Math 245, Spring 2012 Assignment 9

Not to be handed in.

- 1. Let $A \in \mathsf{M}_{n \times n}(\mathbb{R})$ be a skew-symmetric matrix. Show that e^A is an orthogonal matrix. (You may use the fact that $e^{X+Y} = e^X e^Y$ if XY = YX.)
- 2. Let $Q \in M_{n \times n}(\mathbb{R})$ be an orthogonal matrix.
 - (a) Prove that $det(Q) = \pm 1$.
 - (b) If det(Q) = -1, prove that -1 is an eigenvalue of Q.
 - (c) If n is odd and det(Q) = 1, prove that 1 is an eigenvalue of Q.
- 3. Let \mathbb{H} be the set of all 2×2 matrices of the form

$$\begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} \qquad a, b \in \mathbb{C}.$$

 \mathbb{H} is a 4-dimensional vector space over the real numbers; elements of \mathbb{H} are called **matrix** quaternions.

- (a) Show that the product of two matrix quaternions is a matrix quaternion. Show that a non-zero matrix quaternion is invertible, and its inverse is a matrix quaternion.
- (b) Define $\langle q_1, q_2 \rangle = \frac{1}{2} \operatorname{Re}(\operatorname{tr} q_1 q_2^*)$, for $q_1, q_2 \in \mathbb{H}$. Show that $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{H} .
- (c) For $q \in \mathbb{H}$, let $L_q, R_q \in \mathsf{L}(\mathbb{H})$ be the operators $L_q(x) = qx$, and $R_q(x) = xq$. Show that L_q and R_q are normal operators.
- (d) Let $W = \text{span}\{I_2, q\}$, where $q \in \mathbb{H}$ is a non-zero vector. Let θ be the angle between q and I_2 , and let $T_q = L_q R_q^{-1}$. Show that T_q is a rotation that fixes every vector in W and rotates W^{\perp} through an angle of 2θ .
- (e) Show that $T_q = T_{q'}$ if and only if q = cq' for some $c \in \mathbb{R} \setminus \{0\}$.
- (f) Let V denote the 3-dimensional real vector space of 2×2 skew-hermitian matrices. It is easy to check that $V = \{I_2\}^{\perp} \subset \mathbb{H}$. Show that V is an invariant subspace for each operator T_q , and that the induced operator $(T_q)_V$ is a rotation of V. Show that every rotation of V is of the form $(T_q)_V$ for some $q \in \mathbb{H}$.

(Note: The set of rotations of \mathbb{R}^3 is commonly denoted SO(3, \mathbb{R}) (SO stands for "special orthogonal group"). The set of 1-dimensional subspaces of \mathbb{R}^4 is commonly denoted \mathbb{RP}^3 (called "real projective 3-space"). This argument shows that there is a natural identification between SO(3, \mathbb{R}) and \mathbb{RP}^3 . This is generally considered to be a bit of a remarkable coincidence: it is a special property of 3-dimensional rotations that doesn't generalize to higher dimensions. Nevertheless, it is a well-known, useful fact, and although it doesn't generalize, there are a number of other coincidences of a similar flavour. For example, rotations of \mathbb{R}^4 can also be understood in terms of matrix quaternions: every rotation of \mathbb{H} is of the form $L_q R_{q'}$ where q, q' are unitary.)