Math 245, Spring 2012 Assignment 8

Due Friday July 6, in class.

- 1. Let $A \in \mathsf{M}_{n \times n}(\mathbb{F})$ be a self-adjoint matrix (where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$). Prove that A is positive-definite if and only if all eigenvalues of A are positive real numbers.
- 2. Let V be an n-dimensional inner product space over \mathbb{C} , with inner product $\langle \cdot, \cdot \rangle$. Define $V_{\mathbb{R}}$ to be the 2n-dimensional vector space over \mathbb{R} , obtained by restricting restricting scalar multiplication in V to the field of real numbers. For example, if $V = \mathbb{C}^2$, then $V_{\mathbb{R}} = \mathbb{C}^2$ but a basis for $V_{\mathbb{R}}$ is $\{(1,0),(0,1),(i,0),(0,i)\}$. Any linear operator $T \in \mathsf{L}(V)$ also defines an linear operator $T_{\mathbb{R}} \in \mathsf{L}(V_{\mathbb{R}})$.
 - (a) Prove that $\langle \cdot, \cdot \rangle_{\mathbb{R}}$ defined by $\langle x, y \rangle_{\mathbb{R}} = \text{Re}\langle x, y \rangle$ is an inner product on $V_{\mathbb{R}}$.
 - (b) If $\beta = \{x_1, \dots, x_n\}$ is an orthonormal basis for V, prove that $\beta_{\mathbb{R}} = \{x_1, \dots, x_n, ix_1, \dots, ix_n\}$ is an orthonormal basis for $V_{\mathbb{R}}$.
 - (c) Prove the following: T is normal if and only if $T_{\mathbb{R}}$ is normal; T is self-adjoint if and only if $T_{\mathbb{R}}$ is self-adjoint; T is unitary if and only if $T_{\mathbb{R}}$ is orthogonal.
- 3. Let A, B be $n \times n$ Hermitian matrices, and let C = A + B. Since the eigenvalues of A, B and C are real, we can list them in decreasing order.
 - Let $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n$ be the eigenvalues of A.
 - Let $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n$ be the eigenvalues of B.
 - Let $\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_n$ be the eigenvalues of C.

(If an eigenvalue has multiplicity m, it appears m times in the list.)

- (a) Prove that for any $x \in \mathbb{C}^n$, $\langle Ax, x \rangle \leq \alpha_1 ||x||^2$, and determine when equality occurs.
- (b) Prove that $\gamma_1 \leq \alpha_1 + \beta_1$. Determine when equality occurs. (*Hint:* Use part (a), where x is an eigenvector for C with eigenvalue γ_1 .)
- (c) Give an example to show that part (b) may be false if A, B and C have real eigenvalues, but are not necessarily Hermitian.
- (d) Prove that $\gamma_k \leq \alpha_i + \beta_{k-i+1}$, for all $1 \leq i \leq k \leq n$. (*Hint*: Let $W = \mathsf{E}_{\alpha_i} + \mathsf{E}_{\alpha_{i+1}} + \dots + \mathsf{E}_{\alpha_n}$. What can we say about $\langle Ax, x \rangle$ if $x \in W$?)