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Abstract

The purpose of this note is to present a proof of the Theorem of Pappus
that reveals the role of commutativity of multiplication. This proof, my
current favourite, shows that the Pappus Configuration “closes” if and
only if two numbers a and b commute.

1 Introduction

The proof given here is easy to follow and involve algebraic expressions that are
simpler than are found in any other proof I have seen. This proof is distinguished
by the selection of the points used for the frame of reference. The result is that
all the algebraic expressions that arise are as simple as possible and at each step
along the way, the property of commutativity is not used.

The frame selection may surprise readers who are familiar with proofs which
use the convention that the the frame of reference is chosen from the set of
“given” points, and then the co-ordinates of the remaining point and lines are
determined. In this context, following this convention would mean that the
points of the frame would be chosen from this set of 6 points: A1, B1, C1, A2, B2,
and C2. In this proof, we depart from that restriction.

We assume that the plane is coordinatized by a division ring. The formal
definition is presented below 1.1, but for those who don’t want to bother with
the formalities of the definition, a good working definition is this: A division
ring is almost a field, and the only field property that is not required is that of
commutativity of multiplication. Thus a field is a commutative division ring.

∗This proof was prepared for students of Pure Math 360 at the University of Waterloo in
the Spring Term 2012.
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If you are not sure what a field is, you probably know some examples: the
rational numbers Q, the real numbers R, and the complex numbers C. There
are infinitely many more infinite fields. There are also some finite fields. The
easiest one is Z2, the set of integers modulo 2. There are infinitely many more;
Zp, integers mod p for any prime p.

Perhaps the best known example of a non-commutative division ring is the
quaternions. They were discovered and promoted by William Rowan Hamilton,
and they are still used today.

1.1 Definition of a Division Ring

A division ring is a set R containing at least two elements including 0 and 1 so
that for every a ∈ R and every b ∈ R.

There is a well defined operation “+” so that R with this operation is a com-
mutative group. That is, so that

(1) + closure (∀a, b ∈ R) [a + b ∈ R]
(2) + identity (∃0 ∈ R)(∀a ∈ R) [a + 0 = a = 0 + a]
(3) + inverse (∀a ∈ R)(∃b ∈ R) [a + b = 0 = b + a]

and we write b = −a
(4) + associativity (∀a, b, c ∈ R) [a + (b + c) = (a + b) + c]
(5) + commutativity (∀a, b ∈ R) [a + b = b + a]

Further, there is a second well defined operation “×” or “·” so that

(6) × closure (∀a, b ∈ R) [a · b ∈ R]
(7) × identity (∃ 1 ∈ R)[1 6= 0](∀a ∈ R) [a · 1 = a = 1 · a]
(8) × inverse (∀a ∈ R\{0})(∃b ∈ R) [a · b = 1 = b · a]

and we write b = a−1

(9) × associativity (∀a, b, c ∈ R) [(a · b) · c = a · (b · c)]
(10) × distributivity (∀a, b, c ∈ R) [a · (b + c) = a · b + a · c]

(∀a, b, c ∈ R) [(a + b) · c = a · c + b · c]

2 The context

The context of this proof is the projective plane as coordinatized by homoge-
neous coordinates coming from a division ring R.

2.1 Points

We write
P : (p1, p2, p3)
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to mean that the point P is represented by the triple (p1, p2, p3) where

(p1, p2, p3) 6= (0, 0, 0)

and p1, p2, p3 ∈ R.

Also, if k 6= 0 and k ∈ R then for the same point P , we may equally well write

P : (p1k, p2k, p3k).

2.2 Lines

We write
` : [l1, l2, l3]

to mean that the line ` is represented by the triple [l1, l2, l3] and [l1, l2, l3] 6=
[0, 0, 0] and l1, l2, l3 ∈ R. If m ∈ R and m 6= 0 we may equally well write

` : [ml1,ml2,ml3].

2.3 Incidence

If P : (p1, p2, p3) is any point, and if ` : [l1, l2, l3] is any line, and if k,m ∈ R
and k 6= 0 and m 6= 0, then

` and P are incident ⇐⇒ [l1, l2, l3] · (p1, p2, p3) = 0

⇐⇒ m[l1, l2, l3] · (p1, p2, p3)k = 0.

If ` and P are incident, we say that ` is on P and dually, that P is on `.

3 The Theorem of Pappus

Let R be a division ring and consider the projective plane coordinatized by that
ring, with point and lines denote as above.

Theorem 1. Let `1 and `2 be two distinct lines in the projective plane. Let
A1, B1 and C1 be three distinct points on `1. Let A2, B2 and C2 be three distinct
points on `2. Suppose also that these six points are distinct from the point of
intersection D = `1 ∩ `2. Define three more points A3, B3 and A3 by

A3 = B1C2 ∩B2C1, (1)

B3 = C1A2 ∩ C2A1, (2)

C3 = A1B1 ∩A2B1. (3)

Then A3, B3 and C3 are collinear.
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3.1 Notation

We use the notation

L : [`1, `2, `3] ⇐=

〈
P : (p1, p2, p3)
Q : (q1, q2, q3)

to mean that P and Q are distinct points, and they determine the line L by way
of these two equations

[`1, `2, `3] · (p1, p2, p3) = 0

[`1, `2, `3] · (q1, q2, q3) = 0

Throughout the rest of this proof, this we use the convention that lines are
written on the left and points are written on the right, even though the logical
flow of the argument works by starting with the points and from them we find
the coordinates of the line that is on the right.

Similarly, for two distinct lines L and M, the notation

L : [`1, `2, `3]
M : [m1,m2,m3]

〉
=⇒ P : (p1, p2, p3)

to mean that the lines L and M determine the point P by the two equations

[`1, `2, `3] · (p1, p2, p3) = 0

[m1,m2,m3] · (p1, p2, p3) = 0.

3.2 The Proof

In this section, we present a proof of Pappus’s theorem that can be adapted
to prove the converse, namely that if Pappus’s theorem holds and our plane is
coordinatized by a division ring, then the ring must be commutative.

Proof. Suppose, as stated in the theorem, we are given two lines `1 and `2, with
A1, B1, C1 on `1 and A2, B2, C2 on `2. and these six points are distinct from
`1 ∩ `2. Also, define three more points by

A3 = B1C2 ∩B2A1

B3 = C1A2 ∩ C2B1

C3 = A1B2 ∩A2C1

Our task is to show that A3, B3 and C3 are collinear. (More precisely, that they
are collinear if and only if the division ring is commutative).

Note that because we are working with a division ring, we will not make use of
commutativity of multiplication. We begin by choosing the frame of reference
to be the four points A1, A2, A3, B3, in that order, so that their coordinates are
given by
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1. A1 : (1, 0, 0).

2. A2 : (0, 1, 0).

3. A3 : (0, 0, 1).

4. B3 : (1, 1, 1).

Figure 1 shows, in part, the strategy of proof. The four points that are the
frame of reference that are marked with a diamond and the final point where
things come together is C3

Figure 1: The four points A1, A2, A3 and B3 are chosen to be the frame of
reference.

5. The line A1B3.

• From items (1) and (4) we have A1 : (1, 0, 0) and B3 : (1, 1, 1).

• Let A1B3 : [r5, s5, t5].

• A1B3 on A1 =⇒ 0 = [r5, s5, t5] · (1, 0, 0) = r5.

• A1B3 on B3 =⇒ 0 = [0, s5, t5] · (1, 1, 1) = s5 + t5 =⇒ t5 = −s5.

• Thus A1B3 : [0, s5,−s5] = s5[0, 1,−1].

We summarize the above calculation by the notation:

A1B3 : [0, 1,−1] ⇐=

〈
A1 : (1, 0, 0)
B3 : (1, 1, 1).

6. The line A2B3.
Using items 2 and 4, and arguments similar to those used in item 5 give
the result which is summarized by the notation:

A2B3 : [1, 0,−1]⇐=

〈
A2 : (0, 1, 0)
B3 : (1, 1, 1).

5



7. The line A3B3.
Using items 3 and 4 and arguments similar to those used in item 5 we get
the result summarized by the notation:

A3B3 : [1,−1, 0]⇐=

〈
A3 : (0, 0, 1)
B3 : (1, 1, 1).

8. The point C2 on A1B3.

• Let C2 : (x8, y8, z8).

• By (5), we have A1B3 : [0, 1,−1].

• C2 on A1B3 implies 0=[0, 1,−1] · (x8, y8, z8) = y8 − z8.

• Thus z8 = y8 and C2 : (x8, y8, y8).

• C2 6= A1 implies y8 6= 0 and hence y8 has an inverse.

• Let a = x8y
−1
8 , so that x8 = ay8 and C2 : (ay8, y8, y8) = (a, 1, 1)y8.

• C2 6= B3 implies a 6= 1.

Thus we have

C2 : (a, 1, 1), where a 6= 1.

9. The line A3C2.

• From item 3 we have A3 : (0, 0, 1)

• From item 8 we have C2 : (a, 1, 1).

• Let A3C2 : [r9, s9, t9].

• A3C2 on A3 =⇒ 0 = [r9, s9, t9] · (0, 0, 1) = t9.

• Thus A3C2 : [r9, s9, 0].

• A3C2 on C2 =⇒ 0 = [r9, s9, 0] · (a, 1, 1) = r9a + s9.

• Thus s9 = −r9a and [r9, s9, 0] = [r9,−r9a, 0] = r9[1,−a, 0].

• We write A3C2 : [1,−a, 0].

We summarize the above with this notation:

A3C2 : [1,−a, 0] ⇐=

〈
A3 : (0, 0, 1)
C2 : (a, 1, 1).

10. The point C1 on line A2B3.

In item 6 we saw that A2B3 : [1, 0,−1].
Following an argument analogous to that given in item 8, we find

C1 : (1, b, 1), where b 6= 1.
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11. The line A3C1.
Following an argument similar to the one used in item 9, we find

A3C1 : [b,−1, 0]⇐=

〈
A3 : (0, 0, 1)
C1 : (1, b, 1).

12. The line A1C1.
We have

• A1 : (1, 0, 0) by (1).

• C1 : (1, b, 1) by (10).

Again we follow steps analogous to those in item 9, which we summarize
by writing:

A1C1 : [0, 1,−b]⇐=

〈
A1 : (1, 0, 0)
C1 : (1, b, 1).

(4)

13. The point B1 = A1C1 ∩A3C2.

• B1 is on lines A1C1 : [0, 1,−b] and A3C2 : [1,−a, 0].

• Let B1 : (x13, y13, z13).

• A1C1 on B1 implies: 0 = [0, 1,−b] · (x13, y13, z13) = y13 − bz13.
Thus B2 : (x13, bz13, z13).

• A3C2 on B1 =⇒ 0 = [1,−a, 0] · (x13, bz13, z13) = x13 − a(bz13).
Thus B2 : (x13, y13, z13) = (a(bz13), bz13, z13) = (ab, b, 1)z13.

We write
B1 : (ab, b, 1).

In summary:

A1C1 : [0, 1,−b]
A3C2 : [1,−a, 0]

〉
=⇒ B1 : (ab, b, 1).

14. The line A2C2.
Following the method used in item 12 we have A2C2 : [1, 0,−a].

A2C2 : [1, 0,−a] ⇐=

〈
A2 : (0, 1, 0)
C2 : (a, 1, 1).

15. The point B2 = A2C2 ∩A3C1.

• Let B2 : (x15, y15, z15).

• A2C2 on B2 =⇒ 0 = [1, 0,−a] · (x15, y15, z15) = x15 − az15.

• A3C1 on B2 =⇒ 0 = [b,−1, 0] · (az15, y15, z15) = b(az15)− y15.
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• Thus B2 : (x15, y15, z15) = (az15, b(az15), z15) = (a, ba, 1)z15.

In summary

A2C2 : [1, 0,−a]
A3C1 : [−b, 1, 0]

〉
=⇒ B2 : (a, ba, 1).

16. The line A1B2.

• From item 1 we have A1 : (1, 0, 0)

• From item 15 we have B2 : (a, ba, 1).

• Let A1B2 : [r16, s16, t16].

• A1B2 on A1 =⇒ 0 = [r16, s16, t16] · (1, 0, 0) = r16.

• A1B2 on B2 =⇒ 0 = [0, s16, t16] · (a, ba, 1) = s16(ba) + t16.

• A1B2 : [r16, s16, t16] = [0, s16,−s16ba] = s16[0, 1,−ba].

• We write A1B2 : [0, 1,−ba].

In summary,

A1B2 : [0, 1,−ba] ⇐=

〈
A1 : (1, 0, 0)
B2 : (a, ba, 1).

17. Find the line A2B1.

• We have A2 : (0, 1, 0) and B1 : (ab, b, 1).

• Let A2B1 : [r17, s17, t17].

• A2 on A2B1 =⇒ 0 = [r17, s17, t17] · (0, 1, 0) = s17.

• B1 on A2B1 =⇒ 0 = [r17, 0, t17] · (ab, b, 1) = r17(ab) + t17.

• Thus [r17, s17, t17] = [r17, 0,−r17(ab)] = r17[1, 0,−ab].
• We write: A2B1 : [1, 0,−ab].

In summary,

A2B1 : [1, 0,−ab] ⇐=

〈
A2 : (0, 1, 0)
B1 : (ab, b, 1).

18. The point C3 := A1B2 ∩A2B1.

• From (16) we have A1B2 : [1, 0,−ab] and from (17) A2B1 : [0, 1,−ba].

• Let C3 = (x18, y18, z18).

• C3 on A1B2 implies 0 = [1, 0,−ab] · (x18, y18, z18) = x18 − abz18.

• C3 on A2B1 implies 0 = [0, 1,−ba] · (x18, y18, z18) = y18 − baz18.

• (x18, y18, z18) = (abz18, baz18, z18) = (ab, ba, 1)z18.
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Thus
C3 : (ab, ba, 1).

These steps are summarized in the notation

L1 = A1B2 : [0, 1,−ab]
L2 = A2B1 : [1, 0,−ba]

〉
=⇒ C3 : (ab, ba, 1).

19. Is C3 on A3B3?

• By item 7, we have A3B3 : [1,−1, 0]

• By item 18 we have C3 = (ab, ba, 1).

Then

A3B3 is on C3 ⇐⇒ [1,−1, 0] · (ab, ba, 1) = 0 ⇐⇒ ab = ba.

In the case that the division ring is a field, we have the proof of Pappus’s
theorem.

But even better, we see that if the geometric configuration of Pappus’s config-
uration always closes with 9 points and 9 lines, the coordinatizing division ring
must be commutative.

This completes the proof.
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