
COMBINATORIAL HOPF ALGEBRAS, WINTER 2020, ASSIGNMENT 1

SOLUTIONS

(1) (a) In undergrad abstract algebra you probably worked with ideals of rings (and
maybe other things too, but lets stick with that for this problem). A K-algebra
is a ring over K, so let’s just translate the undergrad ideal of a ring definition,
which says that I is a two sided ideal of A if a, b ∈ I implies a + b ∈ I and
r ∈ A, a ∈ I implies ra ∈ I and ar ∈ I, where the multiplication is being
denoted by concatenation. By the unit map, we see K inside A and so taking
the special case of r ∈ K ⊆ A along with the additivity shows that I is a
subspace of A. m(A⊗I) = {ra : r ∈ A, a ∈ I} ⊆ I by the elementary definition.
m(I ⊗ A) = {ar : r ∈ A, a ∈ I} ⊆ I by the elementary definition. Therefore we
get the above definition of ideal.
In the other direction if we have an ideal as above, then for r ∈ A, a ∈ I, since
m(A⊗ I) ⊆ I we have ra ∈ I and since m(I⊗A) ⊆ I we have ar ∈ I. Since I is
a subspace we have additivity in I. Therefore we get the elemenetary definition
of ideal.

(b) If u ∈ ker(f) and v ∈ V then (f ⊗ f)(u⊗ v) = f(u)⊗ f(v) = 0⊗ f(v) = 0, and
(f ⊗f)(v⊗u) = f(v)⊗f(u) = f(v)⊗0 = 0. Therefore ker(f)⊗V +V ⊗ker f ⊆
ker f ⊗ f .
There is a usual trick for the other direction. Let U = ker(f)⊗ V + V ⊗ ker f ,
we just checked that this is inside ker(f ⊗ f) and it is clearly linear, so we can
mod out by it. In particular, we have f ⊗ f : V ⊗ V → Imf → Imf and hence
this descends to f ⊗ f : (V ⊗ V )/U → Im(f)⊗ Im(f).
If we can show that f ⊗ f is an isomorphism then we’re done since the first
isomorphism theorem for vector spaces tells us (V ⊗V )/ ker(f ⊗ f) ∼= Im(f ⊗ f)
(this is actually just the rank-nullity theorem, since any two finite dimensional
vector spaces of the same dimension are isomorphic, but this way is phrasing it
in the style of an isomorphism theorem).
To show this, we’ll exhibit the inverse map. Clearly the inverse map needs to be
g : Im(f) ⊗ Im(f) → (V ⊗ V )/U defined by g(f(v) ⊗ f(w)) = v ⊗ w + U . The
only question is whether this is actually well defined. So let’s check. Suppose
f(v1) ⊗ f(w1) = f(v2) ⊗ f(w2) then f(v1) = f(v2) and f(w1) = f(w2). For g
to agree defined on either of these arguments, we need v1 ⊗ w1 − v2 ⊗ w2 ∈ U .
Calculate

v1 ⊗ w1 − v2 ⊗ w2 = (v1 − v2)⊗ w1 + v2 ⊗ (w1 − w2)

∈ ker(f)⊗ A+ A⊗ ker(f) = U

as desired.
(c) Coalgebra morphisms are first linear maps, so the kernel is a subspace.
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Take c ∈ C such that f(c) = 0. Then (f ⊗ f)(∆(c)) = ∆(f(c)) = ∆(0) = 0. So
∆(c) ∈ ker(f ⊗ f) By the previous point we know ker(f ⊗ f) = ker(f) ⊗ A +
A⊗ ker(f), so ∆(c) ∈ ker(f)⊗ A+ A⊗ ker(f).
Additionally εD ◦ f = εC so εC(c) = εD(f(c)) = εD(0) = 0.
Together this gives that ker(f) is a coideal.

(d) Consider c ∈ C and j ∈ J . We need to show that any representative of c in C/J
has the same coproduct and counit, so ∆ and ε are well defined on C/J . After
that, all the properties are automatic from C since extra identities can’t make
a diagram that already commutes fail to commute.
To show that any representatives of c in C/J have the same coproduct and
counit it suffices to show c and c + j have the same coproduct and counit.
But the coproduct and counit are both linear, so ∆(c + j) − ∆(c) = ∆(j) ⊆
C⊗J +J ⊗C = 0 in C/J and ε(c+ j)− ε(c) = ε(j) = 0. This proves the result.

(e) First let’s show that Im(f) inherits a coalgebra structure from D. The only thing
to check for this point is that ∆D(Im(f)) ⊆ Im(f) ⊗ Im(f). Take c ∈ C and
write ∆(c) =

∑
(c) c1⊗c2. Then ∆D(f(c)) = (f⊗f)∆C(c) =

∑
(c) f(c1)⊗f(c2) ∈

Im(f)⊗ Im(f), as desired.
Then f itself gives a map f : C/ ker(f) → Im(f). This map is well defined
because it is linear and because of what a kernel is, i.e. if we have c and j as in
the previous part then f(c+ j)− f(c) = f(j) = 0.
f : C → D is a coalgebra morphism so f : C/ ker(f)→ Im(f) is also a coalgebra
morphism by the same commutative diagrams as taking a quotient cannot break
the commutativity of a diagram.
As a linear map f : C/ ker(f)→ Im(f) is one-to-one and onto hence is a vector
space isomorphism and has an inverse as a linear map. Call the inverse g. The
last thing to check is that g is also a coalgebra map, but this is also automatic
as,

C
f−−−→ D

∆C

y ∆D

y
C ⊗ C f⊗f−−−→ D ⊗D

and g the vector space inverse implies

C
g←−−− D

∆C

y ∆D

y
C ⊗ C g⊗g←−−− D ⊗D

and likewise

C D

K

f

εC
εD

implies
C D

K

εC
εD

g

This completes the proof.
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(2) (a) Suppose S2k−1 = id for some k ≥ 1. Then S2k−1(ab) = ab. Now S is an
antiautomorphism, so S(ab) = S(b)S(a), S(S(ab)) = S(S(b)S(a)) = S2(a)S2(b)
and so on swapping a and b each time (prove it inductively if you like) to get
S2k−1(ab) = S2k−1(b)S2k−1(a) = ba since the order is 2k − 1. Therefore ab = ba
and so H is commutative. But we showed that commutative Hopf algebras have
antipodes of order at most 2. The only possiblity then is that S has order 1,
that is S = id.
If S = id then id ? id = uε. If a ∈ ker ε then this says that 0 =

∑
(a) a1a2 so by

the result from class the order is 1 or 2.
Note that order 1 can occur but only in very trivial situations, eg the field as a
Hopf algebra over itself.

(b) (i) Call the ideal I. Calculate

∆(xy − 1) = ∆(x)∆(y)−∆(1)

= (x⊗ x)(y ⊗ y)− 1⊗ 1

= xy ⊗ xy − 1⊗ 1

= (xy − 1)⊗ xy + 1⊗ (xy − 1)

∈ I ⊗ A+ A⊗ I

Similarly

∆(xy − 1) = (y ⊗ y)(x⊗ x)− 1⊗ 1 = (yx− 1)⊗ yx+ 1⊗ (yx− 1) ∈ I ⊗ A+ A⊗ I

Now take a ∈ A.

∆(a(xy − 1)) = ∆(a)∆(xy − 1)

=
∑
(a)

a1(xy − 1)⊗ a2xy +
∑
(a)

a1 ⊗ a2(xy − 1)

∈ I ⊗ A+ A⊗ I

since I is an ideal. Similar arguments hold for a(yx − 1), (xy − 1)a, and
(yx − 1)a. Finally, ∆ is linear so ∆ applied to any linear combination of
xy − 1 and yx− 1 lives in I ⊗ A+ A⊗ I.
Additionally, ε(xy − 1) = 1− 1 = 0, ε(yx− 1) = 1− 1 = 0, and similarly
to the above, since ε is an algebra homomorphism, all the other elements
of the ideal also map to 0.
Therefore I is a coideal.

(ii) First note that S(xy − 1) = S(y)S(x) − 1 = xy − 1 = 0 and similarly
S(yx− 1) = 0 so S is well defined on the quotient.
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Using xy = 1 and yx = 1,

(S ? id)(x) = S(x)x = yx = 1 = uε(x)

(id ? S)(x) = xS(x) = xy = 1 = uε(x)

(S ? id)(y) = S(y)y = xy = 1 = uε(y)

(id ? S)(y) = yS(y) = yx = 1 = uε(y)

(S ? id)(z) = S(1)z + S(z)x = z − zyx = 0 = uε(z)

(id ? S)(z) = S(z) + zS(x) = −zy + zy = 0 = uε(z)

so S behaves as an antipode on the generators. If a, b are words in x, y, z
then (S?id)(ab) =

∑
(a),(b) S(b1)S(a1)a2b2, so inductively if S behaves as an

antipode on a and b, then summing the (a) sum gives a factor uε(a) which
pulls out and then summing the (b) sum gives uε(b). Therefore inductively
S behaves as an antipode on any words in the generators. This suffices to
check that S is an antipode on account of linearity.
Now we need to determine the order of S. S(x) = y, S(y) = x so S(S(x)) =
x and S(S(y)) = y. It remains to consider the order on z:

S(z) = −zy
S(S(z)) = −S(y)S(z) = xzy

S(S(S(z))) = S(y)S(z)S(x) = −xzy2

Continuing, (formally by induction) one can prove Sk(z) = (−1)kxbk/2czydk/2e.
Since our only relations at this point are xy = yz = 1, these expressions
are never equal to z and hence S has infinite order.

(iii) Calculate

∆(xn − 1) = xn ⊗ xn − 1⊗ 1

= (xn − 1)⊗ (xn − 1) + 1⊗ (xn − 1) + (xn − 1)⊗ 1

⊆ 〈xn − 1〉 ⊗H +H ⊗ 〈xn − 1〉

and

ε(xn − 1) = ε(x)n − ε(1) = 1− 1 = 0

(iv) The thing we need to check to know that S passes to the quotient correctly
is S(〈xn − 1〉) ⊆ 〈xn − 1〉. So, compute

S(xn − 1) = S(x)n − S(1)

= yn − 1

= yn − xnyn

= (1− xn)yn ⊆ 〈xn − 1〉

Now, finally we need to check the order of S. The previous calculations
for S(x) and S(y) still hold as does the expression for S(z). Consider

Sk(z)− z = (−1)kxbk/2czydk/2e − z
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For k < 2n this expression is nonzero as no relation can remove the power
of x. On the other hand for k = 2n

S2n(z)− z = xnzyn − z
= zyn − z
= 0

where we used that xy = 1 and xn = 1 implies xn = xnyn so yn = 1. This
proves the result.

(3) (a) This is in section 12 of Schmitt’s “Incidence Hopf algebras” paper. Let G be
a class of graphs closed under induced subgraph and disjoint union. Note also
that at this point these are not graphs up to isomorphism, but just graphs.
Isomorphism will come in later. All simple graphs will do the job and then we’ll
get exactly the first graph Hopf algebra from class. (If you’re worried about this
being too big take all simple graphs with vertices given by a subset of a fixed
countable set.)
For G ∈ G consider the poset of subsets of V (G) ordered by inclusion. Consider
all products of intervals of such posets. This family of posets is interval closed
and hereditary by definition.
The key is in the choice of Hopf relation. Define [U1, V1] × · · · × [Un, Vn] ∼
[W1, X1]× · · · × [Wn, Xn] iff for all i, Gi[Vi − Ui] and Hi[Xi,Wi] are isomorphic
as graphs, where Gi is the graph for which [Ui, Vi] is an interval in its poset of
vertex subsets and the same for Hi with respect to [Xi,Wi].
This is an order compatible relation because intervals which are equivalent are
necessarily isomorphic as posets. This is a congruence because direct product of
posets corresponds (up to isomorphism) to disjoint union of graphs, and if we
have two isomorphic graphs, then taking the disjoint union of each by another
graph still results in isomorphic graphs. This relation is reduced because all
induced graphs on 0 vertices are isomorphic. Therefore it is Hopf and we have
an incidence Hopf algebra.
The product of the incidence Hopf algebra is poset product, which as discussed
in the previous paragraph is disjoint union of graphs, as desired. We’ve observed
many times that the unit and counit are the ones we keep seeing.
The coproduct on [∅, V (G)] for some G ∈ G is

[∅, V (G)] =
∑

S⊆V (G)

[∅, S]⊗ [S, V (G)]

but the Hopf relation tells us intervals are the same if the difference in vertex
sets induces the same graph, so we can consider the class of G to be [∅, V (G)]
and we get

[G] =
∑

S⊆V (G)

G[S]⊗G[V (G)− S]

which is our first graph Hopf algebra.
(b) (i) The binomial Hopf algebra has a generator x in degree 1. This must

correspond to the graph on one vertex. Then xn is the graph on n vertices
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with no edges, and these are the only graphs we need to get the binomial
Hopf algebra.

(ii) Let xn be as in the question. As an algebra the Hopf algebra we are
asking about will be the polynomial algebra K[x1, x2, . . .]. Now calculate
the coproduct.

∆(xn) =
∑

S⊂V (Kn)

Kn[S]⊗Kn[V (Kn)− S]

=
∑

S⊂V (Kn)

K|S| ⊗K|V (Kn)−S|

=
n∑
i=0

(
n

i

)
Ki ⊗Kn−i
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