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Summary

Today we started the third part of the course with a whirwind review of symmetric func-
tions.

Symmetric functions start with K[[x1, x2, . . .]]. Let S∞ be the group of permutations on
Z≥1 which leave all but finitely many numbers fixed. Then S∞ acts on K[[x1, x2, . . .]] by
permuting the variables and the ring of symmetric functions, Sym, is the set of finite degree
elements of K[[x1, x2, . . .]] which are invariant under the S∞ action. It is a ring under the
usual operations on formal power series.

Sym is graded by degree: Sym =
⊕

n≥0 Symn where Symn is the set of symmetric functions
which are homogeneous of degre n.

There are many important bases for Sym. Let λ = (λ1, λ2, . . . , λk) be a partition of n.

• Monomial symmetric functions: mλ =
∑

α∈S∞(λ1,...,λk,0,0,...)
xα where we’re using mul-

tiindex notation. {mλ}λ a partition ofn is a basis for Symn.
• Elementary symmetric functions: en = e(1, 1, . . . , 1)︸ ︷︷ ︸

n times

and eλ = eλ1eλ2 · · · eλk . Then it

turns out that {eλ}λ a partition of n is a basis for Symn, and Sym = K[e1, e2, . . .] that is
the en are free commutative algebra generators for Sym.
• Homogeneous symmetric functions: hn =

∑
λ a partition of nmλ, hλ = hλ1hλ2 · · ·hλk ,

again this is a basis and the hn are free commutative algebra generators.
• Power sum symmetric functions: pn = m(n) and pλ defined likewise and with the

same properties (in this case requiring that K has characteristic 0.)
• Schur functions:

sλ =
∑

T semistandard
filling of shape λ

∏
i≥1

xnumber of is in T

where the shape (aka Ferrers diagram or Young diagram) is made by putting λ1 boxes
in a row, then λ2 and so on, and a semistandard filling is a way of putting positive
itegers in the boxes so that they are weakly increasing along the rows and strictly
down the columns. It isn’t obvious this is a symmetric function, but it is and gives
another basis.

Next we talked about the coproduct. The idea is ∆(f(x)) = f(y, z). To do this, first
take any bijection from {x1, x2, . . .} to {y1, y2, . . . , z1, z2, . . .} (by the symmetry it won’t
matter which bijection we take when applied to symmetric functions). This gives a map
Sym(x1, x2, . . .)→ Sym(y1, y2, . . . , z1, z2, . . .). Next we have a maps Sym(y1, y2, . . . , z1, z2, . . .)→
Sym(y1, y2, . . .) ⊗ Sym(z1, z2, . . .) given by in each monomial simply putting the y part on
the left of the tensor and putting the z part onthe right. Composing these two maps gives
our coproduct.
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We noticed that ∆(mλ) =
∑

µ∪ν=λmµ⊗mν where the sum is over all (ordered) partitions
of the parts of λ into µ and ν. We checked that ∆ has the required properties so that we
have a graded connected bialgebra and hence a Hopf algebra.

Next time we’ll discuss the coproduct on other bases and the antipode. This will be online
because of the coronavirus closure.
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