Math 245, Spring 2012 Assignment 10

Due Friday, July 20, in class.

- 1. Let $x, y \in V$, where V is a finite dimensional vector space over a field \mathbb{F} . Prove that $x \otimes y = y \otimes x$ in $V \otimes V$ if and only if x and y are linearly dependent.
- 2. For each $a \in \mathbb{C}$ let $M_a : \mathbb{C} \to \mathbb{C}$ be the multiplication operator $M_a(b) = ab$. Let V be a finite dimensional vector space over \mathbb{R} . Viewing \mathbb{C} as a 2-dimensional vector space over \mathbb{R} , consider the tensor product $V \otimes \mathbb{C}$. This is again a vector space over \mathbb{R} . We can endow $V \otimes \mathbb{C}$ with the structure of a vector space over \mathbb{C} by defining scalar multiplication as follows:

$$ax = (I_V \otimes M_a)(x)$$
 for $x \in V \otimes \mathbb{C}$, $a \in \mathbb{C}$.

Hence $a(v \otimes b) = v \otimes (ab)$ for $v \in V$, $a, b \in \mathbb{C}$.

- (a) Verify that $V \otimes \mathbb{C}$ (with scalar multiplication defined as above) satisfies all the axioms of a vector space over \mathbb{C} . This complex vector is called the *complexification* of V, and we denote it $V^{\mathbb{C}}$.
- (b) If $\beta = \{v_1, \dots, v_n\}$ is a basis for V over \mathbb{R} , let $\beta^{\mathbb{C}} = \{v_1 \otimes 1, \dots, v_n \otimes 1\}$. Prove that $\beta^{\mathbb{C}}$ is a basis for $V^{\mathbb{C}}$.
- (c) For each linear operator $T \in \mathsf{L}(V)$, let $T^{\mathbb{C}} = T \otimes I_{\mathbb{C}}$. Prove that $T^{\mathbb{C}} \in \mathsf{L}(V^{\mathbb{C}})$. (*Note:* We already know that $T^{\mathbb{C}}$ is linear over the field of real numbers. The point of this exercise is to show that it's linear over the complex numbers).
- (d) Prove that $[T]_{\beta} = [T^{\mathbb{C}}]_{\beta^{\mathbb{C}}}$.
- (e) Suppose V is a real inner product space. Prove that there exists a unique inner product $\langle \cdot, \cdot \rangle^{\mathbb{C}}$ on $V^{\mathbb{C}}$ satisfying

$$\langle v \otimes a, w \otimes b \rangle^{\mathbb{C}} = a\overline{b}\langle v, w \rangle$$

for all $v, w \in V$, $a, b \in \mathbb{C}$. Prove the following: β is orthonormal iff $\beta^{\mathbb{C}}$ is orthonormal; T is normal iff $T^{\mathbb{C}}$ is normal; T is self-adjoint iff $T^{\mathbb{C}}$ is self-adjoint; T is orthogonal iff $T^{\mathbb{C}}$ is unitary.

(*Note:* You should carefully compare part (e) with Assignment 8, Problem 2. The two problems are closely related, but not *exactly* opposite to each other.)

- 3. Let V and W be finite dimensional vector spaces over a field \mathbb{F} . For $T \in \mathsf{L}(V)$, $U \in \mathsf{L}(W)$, consider the linear operator $T \otimes U \in \mathsf{L}(V \otimes W)$.
 - (a) Prove that $rank(T \otimes U) = rank(T) rank(U)$.
 - (b) Prove that $tr(T \otimes U) = tr(T) tr(U)$.

(*Hint*: First prove it for rank-1 linear operators, i.e. T=vf and U=wg, where $f\in V^*$, $v\in V,\,g\in W^*,\,w\in W$ are non-zero vectors. Then use the fact that every operator can be written as a sum of rank-1 operators.)