
COMBINATORIAL HOPF ALGEBRAS LECTURE 12 SUMMARY

WINTER 2020

Summary

Today we discussed B+ and Hochschild 1-cocycles.
B+ is the add-a-root operator. B+(t1 · · · tk) is the tree with a new root vertex and the

subtrees at the root are t1, t2, . . . , tk. We observed that

∆B+ = (id⊗B+)∆ +B+ ⊗ 1

This means that B+ is a Hochschild 1-cocycle.
Actually we defined a family of Hochschild cohomologies based on a left and a right

coaction. This required some definitions.

Definition 1. • Let C be a coalgebra over K. Then a left C-comodule M is a vector
space over K with a map ψL ∈ Hom(M,C⊗M) such that (id⊗ψL)◦ψL = (∆⊗id)◦ψL

and (ε⊗ id) ◦ ψL = id.
• A right comodule is defined similarly with a map ψR and left and right sides of tensors

switched in the above definition.
• A bicomodule is both a left and a right comodule with (id⊗ψR)◦ψL = (ψL⊗ id)◦ψR.

Now we make a Hochschild cochain complex as follows

Definition 2. Let C be a coalgebra and M a C-bimodule. The Hochschild cochain complex
(HC•(M), δ•) is for k ∈ Z≥0

• HCk(M) = Hom(M,C⊗k), these are the spaces of cochains
• δk : HCk(M)→ HCk+1(M), these are the coboundary maps, defined by

δk(L) =(id⊗ L) ◦ ψL

+
k∑

i=1

(−1)i(id⊗i−1 ⊗∆⊗ id⊗k−i) ◦ L

+ (−1)k+1(L⊗ id) ◦ ψR

Then we sketched the check that this is in fact a cochain complex, that is, that δn+1◦δn = 0
(in usual cohomology fashion, this is written δ2 = 0, we just don’t write the indices when
it is clear from context). I slightly messed up talking through the check. The point is to
consider each term in the definition of δk(L) composed with each term in δk+1, and note
that the results each appear twice with opposite signs. I was missing at that moment what
happens when both terms are the first or the last. The answer is that by the first of the
left or right comodule properties these match with one coproduct term. You can find all the
details in section 2.4 of the reference.
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So the cohomology groups are Hk(HC•(M), δ•) = ker δk/imδk−1, and you want to use
these to understand what you started with. Actually we’ll only use the very first non-trivial
piece, namely the 1-cocycles. L is a 1-cocycle if L ∈ HC1(M) and δ(L) = 0.

It remains to consider which maps ψL and ψR to use. We’ll now move to the context of a
bialgebra B or Hopf algebra as a bicomodule over itself. We can use ∆ for either ψL or ψR

or both, but another possiblity is φL = 1 ⊗ id or ψR = id ⊗ 1 and all four combinations of
these possible maps do in fact give a bicomodule structure of B over itself.

We made a little table of what the 1-cocycles look like in all four possibilities, if both ψL

and ψR are ∆ you get a coderivation. If ψl = ∆ and ψR = id⊗ 1 then you get the property
that B+ has, and if ψL = 1⊗ id and ψR = id⊗ 1 then you get an endomorphism with image
in primitive elements.

That was interesting but actually an aside because from now on we’ll restrict to ψl = ∆
and ψR = id ⊗ 1, and B+ will be our prototypical 1-cocycle. In fact there is an important
universality result.

Theorem 3. Let H be the Connes-Kreimer Hopf algebra and let A be a commutative algebra
and L : A→ A a map. Then there exists a unique algebra homomorphism ρL : H → A such
that ρL ◦ B+ = L ◦ ρL. If further A is a bialgebra and L is a Hochschild 1-cocycle then ρL
is a bialgebra homomorphism. If even further A is a Hopf algebra then ρL is a Hopf algebra
homomorphism.

We’ll use this theorem in two ways, both important. First when A is a Hopf algebra
then this is saying that for pairs of a commutative Hopf algebra and a 1-cocycle the Connes-
Kreimer Hopf algebra withB+ is universal. Second, when A is the target algebra for Feynman
rules then this theorem is explaining that if we know what B+ should do after applying
Feynman rules then we know the Feynman rules themselves (here ρL would be the Feynman
rules).
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