(1) (a) I was too lazy to type this, so here is a hand version

$$
\begin{aligned}
& \Delta(\hat{k})=1 \otimes \hat{\alpha}+\lambda \otimes 1+2 \cdot \otimes \hat{\lambda}+\cdots \otimes \lambda+2 \cdots \otimes\}+\cdots \otimes \lambda \\
& +\cdots \otimes\}+\Lambda \otimes \lambda+\cdots \lambda \otimes l+\lambda \otimes j+\cdots \otimes \cdot \\
& S(0)=-0 \text { since } \cdot \text { is primitive } \\
& S(1)=-1-S(\cdot) \cdot=-1+\cdots \text { since } \Delta(1)=1 \otimes|+| \otimes 1+\cdots e \\
& \Delta(\Lambda)=1 \otimes \Lambda+\Lambda \otimes 1+\cdot \otimes \Lambda+\cdots \otimes|+\cdots \otimes|+|\otimes|+\cdot \mid \otimes \cdot \\
& \text { so } \\
& s(\Omega)=-\Omega-S(\cdot)\left(\Lambda+\{)-S(\cdot)^{2} \downarrow-S(\eta)\right\}-S(\cdot) S(\eta) \cdot \\
& =-\Lambda+\cdots \Lambda+\cdot\}-\cdots!+11-\cdot \cdot 1-\cdot 1 \cdot+\cdots \infty \\
& =-\gamma+\cdot \Omega+\cdot\}-3 \cdot 0!+11+\ldots
\end{aligned}
$$

(b) First let's calculate the bits and pieces that we need. Let the whole tree be t. I will label the root by a and the two leaves by b and c. The integration variable for a will always be called z and the integration variables for the leaves will be
called z_{1} and z_{2} respectively.

$$
\begin{aligned}
S_{R}^{F_{s}}(b \bullet)= & -R F_{z}(b \bullet)=-\int_{0}^{\infty} \frac{d z_{1}}{s+z_{1}} \\
S_{R}^{F_{s}}(c \bullet)= & -\int_{0}^{\infty} \frac{d z_{2}}{s+z_{2}} \\
S_{R}^{F_{s}}(t)= & -R F_{s}(t)-S_{R}^{F_{s}}(b \bullet) R F_{s}\left(B_{+}(c \bullet)\right)-S_{R}^{F_{s}}(c \bullet) R F_{s}\left(B_{+}(b \bullet)\right)-S_{R}^{F_{s}}(c \bullet b \bullet) R F_{s}(a \bullet) \\
= & -\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{d z d z_{1} d z_{2}}{(1+z)\left(z+z_{1}\right)\left(z+z_{2}\right)}+\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{d z d z_{1} d z_{2}}{(1+z)\left(1+z_{1}\right)\left(z+z_{2}\right)} \\
& +\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{d z d z_{1} d z_{2}}{(1+z)\left(z+z_{1}\right)\left(1+z_{2}\right)}-\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{d z d z_{1} d z_{2}}{(1+z)\left(1+z_{1}\right)\left(1+z_{2}\right)} \\
F_{\mathrm{ren}}(t)= & \left(S_{R}^{F_{s}} \star F_{s}\right)(t) \\
= & S_{R}^{F_{s}}(t)+F_{s}(t)+S_{R}^{F_{s}}(b \bullet) F_{s}\left(B_{+}(c \bullet)\right)+S_{R}^{F_{s}}(c \bullet) F_{s}\left(B_{+}(b \bullet)\right)+S_{R}^{F_{s}(b \bullet c \bullet) F_{s}(a \bullet)} \\
= & \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} d z d z_{1} d z_{2}\left(-\frac{1}{\left(1+z_{1}\right)\left(z+z_{1}\right)\left(z+z_{2}\right)}+\frac{1}{(1+z)\left(1+z_{1}\right)\left(z+z_{2}\right)}\right. \\
& +\frac{1}{(1+z)\left(z+z_{1}\right)\left(1+z_{2}\right)}-\frac{1}{(1+z)\left(1+z_{1}\right)\left(1+z_{2}\right)}+\frac{1}{(s+z)\left(z+z_{1}\right)\left(z+z_{2}\right)} \\
& \left.-\frac{1}{(s+z)\left(1+z_{1}\right)\left(z+z_{2}\right)}-\frac{1}{(s+z)\left(z+z_{1}\right)\left(1+z_{2}\right)}+\frac{1}{(s+z)\left(1+z_{1}\right)\left(1+z_{2}\right)}\right)
\end{aligned}
$$

Now let's give all this to Maple

```
> assume(s>0);
> assume(z>0);
> assume(z1>0);
> assume(z2>0);
> integrand := - 1/((1+z)*(z+z1)*(z+z2))\
> + 1/((1+z)*(1+z1)*(z+z2)) + 1/((1+z)*\
> (z+z1)*(1+z2)) + 1/((s+z)*(z+z1)*(z+z2\
> )) - 1/((s+z)*(1+z1)*(z+z2)) - 1/((s+z\
> )*(z+z1)*(1+z2)) - 1/((1+z)*(1+z1)*(1+z2)) + 1/((s+z)*(1+z1)*(1+z2))\;
        1 1
integrand := - ----------------------------- + ---------------------------------
    1
                                    1
+ ------------------------- + ---------------------------------
```

1

$\left(s^{\sim}+z^{\sim}\right)\left(1+z 1^{\sim}\right)\left(z^{\sim}+z 2^{\sim}\right)$

1

```
        (1 + z~})(1+z\mp@subsup{1}{}{~})(1+z\mp@subsup{2}{}{~})(\mp@subsup{s}{}{~}+\mp@subsup{z}{}{~})(1+z\mp@subsup{1}{}{~})(1+z\mp@subsup{2}{}{~}
> factor(normal(integrand));
                (z~
```



```
> int(factor(normal(integrand)), z2=0..infinity);
```



```
        + s~ z1~
        2
        + s~ (z~}+z\mp@subsup{1}{}{~}\mp@subsup{z}{}{~}+\mp@subsup{z}{}{~}
> factor(int(factor(normal(integrand)), z2=0..infinity));
                        ln(\mp@subsup{z}{}{~})(\mp@subsup{z}{}{~}-1)(\mp@subsup{s}{}{~}-1)
        - ------------------------------------------
        (\mp@subsup{z}{}{~}+z\mp@subsup{1}{}{~})(1+\mp@subsup{z}{}{~})(1+z\mp@subsup{1}{}{~})(\mp@subsup{s}{}{~}+\mp@subsup{z}{}{~})
> int(factor(int(factor(normal(integrand)), z2=0..infinity)), z1=0..infinity);
        2
        ln(z~) (s}
        2
        s~}\mp@subsup{z}{}{~}+\mp@subsup{z}{}{~}+\mp@subsup{s}{}{~}+\mp@subsup{z}{}{~
> factor(int(factor(int(factor(normal(in\
> tegrand)), z2=0..infinity)), z1=0..infinity));
                                2
        ln(\mp@subsup{z}{}{~})(\mp@subsup{s}{}{~}-1)
> int(factor(int(factor(int(factor(norma\
> l(integrand)), z2=0..infinity)), z1=0..infinity)), z=0..infinity);
        2 2
        -1/3(ln(s~) + Pi ) ln(s~)
```

(2) (a) Let $A=K\left[l_{1}, l_{2}, \ldots\right]$ and \mathcal{H} be the Connes-Kreimer Hopf algebra. A is a sub algebra of \mathcal{H} by definition. Next note that $\Delta\left(l_{n}\right)=\sum_{i=0}^{n} l_{i} \otimes l_{n-i}$, so A is closed under the coproduct. It is clearly also closed under the counit and by
the recursive formula then it is also closed under S. Therefore A is a sub Hopf algebra.
(b) There are many ways to do this. Here's a direct way with a little counting. Let $p_{n}=\left[x^{n}\right] \log \left(\sum_{i=0}^{\infty} l_{i} x^{i}\right)$

$$
\begin{aligned}
{\left[x^{n}\right] \log \left(\sum_{i=0}^{\infty} l_{i} x^{i}\right) } & =\left[x^{n}\right] \sum_{i \geq 1} \frac{\left.(-1)^{i} \sum j \geq 1 l_{j} x^{j}\right)^{i}}{i} \\
& =\sum_{i \geq 1} \frac{(-1)^{i}}{i} \sum_{n_{1}+n_{2}+\cdots+n_{i}=n} l_{n_{1}} l_{n_{2}} \cdots l_{n_{i}}
\end{aligned}
$$

So

$$
\Delta\left(p_{n}\right)=\sum_{i \geq 1} \frac{(-1)^{i}}{i} \sum_{\substack{n_{1}+n_{2}+\cdots+n_{i}=n \\
\sum_{\begin{subarray}{c}{0 \leq j_{1} \leq n_{1} \\
0 \leq j_{2} \leq n_{2}} }} l_{j_{1}} l_{j_{2}} \cdots l_{j_{i}} \otimes l_{n_{1}-j_{1}} l_{n_{2}-j_{2}} \cdots l_{n_{i}-j_{i}}} \\
{0 \leq j_{i} \leq n_{i}}\end{subarray}}
$$

Now consider some $l_{j_{1}} l_{j_{2}} \cdots l_{j_{s}} \otimes l_{k_{1}} l_{k_{2}} \cdots l_{k_{t}}$. We want to count how many times this appears. Suppose there are s trees on the left and t on the right. The arguments which follow are symmetric so we may suppose that $s \leq t$.
If $s=0$ then the only way this term can appear is from (half of) the primitive part of $\Delta\left(l_{k_{1}} l_{k_{2}} \cdots l_{k_{s}}\right)$, and so this must appear with the same coefficient as it does in p_{n} itself.
If $s=1$, then there are two ways the term can appear. Either $l_{j_{1}}$ is grafted below one of the trees of the right hand side (grafted above the left in the reverse argument when $t=1$), or the term comes from the coproduct of a forest of the form $l_{j_{1}} l_{k_{1}} \cdots l_{k_{t}}$. There are t ways the first case can occur and each of them appears with coefficient $(-1)^{t} / t$. There are $t+1$ ways the second case can occur and each of them appears with coefficient $(-1)^{t+1} /(t+1)$. Together the coefficient is $t(-1)^{t} / t+(t+1)(-1)^{t+1} /(t+1)=0$.
Something similar holds in general. Consider $1 \leq s \leq t$. There are $t(t-1) \cdots(t-$ $s+1)=t!/(t-s)$! ways to graft the left hand trees under the right hand trees. There are $s \cdot(t+1) \cdot t!/(t-s+1)!=(t+1)!/(t-s+1)$! ways to put one of the left hand trees among the right hand trees and graft the rest, and so on. The overall coefficient is (where the index m is the number of left hand trees put
among the right hand trees and the rest are grafted under).

$$
\begin{aligned}
& \sum_{m=0}^{s}\binom{s}{m} \frac{(-1)^{t+m}}{t+m}(t+m)(t+m-1) \cdots(t+1) \frac{t!}{(t-s+m)!} \\
& =\sum_{m=0}^{s}\binom{s}{m}(-1)^{t+m} \frac{(t+m-1)!}{(t-s+m)!} \\
& =-\left.\frac{d^{s-1}}{d z} \sum_{m=0}^{s}\binom{s}{m}(-z)^{t+m-1}\right|_{z=0} \\
& =-\left.\frac{d^{s-1}}{d z}(-z)^{t-1} \sum_{m=0}^{s}\binom{s}{m}(-z)^{m}\right|_{z=0} \\
& =-\left.\frac{d^{s-1}}{d z}(-z)^{t-1}(1-z)^{s}\right|_{z=0} \\
& =0
\end{aligned}
$$

since $s \geq 1$ and an $1-z$ remains after the $s-1$ derivatives.
This calculation tells us that all the non-primitives terms in the coproduct cancel out, while the calculation for $s=0$ (and the analogous calculation for $t=0$) give that the primitive part of the coproduct is correct and so each p_{n} is primitive.
(3) Let L be a 1 -cocycle in the Hopf algebra of polynomials in x. Then by the 1 -cocycle property $\Delta(L(1))=(\mathrm{id} \otimes L) \Delta(1)+L(1) \otimes 1=1 \otimes L(1)+L(1) \otimes 1$ so $L(1)$ is primitive. A polynomial of degree >1 cannot be primitive because the leading term will contribute non-primitive terms to the coproduct and these cannot be cancelled by other terms by gradedness. So all primitive must have the form $a x+b$, but then calculating explicitly we see that $b=0$, so $L(1)=a x$ for some $a \in K$.

Now I claim by induction that $L\left(x^{n}\right)=\frac{a}{n+1} x^{n+1}+$ lower order terms. The base case holds by the calculation above. Consider $L\left(x^{k}\right)$. From the cocycle property we have

$$
\Delta\left(L\left(x^{k}\right)\right)=\sum_{i=0}^{k}\binom{k}{i} x^{i} \otimes L\left(x^{k-i}\right)+L\left(x^{k}\right) \otimes 1
$$

By the inductive hypothesis and gradedness we see that $L\left(x^{k}\right)$ is a polynomial of degree $k+1$. Suppose the leading term of $L\left(x^{k}\right)$ is $c x^{k+1}$. Then

$$
\Delta\left(L\left(x^{k}\right)\right)=\sum_{j=0}^{k+1} c\binom{k+1}{j} x^{j} \otimes x^{k+1-j}+\text { lower order terms }
$$

So by the inductive hypothesis we have $c\binom{k+1}{i}=\binom{k}{i} \frac{a}{k+1-i}$ for each $0 \leq i \leq k$. Each of these gives $c=\frac{a}{k+1}$, which proves the claim.

Note that this first claim tells us that L behaves like integration with perhaps something lower order as well. It remains to sort out the lower order stuff.

My next claim is that for $2 \leq i \leq n$ we have

$$
\left[x^{i}\right] L\left(x^{n}\right)=\frac{n(n-1) \cdots(n-i+2)}{i!}[x] L\left(x^{n-i+1}\right)
$$

Note that this implies that $\left[x^{n}\right] L\left(x^{n}\right)=[x] L(x)$, so the subleading term always has the same coefficient.

This is again an induction. One can check the base case by hand. Then note that if a is the coefficient of $\left[x^{i}\right] L\left(x^{n}\right)$ then, calculating similarly to the previous claim we obtain that for each j, the coefficient of $x^{j} \otimes x^{i-j}$ in $\Delta\left(L\left(x^{n}\right)\right)$ can be calculated directly and via the 1-cocycle property. This gives the following

$$
\begin{aligned}
a\binom{i}{j} & =\binom{n}{j}\left[x^{i-j}\right] L\left(x^{n-j}\right) \\
& =\binom{n}{j} \frac{(n-j)(n-j-1) \cdots(n-i+2)}{(i-j)!}[x] L\left(x^{n-i+1}\right) \\
& =\frac{n(n-1) \cdots(n-i+2)}{i!}[x] L\left(x^{n-i+1}\right)
\end{aligned}
$$

independently of j as desired.
Finally, the third claim is that with the coefficients as above, with free linear coefficient and 0 constant term, this gives all 1-cocycles.

The proof of this third claim is essentially the same calculations as above. We always checked all coefficients where a given coefficient appeared and they were consistent. This accounted for all coefficients, so the linear coefficient is free, and the constant term is incompatible with the 1-cocycle property.

