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SUMMARY

We started with a few more examples of scalar Feynman integrals. Then we went over the
sheet about integrating the banana (which you can find on the course website).

Then we talked a bit about Feynman integrals beyond the massless scalar case. They get
more complicated, but the basic points remain in how they are built up out of the graphs,
but the contribution of each edge gets a lot more complicated. The superficial degree of
divergence still represents the leading behaviour of the edge’s contribution.

We finished off with discussing more of the mathematical context. The classical Riemann-
Hilbert problem begins with a simple closed curve Y in the complex plane, which divides the
plane into the inside ¥, and the outside ¥_. The problem is to find functions M, and M_
analytic on >, and X_ respectively and which appropriately glue on X, one way to set up
“appropriately glue” is to suppose «, 3, ¢ are given and to require a(z) M (2)+ B(z)M_(z) =
c(z).

This has been generalized in lots of directions, you can take Y not simple, you can take
other manifolds, you can consider the matrix valued case. In the matrix valued case it
becomes a matrix factorization problem and is called Birkhoff factorization.

This last direction can also be extended to the bialgebra case, which is what we want

Definition 1. Let B be a bialgebra and let A = Ay & A_ be an algebra with a decomposition
into two vector spaces. Then given F : B — A with F(1) = 1, a Birkhoff decomposition
of F is a pair Fy,F_ : B — A with F (1) = F_(1) = 1 such that F = F* '« F, and
Fy(kere) C A,.

Proposition 2. Let B be a connected bialgebra and A = A, & A_ and F as above. Then
F admits a unique Birkhoff decomposition which can be recursively computed by F_(x) =
—R(F(z)) and Fy(x) = (id — R)(F(x)) for x € kere where F : A — A_ is projection and
Flz)=F(z)+3 (@ F_(x1)F(x9).

non prim part

In physics language this F is the Bogoliubov R-bar operator.

The proof of the proposition is first note that if F_ and F', satisfies the convolution part of
the definition of a Birkhoff decomposition then it is recursively defined by the formulae of the
proposition. Then it only remains to check that F(kere) C A.. For F_ this is immediate
since F._(ker¢) is in the image of F', and then for F, just use F(z) = (id — R)(F(x)).

In renormalization if F' is the Feynman rules then F_ is the counterterms as we defined
them before (i.e. SE) since R(F) gives exactly the antipode-like recursive definition of S%.
Then F, is the renormalized value as by definition F, = F_ % F. The idea is if A_ is
all the bad stuff (eg divergent stuff) then F'; will only take good values, that is it will be

renormalized.
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There is one last detail. Today R was projection but in the tree toy model R was evaluation
at s = 1. How to square these two things? In fact we can define a generalized Birkhoff
decomposition for other linear maps R, with im(R) in place of A_ and ker(R) in place of
A.. The property R needs to satisfy is

R(r)R(y) = R(R(x)y) + R(zR(y)) + AR(zy).

A linear map with this property is called a Rota-Baxter operator of weight \. Then with
this R the same formulas as in the proposition define the generalized Birkhoff decomposition
of F', and this is what we usually want for renormalization.

Two examples: if we set D = 4 — 2¢ then our Feynman rules take values in a space of
Laurent series in e (this is dimensional reqularization) and we use R(3.2°_, cie!) = 3271 | ¢;é
(this is minimal subtraction). My favorite example is renormalization by subtraction like
we saw in the toy model. Then F' takes values in some space of formal integrals and R is

evaluation at a fixed reference point.
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