Math 245, Spring 2012 Assignment 6

Due Friday, June 22, in class.

Throughout this assignment, the field \mathbb{F} is either \mathbb{R} or \mathbb{C} .

1. Let V be a vector space over \mathbb{F} . Let $\langle \cdot, \cdot \rangle$, and $\langle \cdot, \cdot \rangle'$ be two inner products on V. For $\alpha \in \mathbb{R}$, define

$$\langle x, y \rangle_{\alpha} = \langle x, y \rangle + \alpha \langle x, y \rangle'$$
.

- (a) If $\alpha > 0$, prove that $\langle \cdot, \cdot \rangle_{\alpha}$ is an inner product on V.
- (b) Show that if dim $V \neq 0$, there exists an $\alpha < 0$ such that $\langle \cdot, \cdot \rangle_{\alpha}$ is not an inner product on V.
- (c) Determine whether the following statement is always true: There exists an $\alpha < 0$ such that $\langle \cdot, \cdot \rangle_{\alpha}$ is an inner product on V. Prove it, or give a counterexample.
- 2. Let $\beta = \{v_1, \dots, v_n\}$ be an orthonormal basis for an inner product space V over \mathbb{F} .
 - (a) Prove that for all $x \in V$,

$$[x]^{\beta} = \begin{pmatrix} \langle x, v_1 \rangle \\ \langle x, v_2 \rangle \\ \vdots \\ \langle x, v_n \rangle \end{pmatrix}.$$

(b) Prove that for all $x, y \in V$,

$$\langle x, y \rangle = \langle [x]^{\beta}, [y]^{\beta} \rangle_{\mathbb{R}^n}$$

where the inner product on the right hand side is the standard inner product on \mathbb{F}^n .

- 3. Let V be an inner product space over \mathbb{F} .
 - (a) If $\mathbb{F} = \mathbb{R}$, prove that

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$$

(b) If $\mathbb{F} = \mathbb{C}$, prove that

$$\langle x, y \rangle = \frac{1}{4} \sum_{m=0}^{3} i^{m} ||x + i^{m}y||^{2}.$$

In either case, deduce that two inner products on V are equal if and only if they define the same norm on V.

- 4. Let $A \in \mathsf{M}_{m \times n}(\mathbb{F})$.
 - (a) Prove that for all $x \in \mathbb{F}^n$, $y \in \mathbb{F}^m$, we have

$$\langle Ax, y \rangle_{\mathbb{F}^m} = \langle x, A^*y \rangle_{\mathbb{F}^n}.$$

(b) Prove that $N(A) = \operatorname{col}(A^*)^{\perp}$, as subspaces of \mathbb{F}^n with the standard inner product.