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Summary

We did some computations in the toy model that we introduced last time, namely, if H is
the Connes-Kreimer Hopf algebra, then we define

Fs(B+(f)) =

∫ ∞

0

Fz(f)

s + z
dz

where s is a parameter with s > 0 and Fs(1) = 1, Fs(t1 · · · tk) = Fs(t1) · · ·Fs(tk). The maps
Fs is the Feynman rules for this toy model.

Now, note that Fs(•) = log(s + z)|∞0 = ∞. Let’s think of this as a problem of reference
point; relative values may make sense even when absolute ones do not. So compare the
integrands of Fs(•) and F1(•)
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s + z
− 1

1 + z
=

1− s

(s + z)(1 + z)

and this we can integrate z = 0 . . .∞∫ ∞

0

1− s

(s + z)(1 + z)
dz = − log(s)

(we did the actual integrals in maple, and you are welcome to do so too, though if you’re up
on your calculus these ones aren’t hard.)

We will write Fs(•) − F1(•) = − log(s), but what we mean with the subtraction on the
left is subtract the integrands and then integrate.

Next we tried Fs(B+(•)). This time Fs(B+(•)) − F1(B+(•)) does not converge. The
problem is that just the integral for the lower vertex already diverges. We need to take care
of this inner integral too, and we will do this recursively by a subtraction as well.

Let R be the map given by evaluation of s at 1. Then define

SFs
R (t) = −R(Fs(t))−

∑
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for a tree t and extend to H as an algebra homomorphism. We call SFs
R the counterterm for

t.
Then the renormalized Feynman rules are

Fren = SFs
R ? Fs.

We tried this out on B+(•) using maple. It is satisfying to see it actually give a finite answer
(log2(s)/2 in this case). Note an important detail in all these cases, when you choose the
integration variable for each vertex you need to make the same choice in all the integrands,
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so you should consider the tree as decorated by the integration variables and carry that
decoration through the calculation of SFs

R and Fren.

The next step is to do the same thing for actual Feynman integrals, but first we need
Feynman graphs.

For the rest of this section of the course a graph is

• a set H of half edges
• a partition of H into parts of size ≥ 3 giving vertices
• a partition of H into parts of size ≤ 2 giving internal edges (parts of size 2) and

external edges (parts of size 1).

This is reminiscent of combinatorial maps. A combinatorial physical theory is

• a set of half edge types
• a set of edge types consisting of unordered pairs of half edge types defining the

allowable edges in the theory
• a set of vertex types consisting of multisets of half edge types defining the allowable

vertices in the theory
• an integer power counting weight, w, associate dot each edge and vertex type
• a dimension D of space-time.

Then a Feynman graph in a combinatorial physical theory is a graph in the sense above
along with a map from H to the set of half edge types so that every internal edge and every
vertex are among the allowable edge and vertex types.

There’s a subtety regarding labelling. So far this is set up with an underlying set H, hence
it is about labelled graphs (labelled on the half-edges). Physicists usually don’t label the
half edges except that they do label the external edges. We’ll talk more about labelling next
time.

We gave just one example: in quantum electrodynamics (QED) there are three half edge
types, the half-photon, the front half-fermion, and the back half-fermion. There are two
edge types, the photon, made of a pair of half-photons, and the fermion, made of a front
half-fermion and a back half-fermion. There is one vertex consisting of one of each half-edge
types. The power counting weights are 2 for the photon, 1 for the fermion and 0 for the
vertex. The dimension of space time is 4.
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