COMBINATORIAL HOPF ALGEBRAS LECTURE 9 SUMMARY

WINTER 2020

Summary

Today we built the Faà di Bruno Hopf algebra as an incidence Hopf algebra.
First, a set partition of a set S is a collection $\sigma=\left\{B_{1}, \ldots, B_{k}\right\}$ of disjoint nonempty subsets of S, called blocks, with union S. We say σ refines τ if each part of σ is contained in some part of τ, and write $\sigma \leq \tau$. This gives a poset. Write Π_{n} for this poset of set partitions of $\{1, \ldots, n\}$.

We drew an example of an interval in this poset and noticed its product structure. In general for $[\sigma, \tau]$ if λ_{i} is the number of blocks of τ that are broken into exactly i blocks of σ then

$$
[\sigma, \tau]=\Pi_{1}^{\lambda_{1}} \times \Pi_{2}^{\lambda_{2}} \times \cdots \times \Pi_{n}^{\lambda_{n}}
$$

and two intervals are isomorphic if an only if their $\lambda_{i} \mathrm{~S}$ agree.
We can form an incidence Hopf algebra with the set of intervals of $\Pi_{n} s$ and with poset isomorphism as the relation. We discussed the required hypotheses, all of which hold in this case.

To calculate the coproduct write $a_{n}=\left[\Pi_{n}\right]$. Then

$$
\begin{aligned}
\Delta\left(a_{n}\right) & =\sum_{\substack{\sigma \text { set partition } \\
\text { of }\{1,2, \ldots, n\}}}[\{\{1\},\{2\}, \ldots,\{n\}\}, \sigma] \otimes[\sigma,\{\{1,2, \ldots, n\}\}] \\
& =\sum_{k=1}^{n} \sum_{\substack{\sigma \text { with } \\
k \text { parts }}} a_{1}^{\lambda_{1}} \cdots a_{n}^{\lambda_{n}} \otimes a_{k} \\
& =\sum_{k=1}^{n} \sum_{\substack{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=k \\
1 \lambda_{1}+2 \lambda_{2}+\cdots+n \lambda_{n}=n}} \frac{n!}{\lambda_{1}!\lambda_{2}!\cdots \lambda_{n}!(1!)^{\lambda_{1}}(2!)^{\lambda_{2}} \cdots(n!)^{\lambda_{n}}} a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}} \otimes \lambda_{k}
\end{aligned}
$$

where λ_{i} in the second line is the number of parts of σ of size i. The coefficient in the last line is the number of set partitions with the given λ sequence. One way to see this is to note that if the set partition were ordered then the answer would be given by a multinomial coefficient, specifically $\left(\begin{array}{l}1, \ldots, 1,2, \ldots, 2, \ldots, n, \ldots, n\end{array}\right)$ where there are $\lambda_{1} 1 \mathrm{~s}, \lambda_{2} 2 \mathrm{~s}$ etc. But the set partition is not ordered, so we need to divide out by the number of permutations of the parts of the same size, namely $\lambda_{1}!\lambda_{2}!\cdots \lambda_{n}!$.

This is the Faà di Bruno Hopf algebra. How does usual Faà di Bruno come in? Let f, g be formal diffeomorphisms, that is formal power series with 0 constant term. Write them exponentially $f(x)=\sum_{n \geq 1} \frac{f_{n}}{n!} x^{n}, g(x)=\sum_{n \geq 1} \frac{g_{n}}{n!} x^{n}$. What is $\left[x^{n}\right](f \circ g)$? The answer which
you can work out in various ways is the Faà di Bruno formula
$\left[x^{n}\right](f \circ g)=\sum_{k=1}^{n} \frac{f_{k}}{k!} \sum_{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=k 1 \lambda_{1}+2 \lambda_{2}+\cdots+n \lambda_{n}=n} \frac{n!}{\lambda_{1}!\lambda_{2}!\cdots \lambda_{n}!(1!)^{\lambda_{1}}(2!)^{\lambda_{2}} \cdots(n!)^{\lambda_{n}}} g_{1}^{\lambda_{1}} g_{2}^{\lambda_{2}} \cdots g_{n}^{\lambda_{n}}$
We could define a Hopf algebra on the dual of the space of formal diffeomorphisms. The $\left[x^{n}\right]$ operator is in this dual, so let $a_{n}=\left[x^{n}\right]$ and consider a Hopf algebra with algebra structure given by $K\left[a_{1}, a_{2}, \ldots\right]$. We want a coproduct so that $a_{n}(f \circ g)=m\left(\Delta a_{n}\right)(g \otimes f)$, which is exactly what the coproduct defined above does.

References

Hector Figueroa, Jose M. Gracia-Bondia, Joseph C. Varilly, Faa di Bruno Hopf algebras, https://arxiv.org/abs/math/0508337

