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Summary

Today we wrote down a lot of commutative diagrams and defined Hopf algebras.
For us K is a field, but in fact it can usually be a ring for things we will do.

Definition 1. An algebra A over K is a vector space over K with two linear maps m :
A⊗ A → A, called the product or multiplication, and u : K → A, called the unit, such that
the following two diagrams commute

A⊗ A⊗ A id⊗m−−−→ A⊗ Aym⊗id ym
A⊗ A m−−−→ A

K ⊗ A a7→1⊗a←−−−− A
a7→a⊗1−−−−→ A⊗Kyu⊗id yid

yid⊗u

A⊗ A m−−−→ A
m←−−− A⊗ A

If you haven’t worked with commutative diagrams before, they are digraphs with spaces
labelling the vertices and maps between the appropriate spaces labelling the arcs. A directed
path in the digraph is a composition of maps, and any two directed paths from the same
two vertices should be equal; this is the commutativity of the diagram. Tracing this through
on elements a ⊗ b ⊗ c for instance we see the top diagram is exactly what you’d expect for
associativity: top and right path gives a(bc) while left and bottom path gives (ab)c, hence
the commutativity of the diagram means a(bc) = (ab)c. The second diagram gives the unital
property. Note that the unit in the naive sense (as an element of A) is u(1).

Why do we have m as a linear map and use ⊗ rather than have m as a bilinear map and
use ×? This is because the tensor product is a machine for turning linear maps into bilinear
maps. In fact exactly that gives the universal property definition of the tensor product of
two algebras, specifically, given vectors spaces A and B

Definition 2. Define A⊗B as a vector space over K such that there exists a bilinear map
ι : A×B → A⊗B given by ι(a, b) = a⊗ b, and such that for every bilinear f : A×B → C
with C also a vector space over K, we get a unique g : A⊗B → C such that

A×B A⊗B

C

ι

f

g
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A statement of this form is a universal property and whenever you have one the object
you are trying to describe A⊗B in this case either does not exist or it exists and is unique
up to unique isomorphism. To show it exists you have to construct it, which I think you’ve
seen in this case.

Also, we’re already implicitly using that the tensor product of vector spaces is associative
in order to even write down A⊗ A⊗ A, and we will keep using this.

To get a coalgebra we just reverse the arrows in the definition of algebra.

Definition 3. A coalgebra C over K is a vector space over K with two linear maps ∆ :
C → C ⊗ C, called the coproduct, and ε : C → K, called the counit, such that the following
two diagrams commute

C ⊗ C ⊗ C id⊗∆←−−− C ⊗ Cx∆⊗id
x∆

C ⊗ C ∆←−−− C

K ⊗ C k⊗c7→kc−−−−−→ C
c⊗k 7→kc←−−−−− C ⊗Kxε⊗id xid

xid⊗ε

C ⊗ C ∆←−−− C
∆−−−→ C ⊗ C

We can also write the notion of algebra homomorphism in this language and then get the
notion of coalgebra homomorphism immediately by reversing the arrows.

Definition 4. Let A and B be algebras over K. A linear map f : A → B is an algebra
homomorphism if the following diagrams commute

A
f−−−→ B

mA

x mB

x
A⊗ A f⊗f−−−→ B ⊗B

K

A B

uA

uB

f

Next we took a little digression into tensor products of algebras and coalgebras. I also
wasn’t as explicit as I should have been about what’s going on with the underlying field.
The thing about the field is that as with A ⊗K being isomorphic to K as we used above,
K ⊗ K is canonically isomorphic with K (the isomorphism takes 1 ⊗ 1 to 1 which is the
only thing it can do), and some of the definitions below use that implictly. In fact K also
has an algebra structure over itself with product that same isomorphism and with unit the
identity and K has a coalgebra structure over itself with the identity as the counit and the
coproduct given by ∆(1) = 1⊗ 1.

For the tensor products of algebras and coalgebras, we need the map τ : A⊗B → B ⊗A
that swaps: τ(a⊗ b) = b⊗ a.
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Proposition 5. Let A and B be algebras then A ⊗ B is an algebra with multiplication
mA⊗B = (mA ⊗mB) ◦ (id⊗ τ ⊗ id) and unit uA ⊗ uB. Similarly if C and D are coalgebras
then C ⊗D with coproduct ∆C⊗D = (id⊗ τ ⊗ id) ◦ (∆C ⊗∆D) and counit εC⊗D = εC ⊗ εD.

The proof is just checking. With this in mind suppose you have a vector space B which
is simultaneously an algebra and a coalgebra. Then the property that the two algebra maps
are coalgebra homomorphisms is equivalent to the property that the two coalgebra maps are
algebra homorphisms. The proof is just to write out the diagrams in each case and notice
that they are the same, which we did. This is also a good exercise for sorting out what’s
going on with the field itself. Such a B is called a bialgebra.

Finally, then, we defined the convolution product and from there Hopf algebras.

Definition 6. Let A be an algebra, C a coalgebra, and f, g : C → A linear maps. Then the
convolution product of f and g, f ? g : C → A is

f ? g = m ◦ (f ⊗ g) ◦∆

Definition 7. A bialgebra B is a Hopf algebra if there exists a linear map S : B → B, called
the antipode, such that S ? id = id ? S = u ◦ ε.

Then the first definition of a combinatorial Hopf algebra is that it is a Hopf algebra where
the underlying set and all maps are combinatorially defined. This is clearly not actually a
definition, and so we’ll see a better definition soon.

Next time

Next class we will finish up with a few more comments on the convolution product and
then lots of examples.
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