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Summary

Last time we’d stated and started proving

Proposition 1. (1) Let H be a Hopf algebra. S is an antiautomorphism, that is, S(1) =
1 and S(ab) = S(b)S(a).

(2) Let H be a Hopf algebra. If H is commutative or cocommutative then S ◦ S = id.
(3) Let B be a graded connected bialgebra. Then B has a unique antipode S defined

recursively. Furthermore S is graded and so B is a graded Hopf algebra.

Additionally, note that the co-analogue of the first item is also true, that is ε ◦ S = ε and
∆(S(a)) =

∑
(a) S(a2)⊗ S(a1).

The idea for the proof of the first point is to work in Hom(H ⊗ H,H) (using ~ for the
convolution). Then defining f, g, h ∈ Hom(H⊗H,H) by f(a⊗ b) = ab, g(a⊗ b) = S(b)S(a),
and h(a ⊗ b) = S(ab), we can compute h ~ f = uHεH⊗H = f ~ g and then this proves the
result as h = h~ (uHεH⊗H = h~ f ~ g = (uHεH⊗H) ~ g = g.

For the second one check that S ◦ S is a right ? inverse of S.
For the third one turn S ? id = uε into a recursive formula, getting

S(a) = −a−
∑

(a) from ∆̃

S(a1)a2

for a ∈ ker ε.
Notice that applying the previous formula inductively we obtain Takeuchi’s formula

S =
∑
n≥0

(−1)nmn−1P⊗n∆n−1

where P is projection onto ker ε and mn−1, ∆n−1 both mean repeated m and ∆ (where order
doesn’t matter by associativity and coassociativity).

Next we talked about vector space duals with an emphasis on how things are very nice for
the finite dimensional case but not the infinite dimensional case. Next time we will see how
to salvage everything we need in the finite type case using the graded dual (both of which
will be defined next time).

Definition 2. For V a vector space the dual V ∗ is Hom(V,K).
We have the bilinear pairing 〈·, ·〉 : V ∗ × V → K given by 〈f, v〉 = f(v).

Definition 3. Given f : V → W K-linear, we have f ∗ : W ∗ → V ∗, the adjoint map, defined
by 〈α, f(v)〉 = 〈f ∗(α), v〉 for α ∈ W ∗ and v ∈ V .
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Note that this reverses arrows so we should immediately think of applying it to algebras
and coalgebras.

In the finite dimensional case if v1, . . . , vn is a basis for V then we have the dual basis
v∗1, . . . , v

∗
n (sometimes notated v1, . . . , vn) defined by v∗i (vj) = δi,j (where δ is the Kronecker

delta). In the infinite dimensional case this construction gives elements of the dual, but they
are no longer a basis as their span is only the maps of finite support.

If V and W have bases {vi}i∈I and {wj}j∈J (not necessarily finite) and f : V → W is
defined by f(vi) =

∑
j∈J ai,jwj then

〈f ∗(w∗j ), vi〉 = 〈w∗j , f(vi)〉 = ai,j

so if V andW are finite dimensional we get f ∗(w∗j ) =
∑

i ai,jv
∗
i , but in the infinite dimensional

case this doesn’t tell us everything. In fact the adjoint map from Hom(V,W ) to Hom(W ∗, V ∗)
given by f 7→ f ∗ is an isomorphism if and only if W is finite dimensional.

Also we have the map ρ : V ∗ ⊗W ∗ → (V ⊗W )∗ given by ρ(f ⊗ g)(v ⊗ w) = f(v)f(w).
This map is always injective and if V and W are finite dimensional then it is bijective.

With this we have

Proposition 4. Let C be a coalgebra. Then C∗ with m = ∆∗ ◦ ρ and u = ε∗ (using the
canonical identification of K with K∗ by taking 1 to id) is an algebra.

The proof is calculation. We checked one of the properties.
You would expect the dual propositive to say that if you have an algebra A you can build

a coalgebra structure on A∗, but if you just try it you’ll see that ρ goes the wrong way. In
the finite dimensional case it works since ρ is an isomorphism (and all the proofs are even
easier as you can just use the structure coefficients).

Next time

Next class we will talk about finite type vector spaces and graded duals in order to make
all this work in the case we actually care about.

Then we’ll start talking about posets.
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