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Summary

We did our first online class today. The quality was much worse than in our test last week,
so we’ll try different software next time. I’ll make the summary more complete on account
of the change of medium.

∆ and S in other bases. First we discussed ∆ in other bases, you got into groups and
worked out

∆(en) =
n∑
k=0

ek ⊗ en−k using en = m(1,1,1,...,1︸ ︷︷ ︸
n times

)

∆(pn) = pn ⊗ 1 + 1⊗ pn using pn = m(n)

∆(hn) =
n∑
k=0

hn−k ⊗ hk

The last one is hardest to see from the monomial symmetric functions and later in the class
we’ll see a nicer way to get it.

We know Sym has an antipode since it is graded and connected, and we have the usual
recursive formula

S(f) = −f −
∑
(f)

nonprimitive part

S(f1)f2

From this we can compute directly

S(pn) = −pn
The others take a little more work so we made a proposition

Proposition 1.
S(en) = (−1)nhn

Proof. Apply the usual recursive formula

S(en) = −en −
n−1∑
i=1

S(ei)en−i

= −en −
n−1∑
i=1

(−1)ihien−i inductively

= −en + en + (−1)nhn by claim below

= (−1)nhn
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where we needed the claim which some of you may know

Claim:
n∑
i=0

(−1)ihien−i =

{
0 n > 0

1 n = 0

The proof of the claim is by generating series. Let H(t) =
∑

n≥0 hnt
n and E(t) =

∑
n≥0 ent

n

then by usual generating function stuff

H(t) =
∞∏
i=1

1

1− xit
and E(t) =

∞∏
i=1

(1 + xit)

and so H(−t)E(t) = 1. Extracting coefficients gives the claim. �

As a corollary of the proposition we get

S(hn) = (−1)nen

since S2 = id in the commutative case, and we get a quicker way to calculate

∆(hn) = ∆(S((−1)nen))

= (−1)n
n∑
i=0

S(en−i ⊗ S(ei)

=
n∑
i=0

hn−i ⊗ hi

Sym as an incidence Hopf algebra. Let L be the set of finite linear orders and let ∼ be
poset isomorphism.

This is not yet hereditary so let L∗ be finite products of elements of L.
Then we have a hereditary family. Poset isomorphism always automatically has the prop-

erties we need, so we have a Hopf relation. Hence we have an incidence Hopf algebra.
Up to isomorphism L has one element of each size, call the one of size n, `n. As posets

these are the ladder trees, that is rootes trees where all vertices have at most 1 child.
The product is poset product. This is the free commutative product on the `i.
The coproduct is ∆(`n) =

∑n
i=0 `i ⊗ `n−i because the coproduct in an incidence Hopf

algebra sums over intermediate z and then takes initial and final segments.
So, there are two nice isomorphisms with Sym, `i 7→ ei or `i 7→ hi.

Self-duality. Recall the graded dual: Given V =
⊕∞

i=0 Vi with each Vi finite dimensional,
we have the graded dual V ◦ =

⊕∞
i=0 V

∗
i .

There is a natural inner product on Sym given by

〈mλ, hµ〉 =

{
1 λ = µ

0 λ 6= µ

Then we view hµ as the characteristic function of mµ, and hence we identify Sym∗n with
Symn.

Now Sym◦ is (by things we showed before) also a Hopf algebra, the thing is to show that
it is Sym itself.
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Proposition 2. Sym◦ = Sym using the identification from the previous slide. Therefore
Sym is self dual.

Proof. It suffices to check that the structure coefficients match on a basis. Let’s use the mλ

on the Sym side and hλ on the Sym◦ side. Then

〈∆(mλ), hµ ⊗ hν〉 = 〈
∑
α∪̇β=λ

mα ⊗mβ, hµ ⊗ hν〉

=

{
1 λ = µ∪̇ν
0 otherwise

= 〈mλ, hµ∪̇ν〉
= 〈mλ, hµhν〉

as desired. �

QSym. Consider again a function of finite degree

f(x) =
∑

cηx
η ∈ K[[x1, x2, . . .]]

If xα1
i1
xα2
i2
· · ·xαk

ik
and xα1

j1
xα2
j2
· · ·xαk

jk
have the same coefficient whenever i1 < · · · < ik and

j1 < · · · jk, then we say f is quasisymmetric.
Eg x21x2 + x21x3 + x22x3 + · · · =

∑
i<j x

2
ixj is quasisymmetric but not symmetric.

Let QSym be the set of quasisymmetric functions.
For α = (α1, . . . , αk) a composition, define the monomial quasisymmetric function to be

Mα =
∑
i1<···ik

xα1
i1
· · ·xαk

ik

This is quasisymmetric almost directly from the definition.
Note that symmetric functions are quasisymmetric so Sym ⊆ QSym.
QSym is a vector space because addition also preserves the quasisymmetry property.
The set {Mα}α composition gives a vector space basis of QSym so dim QSymn = 2n−1.
QSym as an algebra. We checked this but it didn’t write very well in Bongo. What is the

point? Given a monominal m in fg for f, g ∈ QSym, for each way to write m as a product
of m1m2 with m1 a monomial in f and m2 a monomial in g, then thinkng of the monomials
as ordered (x1 before x2 etc), then m is a particular shuffle of m1 and m2. Any monomial m′

in fg with the same composition of exponents can be split into m′1 and m′2 according to the
same shuffle giving m′1 with the same composition of exponents as m1 and similarly for m′2.
The quasisymmetry of f means the coefficients of m1 and m′1 are the same and similarly for
the m2. The same holds for every way of obtaining m. Thus the coefficients of m and m′

are the same and so fg is quasisymmetric.
QSym is a coalgebra with the ∆(f(x)) = f(y, z) coproduct. It is still a composition of

algebra maps so QSym is a bialgebra in the same way as Sym. QSym is graded by degree
and is connected so QSym is a Hopf algebra. The inclusion Sym ⊆ QSym is a Hopf algebra
map.
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