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Summary

Today we talked about some Hopf algebras on words, without defining Hopf algebra.
Our set up for words is an alphabet Ω, and then Ω∗ is the set of words over Ω, that is

the set of finite sequences of elements of Ω including the empty word which we write 1. The
length of a word w is denoted |w|.

We defined two products on words. The first is concatentaion

Definition 1. Given w1, w2 ∈ Ω∗, with w1 = a1a1 · · · ak and w2 = b1b2 · · · b`, ai, bi ∈ Ω,
define the concatenation of w1 and w2 to be

w1w2 = a1a2 · · · akb1b2 · · · b`

The second is shuffle. First define W = SpanK(Ω∗) where K is a field.1 Then we have

Definition 2. Given w1, w2 ∈ Ω∗, with w1 = a1a1 · · · ak and w2 = ak+1ak+2 · · · ak+`, ai ∈ Ω,
define the shuffle of w1 and w2 to be

w1� w2 =
∑

σ∈Sk+`

σ−1(1)<σ−1(2)<···<σ−1(k)
σ−1(k+1)<σ−1(k+2)<···<σ−1(k+`)

aσ(1)aσ(2) · · · aσ(k+`)

and extend linearly to W .

We can also extend concatenation linearly to W .
We wrote down some examples and also noted that the shuffle can be described recursively

aw1 � bw2 = a(w1 � bw2) + b(aw1 � w2) and w � 1 = w = 1 � w for all a, b ∈ Ω and
w1, w2, w ∈ Ω∗.

Some things to note about these products. The unit in both cases is 1. Shuffle is commu-
tative and concatenation is not. W has a preferred basis given by Ω∗ and concatenation in
Ω∗ stays in Ω∗ while the same is not true for shuffle. Also both are graded. We’ll come back
to all of these.

Next we looked at some coproducts on words. It is often useful to think in terms of decom-
posing objects rather than in terms of building them. One way to capture this algebraically
is with a coproduct. These two coproducts are dual to the products defined above

1Though mostly we can work with K a ring, and Z is a nice example with combinatorial use. If you are
in to that kind of thing, keep an eye out for anywhere that I actually use that K is a field as opposed to a
ring.
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Definition 3. Given w ∈ Ω∗, w = a1a2 · · · ak define the deconcatenation coproduct of w to
be

∆dc(w) =
k∑
i=0

a1a2 · · · ai ⊗ ai+1ai+2 · · · ak

and extend linearly to W .

Definition 4. Given w ∈ Ω∗, w = a1a2 · · · ak define the deshuffle coproduct of w to be

∆dc(w) =
∑

S⊆{1,...,k}

aS ⊗ a{1,...,k}−S

where for T ⊆ {1, . . . , k}, T = {i1 < i2 < . . . , i`}, aT = ai1ai2 · · · ai`, and extend linearly to
W .

Note that for both coproducts ∆(1) = 1 ⊗ 1 and ∆(a) = 1 ⊗ a + a ⊗ 1 for any a ∈ Ω.
As we’ll discuss further next week, both are also graded and deshuffle is cocommutative but
deconcatenation is not.

Next we talked about which pairs of product and coproduct are compatible. By compatible
we want the coproduct to be an algebra morphism, as we’ll define formally next time. You
checked that concatenation with deconcatentation is not compatible and neither is shuffle
with deshuffle. Two single letter words are sufficient for a counterexample. The other two
pairs are compatible.

The last thing we talked about was the map S

Definition 5. Define S : W → W by S(a1a2 · · · ak) = (−1)kakak−1 · · · a1 for ai ∈ Ω and
extend linearly.

This map has the property that for both comaptible pairs of product and coproduct
(letting m denote the product)

• m(id⊗ S)∆(w) = 0 for w ∈ Ω∗, w 6= 1.
• m(id⊗ S)∆(1) = 1.

You can prove this inductively just by calculating. I didn’t present the proof particularly
well because we got a little pressed for time, so you might want to try it yourself, though
what I wrote down is correct.

Next time

Next class we will actually define Hopf algebras. There will be many commutative dia-
grams.

References

You could find these examples in many places, see for instance p19 and p22 of my book
“A combinatorial perspective on quantum field theory”.
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