
COMBINATORIAL HOPF ALGEBRAS, WINTER 2020, ASSIGNMENT 1

DUE THURSDAY MARCH 5 IN CLASS

(1) (a) I was too lazy to type this, so here is a hand version

(b) First let’s calculate the bits and pieces that we need. Let the whole tree be t. I
will label the root by a and the two leaves by b and c. The integration variable
for a will always be called z and the integration variables for the leaves will be
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called z1 and z2 respectively.

SFs
R (b•) = −RFz(b•) = −

∫ ∞
0

dz1
s + z1

SFs
R (c•) = −

∫ ∞
0

dz2
s + z2

SFs
R (t) = −RFs(t)− SFs

R (b•)RFs(B+(c•))− SFs
R (c•)RFs(B+(b•))− SFs

R (c • b•)RFs(a•)

= −
∫ ∞
0

∫ ∞
0

∫ ∞
0

dzdz1dz2
(1 + z)(z + z1)(z + z2)

+

∫ ∞
0

∫ ∞
0

∫ ∞
0

dzdz1dz2
(1 + z)(1 + z1)(z + z2)

+

∫ ∞
0

∫ ∞
0

∫ ∞
0

dzdz1dz2
(1 + z)(z + z1)(1 + z2)

−
∫ ∞
0

∫ ∞
0

∫ ∞
0

dzdz1dz2
(1 + z)(1 + z1)(1 + z2)

Fren(t) = (SFs
R ? Fs)(t)

= SFs
R (t) + Fs(t) + SFs

R (b•)Fs(B+(c•)) + SFs
R (c•)Fs(B+(b•)) + SFs

R (b • c•)Fs(a•)

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

dzdz1dz2

(
− 1

(1 + z1)(z + z1)(z + z2)
+

1

(1 + z)(1 + z1)(z + z2)

+
1

(1 + z)(z + z1)(1 + z2)
− 1

(1 + z)(1 + z1)(1 + z2)
+

1

(s + z)(z + z1)(z + z2)

− 1

(s + z)(1 + z1)(z + z2)
− 1

(s + z)(z + z1)(1 + z2)
+

1

(s + z)(1 + z1)(1 + z2)

)
Now let’s give all this to Maple
> assume(s>0);

> assume(z>0);

> assume(z1>0);

> assume(z2>0);

> integrand := - 1/((1+z)*(z+z1)*(z+z2))\

> + 1/((1+z)*(1+z1)*(z+z2)) + 1/((1+z)*\

> (z+z1)*(1+z2)) + 1/((s+z)*(z+z1)*(z+z2\

> )) - 1/((s+z)*(1+z1)*(z+z2)) - 1/((s+z\

> )*(z+z1)*(1+z2)) - 1/((1+z)*(1+z1)*(1+z2)) + 1/((s+z)*(1+z1)*(1+z2))\;

1 1

integrand := - ------------------------------ + -----------------------------

(1 + z~) (z~ + z1~) (z~ + z2~) (1 + z~) (1 + z1~) (z~ + z2~)

1 1

+ ----------------------------- + -------------------------------

(1 + z~) (z~ + z1~) (1 + z2~) (s~ + z~) (z~ + z1~) (z~ + z2~)

1 1

- ------------------------------ - ------------------------------

(s~ + z~) (1 + z1~) (z~ + z2~) (s~ + z~) (z~ + z1~) (1 + z2~)

1 1

- ---------------------------- + -----------------------------
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(1 + z~) (1 + z1~) (1 + z2~) (s~ + z~) (1 + z1~) (1 + z2~)

> factor(normal(integrand));

2

(z~ - 1) (s~ - 1)

- ------------------------------------------------------------

(1 + z~) (z~ + z1~) (z~ + z2~) (1 + z1~) (1 + z2~) (s~ + z~)

> int(factor(normal(integrand)), z2=0..infinity);

2 2 2 2 3

- ln(z~) (s~ z~ - s~ - z~ + 1)/(s~ z1~ z~ + s~ z1~ z~ + z1~ z~ + z1~ z~

2 2 2 2 3

+ s~ z1~ + 2 s~ z1~ z~ + s~ z~ + z1~ z~ + 2 z1~ z~ + z~ + s~ z1~

2

+ s~ z~ + z1~ z~ + z~ )

> factor(int(factor(normal(integrand)), z2=0..infinity));

ln(z~) (z~ - 1) (s~ - 1)

- ---------------------------------------

(z~ + z1~) (1 + z~) (1 + z1~) (s~ + z~)

> int(factor(int(factor(normal(integrand)), z2=0..infinity)), z1=0..infinity);

2

ln(z~) (s~ - 1)

- ---------------------

2

s~ z~ + z~ + s~ + z~

> factor(int(factor(int(factor(normal(in\

> tegrand)), z2=0..infinity)), z1=0..infinity));

2

ln(z~) (s~ - 1)

- ------------------

(1 + z~) (s~ + z~)

> int(factor(int(factor(int(factor(norma\

> l(integrand)), z2=0..infinity)), z1=0..infinity)), z=0..infinity);

2 2

-1/3 (ln(s~) + Pi ) ln(s~)

(2) (a) Let A = K[l1, l2, . . .] and H be the Connes-Kreimer Hopf algebra. A is a sub
algebra of H by definition. Next note that ∆(ln) =

∑n
i=0 li ⊗ ln−i, so A is

closed under the coproduct. It is clearly also closed under the counit and by
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the recursive formula then it is also closed under S. Therefore A is a sub Hopf
algebra.

(b) There are many ways to do this. Here’s a direct way with a little counting. Let
pn = [xn] log (

∑∞
i=0 lix

i)

[xn] log

(
∞∑
i=0

lix
i

)
= [xn]

∑
i≥1

(−1)i
∑

j ≥ 1ljx
j)i

i

=
∑
i≥1

(−1)i

i

∑
n1+n2+···+ni=n

ln1ln2 · · · lni

So

∆(pn) =
∑
i≥1

(−1)i

i

∑
n1+n2+···+ni=n

∑
0≤j1≤n1
0≤j2≤n2

...
0≤ji≤ni

lj1lj2 · · · lji ⊗ ln1−j1ln2−j2 · · · lni−ji

Now consider some lj1lj2 · · · ljs ⊗ lk1lk2 · · · lkt . We want to count how many times
this appears. Suppose there are s trees on the left and t on the right. The
arguments which follow are symmetric so we may suppose that s ≤ t.
If s = 0 then the only way this term can appear is from (half of) the primitive
part of ∆(lk1lk2 · · · lks), and so this must appear with the same coefficient as it
does in pn itself.
If s = 1, then there are two ways the term can appear. Either lj1 is grafted
below one of the trees of the right hand side (grafted above the left in the
reverse argument when t = 1), or the term comes from the coproduct of a forest
of the form lj1lk1 · · · lkt . There are t ways the first case can occur and each of
them appears with coefficient (−1)t/t. There are t+ 1 ways the second case can
occur and each of them appears with coefficient (−1)t+1/(t + 1). Together the
coefficient is t(−1)t/t + (t + 1)(−1)t+1/(t + 1) = 0.
Something similar holds in general. Consider 1 ≤ s ≤ t. There are t(t−1) · · · (t−
s + 1) = t!/(t− s)! ways to graft the left hand trees under the right hand trees.
There are s · (t+ 1) · t!/(t− s+ 1)! = (t+ 1)!/(t− s+ 1)! ways to put one of the
left hand trees among the right hand trees and graft the rest, and so on. The
overall coefficient is (where the index m is the number of left hand trees put
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among the right hand trees and the rest are grafted under).

s∑
m=0

(
s

m

)
(−1)t+m

t + m
(t + m)(t + m− 1) · · · (t + 1)

t!

(t− s + m)!

=
s∑

m=0

(
s

m

)
(−1)t+m (t + m− 1)!

(t− s + m)!

= −ds−1

dz

s∑
m=0

(
s

m

)
(−z)t+m−1|z=0

= −ds−1

dz
(−z)t−1

s∑
m=0

(
s

m

)
(−z)m|z=0

= −ds−1

dz
(−z)t−1(1− z)s|z=0

= 0

since s ≥ 1 and an 1− z remains after the s− 1 derivatives.
This calculation tells us that all the non-primitives terms in the coproduct cancel
out, while the calculation for s = 0 (and the analogous calculation for t = 0) give
that the primitive part of the coproduct is correct and so each pn is primitive.

(3) Let L be a 1-cocycle in the Hopf algebra of polynomials in x. Then by the 1-cocycle
property ∆(L(1)) = (id ⊗ L)∆(1) + L(1) ⊗ 1 = 1 ⊗ L(1) + L(1) ⊗ 1 so L(1) is
primitive. A polynomial of degree > 1 cannot be primitive because the leading term
will contribute non-primitive terms to the coproduct and these cannot be cancelled
by other terms by gradedness. So all primitive must have the form ax + b, but then
calculating explicitly we see that b = 0, so L(1) = ax for some a ∈ K.

Now I claim by induction that L(xn) = a
n+1

xn+1+ lower order terms. The base

case holds by the calculation above. Consider L(xk). From the cocycle property we
have

∆(L(xk)) =
k∑

i=0

(
k

i

)
xi ⊗ L(xk−i) + L(xk)⊗ 1

By the inductive hypothesis and gradedness we see that L(xk) is a polynomial of
degree k + 1. Suppose the leading term of L(xk) is cxk+1. Then

∆(L(xk)) =
k+1∑
j=0

c

(
k + 1

j

)
xj ⊗ xk+1−j + lower order terms

So by the inductive hypothesis we have c
(
k+1
i

)
=
(
k
i

)
a

k+1−i for each 0 ≤ i ≤ k. Each
of these gives c = a

k+1
, which proves the claim.

Note that this first claim tells us that L behaves like integration with perhaps
something lower order as well. It remains to sort out the lower order stuff.

My next claim is that for 2 ≤ i ≤ n we have

[xi]L(xn) =
n(n− 1) · · · (n− i + 2)

i!
[x]L(xn−i+1)
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Note that this implies that [xn]L(xn) = [x]L(x), so the subleading term always has
the same coefficient.

This is again an induction. One can check the base case by hand. Then note that
if a is the coefficient of [xi]L(xn) then, calculating similarly to the previous claim
we obtain that for each j, the coefficient of xj ⊗ xi−j in ∆(L(xn)) can be calculated
directly and via the 1-cocycle property. This gives the following

a

(
i

j

)
=

(
n

j

)
[xi−j]L(xn−j)

=

(
n

j

)
(n− j)(n− j − 1) · · · (n− i + 2)

(i− j)!
[x]L(xn−i+1)

=
n(n− 1) · · · (n− i + 2)

i!
[x]L(xn−i+1)

independently of j as desired.
Finally, the third claim is that with the coefficients as above, with free linear

coefficient and 0 constant term, this gives all 1-cocycles.
The proof of this third claim is essentially the same calculations as above. We

always checked all coefficients where a given coefficient appeared and they were con-
sistent. This accounted for all coefficients, so the linear coefficient is free, and the
constant term is incompatible with the 1-cocycle property.
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