τ), τ ∈ [π/2, π]
}
,571

S′3 =
{

(0, 0,
√

2), (1, 1,−1/
√

2), (0, 1, 0), (0, 0, 1/
√

2)
}
.572

573

To show that U(F ′11) is closed, we use Proposition A.11. It is easy to see that for
w = (1, 1, z), where z ∈ (2, 2

√
2), we have

〈w, x〉 > 0 ∀x ∈ S′.

For the bottom face F12 we have F ′12 = cone{γ1 × {1}}, and the relevant linear
subspaces are

spanF ′12 = span{(1, 0, 1,−1), (0, 1, 1,−1), (0, 0, 1,−1)}, F ′12
⊥

= span(0, 0, 1, 1).

After computing the relevant unitary transformation U , the projection is a three574
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dimensional set U(F ′12) = coneS′, where S′ = {S′1, S′2, S′3},575

S′1 =
{
{(cos t, sin t, 1/

√
2) : t ∈ [0, π/2]}

}
,576

S′2 =
{

(cos τ, sin τ, 1/
√

2), τ ∈ [π/2, π]
}
,577

S′3 =
{

(0, 0,
√

2), (−1,−1, 1/
√

2), (0,−1, 0), (0, 0, 1/
√

2)
}
.578

579

For w = (0, y,−1), where y ∈ (0, 1/
√

2), it is easy to check that 〈w, x〉 < 0 for all580

points in S′, and hence, by Proposition A.11 the set coneS′ is closed.581

The remaining triangular faces satisfy Proposition A.10: since the triangular faces582

are polyhedral, their duals are also polyhedral, and have all their proper faces exposed.583
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