
1. Two circles \mathbf{E}_1 and \mathbf{E}_2 are given by

$$\mathbf{E}_{\underline{\mathbf{I}}}: \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & 36 \end{bmatrix} \qquad \mathbf{E}_{\underline{\mathbf{I}}}: \begin{bmatrix} \mathbf{1} & -8+\mathbf{i} \\ -8-\mathbf{i} & 49 \end{bmatrix}$$

- (a) Find the matrix that represents every circle in the pencil determined by \mathbf{E}_1 and \mathbf{E}_2 .
- (b) Find cosine of the angle determined by \mathbf{C}_1 and \mathbf{C}_2 .
- 2. The sphere S in \mathbb{R}^3 is given by the equation $u^2 + v^2 + w^2 = 1$. Let S be the point with coordinates (0,0,-1).
 - (a) Find the equation of the atereographic projection from the plane {(x,y,0): x,y e BR) to S using the point S as the vortex of projection.
 - (b) The circle $(x=8)^2 + (y-1)^2 = 16$ is mapped by the above projection to a circle on S. Find the equation of the plane containing that circle.
- 3. Let 5 be the sphere with equation $u^2+v^2+v^2=1$, two planes $Y_1: \ 3u+v-v=1$ $Y_2: \ u+2v+2w=1$
 - (a) Find the poles P_1 and P_2 of the planes Y_1 and Y_2 .
 - (b) Find the line l containing P_1 and P_2 .
 - (c) Show that the pole of any plane in the gencil determined by γ_2 and γ_2 lies on the line k.

- 4.(a) Find the matrix of the collineation ϕ that maps the points with homogeneous coordinates (1,0,0), (0,1,0), (0,0,1), and (1,1,1) to (1,2,3), (1,1,0), (0,1,1), and (1,-1,4), respectively.
 - (b) Let ℓ be the line with homogeneous coordinates [2,-1,1]. Find ℓ^{ϕ} .
- 5. Four collinear points in the plane are given with homogeneous coordinates
 - A: (3,0,0), B: (1,2,-2), C: (8,1,-1), D: (0,-6,6).
 - (a) Find the cross ratio (A,B;C,D).
 - (b) Find the point $\, X \,$ so that $\, C \,$ and $\, X \,$ are harmonic conjugates with respect to $\, A \,$ and $\, B \,$
- 6. (See next page.)
- 7. Find the equation of the non-degenerate conic that is tangent to the line [0,1,-1] at the point (1,1,1), is tangent to the line [1,0,0] at the point (0,0,1), and contains the point (2,-2,2).

6.(a) In the Desargues' Configuration below, find two triangles that are perspective from the point A'. Find the line from which these two trilaterals are perspective.

(b) The following homogeneous coordinates are given for points in the figures above:

$$v: (1,1,1)$$
 A: $(1,0,0)$ A': $(3,1,1)$

Find the coordinates of the line P,Q,R.