The Theorem of Pappus and
 Commutativity of Multiplication

Leroy J Dickey *

2012-05-18

Abstract

The purpose of this note is to present a proof of the Theorem of Pappus that reveals the role of commutativity of multiplication. This proof, my current favourite, shows that the Pappus Configuration "closes" if and only if two numbers a and b commute.

1 Introduction

The proof given here is easy to follow and involve algebraic expressions that are simpler than are found in any other proof I have seen. This proof is distinguished by the selection of the points used for the frame of reference. The result is that all the algebraic expressions that arise are as simple as possible and at each step along the way, the property of commutativity is not used.

The frame selection may surprise readers who are familiar with proofs which use the convention that the the frame of reference is chosen from the set of "given" points, and then the co-ordinates of the remaining point and lines are determined. In this context, following this convention would mean that the points of the frame would be chosen from this set of 6 points: $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}$, and C_{2}. In this proof, we depart from that restriction.

We assume that the plane is coordinatized by a division ring. The formal definition is presented below 1.1, but for those who don't want to bother with the formalities of the definition, a good working definition is this: A division ring is almost a field, and the only field property that is not required is that of commutativity of multiplication. Thus a field is a commutative division ring.

[^0]If you are not sure what a field is, you probably know some examples: the rational numbers \mathbb{Q}, the real numbers \mathbb{R}, and the complex numbers \mathbb{C}. There are infinitely many more infinite fields. There are also some finite fields. The easiest one is \mathbb{Z}_{2}, the set of integers modulo 2 . There are infinitely many more; \mathbb{Z}_{p}, integers $\bmod p$ for any prime p.
Perhaps the best known example of a non-commutative division ring is the quaternions. They were discovered and promoted by William Rowan Hamilton, and they are still used today.

1.1 Definition of a Division Ring

A division ring is a set R containing at least two elements including 0 and 1 so that for every $a \in R$ and every $b \in R$.
There is a well defined operation " + " so that R with this operation is a commutative group. That is, so that

(1)	+ closure	$(\forall a, b \in R)$	$[a+b \in R]$
(2)	+ identity	$(\exists 0 \in R)(\forall a \in R)$	$[a+0=a=0+a]$
(3)	+ inverse	$(\forall a \in R)(\exists b \in R)$ and we write	$\begin{gathered} {[a+b=0=b+a]} \\ b=-a \end{gathered}$
(4)	+ associativity	$(\forall a, b, c \in R)$	$[a+(b+c)=(a+b)+c]$
(5)	+ commutativity	$(\forall a, b \in R)$	$[a+b=b+a]$

Further, there is a second well defined operation " \times " or "." so that
(6) \times closure
$(\forall a, b \in R)$
$[a \cdot b \in R]$
(7) \times identity
$(\exists 1 \in R)[1 \neq 0](\forall a \in R)$
$[a \cdot 1=a=1 \cdot a]$
(8) \times inverse
$(\forall a \in R \backslash\{0\})(\exists b \in R)$
$[a \cdot b=1=b \cdot a]$
and we write
$b=a^{-1}$
(9) \times associativity
$(\forall a, b, c \in R)$
$[(a \cdot b) \cdot c=a \cdot(b \cdot c)]$
(10) \times distributivity

$$
(\forall a, b, c \in R)
$$

$$
[a \cdot(b+c)=a \cdot b+a \cdot c]
$$

$$
(\forall a, b, c \in R) \quad[(a+b) \cdot c=a \cdot c+b \cdot c]
$$

2 The context

The context of this proof is the projective plane as coordinatized by homogeneous coordinates coming from a division ring R.

2.1 Points

We write

$$
P:\left(p_{1}, p_{2}, p_{3}\right)
$$

to mean that the point P is represented by the triple $\left(p_{1}, p_{2}, p_{3}\right)$ where

$$
\left(p_{1}, p_{2}, p_{3}\right) \neq(0,0,0)
$$

and $p_{1}, p_{2}, p_{3} \in R$.
Also, if $k \neq 0$ and $k \in R$ then for the same point P, we may equally well write

$$
P:\left(p_{1} k, p_{2} k, p_{3} k\right)
$$

2.2 Lines

We write

$$
\ell:\left[l_{1}, l_{2}, l_{3}\right]
$$

to mean that the line ℓ is represented by the triple $\left[l_{1}, l_{2}, l_{3}\right]$ and $\left[l_{1}, l_{2}, l_{3}\right] \neq$ $[0,0,0]$ and $l_{1}, l_{2}, l_{3} \in R$. If $m \in R$ and $m \neq 0$ we may equally well write

$$
\ell:\left[m l_{1}, m l_{2}, m l_{3}\right]
$$

2.3 Incidence

If $P:\left(p_{1}, p_{2}, p_{3}\right)$ is any point, and if $\ell:\left[l_{1}, l_{2}, l_{3}\right]$ is any line, and if $k, m \in R$ and $k \neq 0$ and $m \neq 0$, then

$$
\begin{aligned}
\ell \text { and } P \text { are incident } & \Longleftrightarrow\left[l_{1}, l_{2}, l_{3}\right] \cdot\left(p_{1}, p_{2}, p_{3}\right)=0 \\
& \Longleftrightarrow m\left[l_{1}, l_{2}, l_{3}\right] \cdot\left(p_{1}, p_{2}, p_{3}\right) k=0 .
\end{aligned}
$$

If ℓ and P are incident, we say that ℓ is on P and dually, that P is on ℓ.

3 The Theorem of Pappus

Let R be a division ring and consider the projective plane coordinatized by that ring, with point and lines denote as above.

Theorem 1. Let ℓ_{1} and ℓ_{2} be two distinct lines in the projective plane. Let A_{1}, B_{1} and C_{1} be three distinct points on ℓ_{1}. Let A_{2}, B_{2} and C_{2} be three distinct points on ℓ_{2}. Suppose also that these six points are distinct from the point of intersection $D=\ell_{1} \cap \ell_{2}$. Define three more points A_{3}, B_{3} and A_{3} by

$$
\begin{align*}
& A_{3}=B_{1} C_{2} \cap B_{2} C_{1}, \tag{1}\\
& B_{3}=C_{1} A_{2} \cap C_{2} A_{1}, \tag{2}\\
& C_{3}=A_{1} B_{1} \cap A_{2} B_{1} . \tag{3}
\end{align*}
$$

Then A_{3}, B_{3} and C_{3} are collinear.

3.1 Notation

We use the notation

$$
L:\left[\ell_{1}, \ell_{2}, \ell_{3}\right] \Longleftarrow\left\langle\begin{array}{l}
P:\left(p_{1}, p_{2}, p_{3}\right) \\
Q:\left(q_{1}, q_{2}, q_{3}\right)
\end{array}\right.
$$

to mean that P and Q are distinct points, and they determine the line L by way of these two equations

$$
\begin{aligned}
{\left[\ell_{1}, \ell_{2}, \ell_{3}\right] \cdot\left(p_{1}, p_{2}, p_{3}\right) } & =0 \\
{\left[\ell_{1}, \ell_{2}, \ell_{3}\right] \cdot\left(q_{1}, q_{2}, q_{3}\right) } & =0
\end{aligned}
$$

Throughout the rest of this proof, this we use the convention that lines are written on the left and points are written on the right, even though the logical flow of the argument works by starting with the points and from them we find the coordinates of the line that is on the right.
Similarly, for two distinct lines L and M, the notation

$$
\left.\begin{array}{c}
L:\left[\ell_{1}, \ell_{2}, \ell_{3}\right] \\
M:\left[m_{1}, m_{2}, m_{3}\right]
\end{array}\right\rangle \quad \Longrightarrow \quad P:\left(p_{1}, p_{2}, p_{3}\right)
$$

to mean that the lines L and M determine the point P by the two equations

$$
\begin{array}{r}
{\left[\ell_{1}, \ell_{2}, \ell_{3}\right] \cdot\left(p_{1}, p_{2}, p_{3}\right)=0} \\
{\left[m_{1}, m_{2}, m_{3}\right] \cdot\left(p_{1}, p_{2}, p_{3}\right)=0}
\end{array}
$$

3.2 The Proof

In this section, we present a proof of Pappus's theorem that can be adapted to prove the converse, namely that if Pappus's theorem holds and our plane is coordinatized by a division ring, then the ring must be commutative.

Proof. Suppose, as stated in the theorem, we are given two lines ℓ_{1} and ℓ_{2}, with A_{1}, B_{1}, C_{1} on ℓ_{1} and A_{2}, B_{2}, C_{2} on ℓ_{2}. and these six points are distinct from $\ell_{1} \cap \ell_{2}$. Also, define three more points by

$$
\begin{aligned}
& A_{3}=B_{1} C_{2} \cap B_{2} A_{1} \\
& B_{3}=C_{1} A_{2} \cap C_{2} B_{1} \\
& C_{3}=A_{1} B_{2} \cap A_{2} C_{1}
\end{aligned}
$$

Our task is to show that A_{3}, B_{3} and C_{3} are collinear. (More precisely, that they are collinear if and only if the division ring is commutative).
Note that because we are working with a division ring, we will not make use of commutativity of multiplication. We begin by choosing the frame of reference to be the four points $A_{1}, A_{2}, A_{3}, B_{3}$, in that order, so that their coordinates are given by

1. $A_{1}:(1,0,0)$.
2. $A_{2}:(0,1,0)$.
3. $A_{3}:(0,0,1)$.
4. $B_{3}:(1,1,1)$.

Figure 1 shows, in part, the strategy of proof. The four points that are the frame of reference that are marked with a diamond and the final point where things come together is C_{3}

Figure 1: The four points A_{1}, A_{2}, A_{3} and B_{3} are chosen to be the frame of reference.
5. The line $A_{1} B_{3}$.

- From items (1) and (4) we have $A_{1}:(1,0,0)$ and $B_{3}:(1,1,1)$.
- Let $A_{1} B_{3}:\left[r_{5}, s_{5}, t_{5}\right]$.
- $A_{1} B_{3}$ on $A_{1} \Longrightarrow 0=\left[r_{5}, s_{5}, t_{5}\right] \cdot(1,0,0)=r_{5}$.
- $A_{1} B_{3}$ on $B_{3} \Longrightarrow 0=\left[0, s_{5}, t_{5}\right] \cdot(1,1,1)=s_{5}+t_{5} \Longrightarrow t_{5}=-s_{5}$.
- Thus $A_{1} B_{3}:\left[0, s_{5},-s_{5}\right]=s_{5}[0,1,-1]$.

We summarize the above calculation by the notation:

$$
A_{1} B_{3}:[0,1,-1] \Longleftarrow\left\langle\begin{array}{l}
A_{1}:(1,0,0) \\
B_{3}:(1,1,1)
\end{array}\right.
$$

6. The line $A_{2} B_{3}$.

Using items 2 and 4, and arguments similar to those used in item 5 give the result which is summarized by the notation:

$$
A_{2} B_{3}:[1,0,-1] \Longleftarrow\left\langle\begin{array}{l}
A_{2}:(0,1,0) \\
B_{3}:(1,1,1)
\end{array}\right.
$$

7. The line $A_{3} B_{3}$.

Using items 3 and 4 and arguments similar to those used in item 5 we get the result summarized by the notation:

$$
A_{3} B_{3}:[1,-1,0] \Longleftarrow\left\langle\begin{array}{c}
A_{3}:(0,0,1) \\
B_{3}:(1,1,1) .
\end{array}\right.
$$

8. The point C_{2} on $A_{1} B_{3}$.

- Let $C_{2}:\left(x_{8}, y_{8}, z_{8}\right)$.
- By (5), we have $A_{1} B_{3}:[0,1,-1]$.
- C_{2} on $A_{1} B_{3}$ implies $0=[0,1,-1] \cdot\left(x_{8}, y_{8}, z_{8}\right)=y_{8}-z_{8}$.
- Thus $z_{8}=y_{8}$ and $C_{2}:\left(x_{8}, y_{8}, y_{8}\right)$.
- $C_{2} \neq A_{1}$ implies $y_{8} \neq 0$ and hence y_{8} has an inverse.
- Let $a=x_{8} y_{8}^{-1}$, so that $x_{8}=a y_{8}$ and $C_{2}:\left(a y_{8}, y_{8}, y_{8}\right)=(a, 1,1) y_{8}$.
- $C_{2} \neq B_{3}$ implies $a \neq 1$.

Thus we have

$$
C_{2}:(a, 1,1), \text { where } a \neq 1
$$

9. The line $A_{3} C_{2}$.

- From item 3 we have $A_{3}:(0,0,1)$
- From item 8 we have $C_{2}:(a, 1,1)$.
- Let $A_{3} C_{2}:\left[r_{9}, s_{9}, t_{9}\right]$.
- $A_{3} C_{2}$ on $A_{3} \Longrightarrow 0=\left[r_{9}, s_{9}, t_{9}\right] \cdot(0,0,1)=t_{9}$.
- Thus $A_{3} C_{2}:\left[r_{9}, s_{9}, 0\right]$.
- $A_{3} C_{2}$ on $C_{2} \Longrightarrow 0=\left[r_{9}, s_{9}, 0\right] \cdot(a, 1,1)=r_{9} a+s_{9}$.
- Thus $s_{9}=-r_{9} a$ and $\left[r_{9}, s_{9}, 0\right]=\left[r_{9},-r_{9} a, 0\right]=r_{9}[1,-a, 0]$.
- We write $A_{3} C_{2}$: $[1,-a, 0]$.

We summarize the above with this notation:

$$
A_{3} C_{2}:[1,-a, 0] \Longleftarrow\left\langle\begin{array}{l}
A_{3}:(0,0,1) \\
C_{2}:(a, 1,1)
\end{array}\right.
$$

10. The point C_{1} on line $A_{2} B_{3}$.

In item 6 we saw that $A_{2} B_{3}:[1,0,-1]$.
Following an argument analogous to that given in item 8, we find

$$
C_{1}:(1, b, 1), \text { where } b \neq 1
$$

11. The line $A_{3} C_{1}$.

Following an argument similar to the one used in item 9, we find

$$
A_{3} C_{1}:[b,-1,0] \Longleftarrow\left\langle\begin{array}{l}
A_{3}:(0,0,1) \\
C_{1}:(1, b, 1)
\end{array}\right.
$$

12. The line $A_{1} C_{1}$.

We have

- $A_{1}:(1,0,0)$ by (1).
- $C_{1}:(1, b, 1)$ by (10).

Again we follow steps analogous to those in item 9, which we summarize by writing:

$$
A_{1} C_{1}:[0,1,-b] \Longleftarrow\left\langle\begin{array}{l}
A_{1}:(1,0,0) \tag{4}\\
C_{1}:(1, b, 1)
\end{array}\right.
$$

13. The point $B_{1}=A_{1} C_{1} \cap A_{3} C_{2}$.

- B_{1} is on lines $A_{1} C_{1}:[0,1,-b]$ and $A_{3} C_{2}:[1,-a, 0]$.
- Let $B_{1}:\left(x_{13}, y_{13}, z_{13}\right)$.
- $A_{1} C_{1}$ on B_{1} implies: $0=[0,1,-b] \cdot\left(x_{13}, y_{13}, z_{13}\right)=y_{13}-b z_{13}$. Thus B_{2} : $\left(x_{13}, b z_{13}, z_{13}\right)$.
- $A_{3} C_{2}$ on $B_{1} \Longrightarrow 0=[1,-a, 0] \cdot\left(x_{13}, b z_{13}, z_{13}\right)=x_{13}-a\left(b z_{13}\right)$. Thus $B_{2}:\left(x_{13}, y_{13}, z_{13}\right)=\left(a\left(b z_{13}\right), b z_{13}, z_{13}\right)=(a b, b, 1) z_{13}$.

We write

$$
B_{1}:(a b, b, 1)
$$

In summary:

$$
\left.\begin{array}{l}
A_{1} C_{1}:[0,1,-b] \\
A_{3} C_{2}:[1,-a, 0]
\end{array}\right\rangle \quad \Longrightarrow \quad B_{1}:(a b, b, 1)
$$

14. The line $A_{2} C_{2}$.

Following the method used in item 12 we have $A_{2} C_{2}:[1,0,-a]$.

$$
A_{2} C_{2}:[1,0,-a] \Longleftarrow\left\langle\begin{array}{l}
A_{2}:(0,1,0) \\
C_{2}:(a, 1,1)
\end{array}\right.
$$

15. The point $B_{2}=A_{2} C_{2} \cap A_{3} C_{1}$.

- Let $B_{2}:\left(x_{15}, y_{15}, z_{15}\right)$.
- $A_{2} C_{2}$ on $B_{2} \Longrightarrow 0=[1,0,-a] \cdot\left(x_{15}, y_{15}, z_{15}\right)=x_{15}-a z_{15}$.
- $A_{3} C_{1}$ on $B_{2} \Longrightarrow 0=[b,-1,0] \cdot\left(a z_{15}, y_{15}, z_{15}\right)=b\left(a z_{15}\right)-y_{15}$.
- Thus $B_{2}:\left(x_{15}, y_{15}, z_{15}\right)=\left(a z_{15}, b\left(a z_{15}\right), z_{15}\right)=(a, b a, 1) z_{15}$.

In summary

$$
\left.\begin{array}{l}
A_{2} C_{2}:[1,0,-a] \\
A_{3} C_{1}:[-b, 1,0]
\end{array}\right\rangle \quad \Longrightarrow \quad B_{2}:(a, b a, 1)
$$

16. The line $A_{1} B_{2}$.

- From item 1 we have $A_{1}:(1,0,0)$
- From item 15 we have $B_{2}:(a, b a, 1)$.
- Let $A_{1} B_{2}:\left[r_{16}, s_{16}, t_{16}\right]$.
- $A_{1} B_{2}$ on $A_{1} \Longrightarrow 0=\left[r_{16}, s_{16}, t_{16}\right] \cdot(1,0,0)=r_{16}$.
- $A_{1} B_{2}$ on $B_{2} \Longrightarrow 0=\left[0, s_{16}, t_{16}\right] \cdot(a, b a, 1)=s_{16}(b a)+t_{16}$.
- $A_{1} B_{2}:\left[r_{16}, s_{16}, t_{16}\right]=\left[0, s_{16},-s_{16} b a\right]=s_{16}[0,1,-b a]$.
- We write $A_{1} B_{2}:[0,1,-b a]$.

In summary,

$$
A_{1} B_{2}:[0,1,-b a] \Longleftarrow\left\langle\begin{array}{c}
A_{1}:(1,0,0) \\
B_{2}:(a, b a, 1)
\end{array}\right.
$$

17. Find the line $A_{2} B_{1}$.

- We have $A_{2}:(0,1,0)$ and $B_{1}:(a b, b, 1)$.
- Let $A_{2} B_{1}:\left[r_{17}, s_{17}, t_{17}\right]$.
- A_{2} on $A_{2} B_{1} \Longrightarrow 0=\left[r_{17}, s_{17}, t_{17}\right] \cdot(0,1,0)=s_{17}$.
- B_{1} on $A_{2} B_{1} \Longrightarrow 0=\left[r_{17}, 0, t_{17}\right] \cdot(a b, b, 1)=r_{17}(a b)+t_{17}$.
- Thus $\left[r_{17}, s_{17}, t_{17}\right]=\left[r_{17}, 0,-r_{17}(a b)\right]=r_{17}[1,0,-a b]$.
- We write: $A_{2} B_{1}:[1,0,-a b]$.

In summary,

$$
A_{2} B_{1}:[1,0,-a b] \Longleftarrow\left\langle\begin{array}{l}
A_{2}:(0,1,0) \\
B_{1}:(a b, b, 1)
\end{array}\right.
$$

18. The point $C_{3}:=A_{1} B_{2} \cap A_{2} B_{1}$.

- From (16) we have $A_{1} B_{2}:[1,0,-a b]$ and from (17) $A_{2} B_{1}:[0,1,-b a]$.
- Let $C_{3}=\left(x_{18}, y_{18}, z_{18}\right)$.
- C_{3} on $A_{1} B_{2}$ implies $0=[1,0,-a b] \cdot\left(x_{18}, y_{18}, z_{18}\right)=x_{18}-a b z_{18}$.
- C_{3} on $A_{2} B_{1}$ implies $0=[0,1,-b a] \cdot\left(x_{18}, y_{18}, z_{18}\right)=y_{18}-b a z_{18}$.
- $\left(x_{18}, y_{18}, z_{18}\right)=\left(a b z_{18}, b a z_{18}, z_{18}\right)=(a b, b a, 1) z_{18}$.

Thus

$$
C_{3}:(a b, b a, 1) .
$$

These steps are summarized in the notation

$$
\left.\begin{array}{l}
L_{1}=A_{1} B_{2}:[0,1,-a b] \\
L_{2}=A_{2} B_{1}:[1,0,-b a]
\end{array}\right\rangle \quad \Longrightarrow \quad C_{3}:(a b, b a, 1)
$$

19. Is C_{3} on $A_{3} B_{3}$?

- By item 7 , we have $A_{3} B_{3}:[1,-1,0]$
- By item 18 we have $C_{3}=(a b, b a, 1)$.

Then

$$
A_{3} B_{3} \text { is on } C_{3} \Longleftrightarrow[1,-1,0] \cdot(a b, b a, 1)=0 \Longleftrightarrow a b=b a
$$

In the case that the division ring is a field, we have the proof of Pappus's theorem.
But even better, we see that if the geometric configuration of Pappus's configuration always closes with 9 points and 9 lines, the coordinatizing division ring must be commutative.

This completes the proof.

[^0]: *This proof was prepared for students of Pure Math 360 at the University of Waterloo in the Spring Term 2012.

