Solutions

Question 1 [3 marks] Indicate, for each of the following statements, whether it is true or false. Write “True” or “False” next to each item. No explanation is necessary.

- If a function \(f \in C^1(\mathbb{R}^n) \) has a unique global minimizer, then it is strictly convex. **False**, not necessarily, convexity is not even needed. Take \(-\sin(x)/x\).

- If \(f \in C^2(\mathbb{R}^n) \) and \(x^* \) is a strict local minimizer for \(f \) then \(\nabla f(x^*) = 0 \) and \(\nabla^2 f(x^*) \) is positive definite. **False**, consider \(f(x) = x^4 \) at \(x^* = 0 \).

- Let \(f \in C^0(\mathbb{R}^n) \) and let \(L = \{x \in \mathbb{R}^n : f(x) \leq 2\} \). If \(L \neq \emptyset \) and \(L \subseteq B_1(0) \), then \(f \) has a global minimizer. **True**, because this is stating that \(f \) has a nonempty bounded level set.

- Let \(f : \mathbb{R}^n \to \mathbb{R} \), and let \(p \in \mathbb{R}^n \) be a descent direction at \(x \in \mathbb{R}^n \). If \(f(x + \alpha p) > f(x) + \sigma \alpha \nabla f(x)^T p \), then \(\sigma \) satisfies the curvature condition (where \(0 < \sigma < \frac{1}{2} \)) for line search. **True**, this is the definition.

- If the trust region method converges to a point \(x^* \), then \(||x^* - x^k||_2 \leq \delta^k \) at any iteration \(k \) where \(x^k \) is the current point and \(\delta^k \) is the current trust region radius. **False**, \(||x^* - x^0||_2 \leq \delta \) is not necessary for convergence. \(\delta \) does not play any role for convergence in general, only for quadratic convergence.

Question 2 [3 marks] Let \(f : \mathbb{R}^n \to \mathbb{R} \) be defined by \(f(x) = x^T (A + \beta I)x + b^Tx \), where \(b \in \mathbb{R}^n \), \(\beta \in \mathbb{R} \), and \(A \in \mathbb{R}^{n \times n} \) is a symmetric matrix that is not positive semidefinite (i.e. \(A \) has at least one negative eigenvalue). Prove that if \(x^* \) is a global minimizer for \(f \) and \(||x^*||_2 = 1 \), then \(x^* \) is an optimal solution to

\[
\min \quad x^T Ax + b^T x \\
\text{s.t.} \quad ||x||_2 \leq 1.
\]

Solution: First, \(\min\{x^T Ax + b^T x : ||x||_2 \leq 1\} \) cannot have a global minimizer \(\bar{x} \) such that \(||\bar{x}||_2 < 1 \), because then \(\bar{x} \) would be a local minimizer for \(x^T Ax + b^T x \), which is impossible since \(A \) is not positive semidefinite. Thus any global minimizer \(\bar{x} \) to \(\min\{x^T Ax + b^T x : ||x||_2 \leq 1\} \) must satisfy \(||\bar{x}||_2 = 1 \).
Then, x^* is an optimal solution to the each of the following problems:

\[
\begin{align*}
\min & \left\{ x^T (A + \beta I)x + b^T x : x \in \mathbb{R}^n \right\} \\
\min & \left\{ x^T (A + \beta I)x + b^T x : ||x||_2 = 1 \right\} \\
\min & \left\{ x^T Ax + x^T \beta x + b^T x : ||x||_2 = 1 \right\} \\
\min & \left\{ x^T Ax + \beta + b^T x : ||x||_2 = 1 \right\} \\
\min & \left\{ x^T Ax + b^T x : ||x||_2 = 1 \right\} \\
\min & \left\{ x^T Ax + b^T x : ||x||_2 \leq 1 \right\}
\end{align*}
\]

where we (1) restated the hypothesis, (2) restricted the feasible region to a subset that contains x^*, (3) distributed $(A + \beta I)$, (4) observed that $x^T x = ||x||_2^2 = 1$, (5) observed that β is a constant, and (6) used $||\bar{x}||_2 = 1$ as stated above.

Question 3 [4 marks] Consider a function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 - 6x^2 + 9x$.

(i) Determine all values of x^k such that x^{k+1} is well defined with Newton’s method, and find a local minimizer x^* for f.

(ii) Let x^* be the local minimizer found above. Prove that if $x^0 \in B_r(x^*)$ with $r = \frac{1}{2}$, then Newton’s method will converge quadratically to x^*.

Solution:

(i) We have

\[
\begin{align*}
f(x) &= x^3 - 6x^2 + 9x \\
f'(x) &= 3x^2 - 12x + 9 \\
f''(x) &= 6x - 12
\end{align*}
\]

Newton’s method is defined if $\nabla^2 f$ is positive definite, i.e. if $6x - 12 > 0$, which is for all $x^k > 2$. The critical points of f are the roots of f', i.e. $x = 1$ and $x = 3$. The Hessian is negative at $x = 1$, but its value is $\nabla^2 f(3) = 1$ at $x^* = 3$. Thus $x^* = 3$ is a (strict) local minimizer.

(ii) We have seen in class a theorem for the convergence of Newton’s method. We need to show that all its hypotheses hold.

(1) $\nabla^2 f$ is Lipschitz continuous over $B_r(x^*)$. We have that $||(6x - 12) - (6y - 12)|| \leq L(x - y)$ with $L = 6$. So $\nabla^2 f$ is Lipschitz continuous over \mathbb{R}.

(2) We checked in (i) that the second order sufficient conditions for optimality are satisfied at $x^* = 3$.

(3) $||\nabla^2 f(x)^{-1}|| \leq \frac{2}{\nabla^2 f(x^*)^{-1}}$. We have $\frac{1}{\nabla^2 f(x)} = \frac{1}{6(x-2)}$ and $\frac{1}{\nabla^2 f(x^*)} = \frac{1}{6}$. We must thus satisfy $x \geq \frac{5}{2}$, which is satisfied for all $r \leq \frac{1}{2}$.

(4) $r \leq \frac{1}{2L||\nabla^2 f(x^*)^{-1}||}$. This is true for

\[
r \leq \frac{1}{2 \cdot 6 \cdot |\frac{1}{6}|} = \frac{1}{2}.
\]