Second commutative square.

CO739, Winter 2020

Another square relating some Hopf algebras we've seen
-000

Another square

Here's another commutative ṡquare.

with

$$
\begin{aligned}
& \text { NSym } \rightarrow \text { Sym } \\
& h_{i} \mapsto h_{i}
\end{aligned}
$$

just make them commute, same as for the other square.

Another square relating some Hopf algebras we've seen
0000

More maps

We have

$$
\begin{aligned}
& \tilde{\chi}: \text { Sym } \rightarrow \text { NCSym } \\
& m_{\lambda} \mapsto \frac{1}{\#} \sum_{\text {sizes }} m_{\pi} \quad \tilde{\chi}\left(m_{21}\right) \\
& \text { sizes of parts } \\
& \begin{array}{r}
=\frac{1}{3}\left(m_{\{1,23\}, 33\}}+m_{\{1,3\},\{2\}}\right) \\
+m_{\{2,3\}, \xi 1\}} .
\end{array} \\
& \chi: \text { NCSym } \rightarrow \text { Sym } \\
& \text { eg } \\
& \text { of } \pi \text { give } \lambda
\end{aligned}
$$

by forgetting the noncommutativity of variables.

Putting these maps together

Then we can define
I: Sym \rightarrow NCSym
$h_{n} \mapsto \widetilde{\chi}\left(h_{n}\right)$
$\tilde{x}\left(h_{n}\right)$
Sym
and extend
as on aby. homempliom

So

Another square relating some Hopf algebras we've seen

0000

Another page for diagrams that run over

