First commutative square.

CO739, Winter 2020

Permutations return

Recall the Hoff algebra of permutations we discussed early on.

- Start with the set $\mathcal{P}=\bigcup_{n \geqslant 0} \mathcal{P}_{n}$ where \mathcal{P}_{n} is the set of permutations of $\{1,2, \ldots, n\}$.
- As a vector space the Malvenuto Reutenauer Hopf algebra of permutations is $H_{M R}=\operatorname{Span}_{K}(\mathcal{P})$.
- Product shuffles with the second permutation given the higher numbers
- Coproduct is cut and normalize.

Eg
$21.1==21 \omega 3$

$\Delta(2314)=2314$
$\otimes 11+\frac{1}{23}$

* 1
$+\gamma_{1}^{2} \otimes 12$
$+i$
$\otimes 213$
$+1 \otimes 2314$

A square relating some Hopf algebras we've seen 0000000

Example continued

A square relating some Hopf algebras we've seen 0000000

Then we have a square

It turns out

And duality is reflection along

Descent sets

Given $\sigma \in \mathcal{P}_{n}$ the descent set of σ is

$$
\operatorname{Des}(\sigma)=\left\{1 \leq \mathbb{i} \leq n-1: \sigma_{i}>\sigma_{i+1}\right\}
$$

$\operatorname{Eg} \operatorname{Des}\binom{56231874}{1(2), 0,508}=\{2,4,6,7\}$
Think of these as cut points and bill a compositise

$$
\begin{array}{lll|ll|ll|l|ll}
\mathrm{eg} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
0 & \cdot & 0 & \cdot & 0 & 0 & 1 & 0
\end{array}
$$ (cut jot after he index) and the composite is the sizes of the chunks

so $\operatorname{comp}(\operatorname{Des}(56231874))=2,2,2,1,1$
a

Composition of the descent set

Treat the descent set as cut points in $1234 \cdots n$

$E g$	eg	2	2	3	4	5	6	7	8
0	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	0		

The sizes of the parts give a composition. Call this the composition of the descent set, $\operatorname{comp}(\operatorname{Des}(\sigma))$.

$$
\text { so } \quad \operatorname{comp}(\operatorname{Des}(56231874))=2,2,2,1,1
$$

A square relating some Hopf algebras we've seen 0000000
The surjection

Malvenuto showed

$$
\begin{aligned}
H_{M R} & \rightarrow \text { Sym } \\
\sigma & \mapsto F_{\operatorname{comp}(\operatorname{Des}(\sigma))}
\end{aligned}
$$

is a surjective Hopf morphism, where

$$
F_{\alpha}=\sum_{\beta \geq \alpha} M_{\beta}
$$

(fundamental quasisymmetric functions), and \geq is refinement/coassening the big side is the coarser side
so eg $(2,1,5,1) \geqslant(1,1,1,3,2,1)$

A square relating some Hopf algebras we've seen 000000
Another self-duality

Also, $H_{M R}$ is self-dual via

$$
\begin{aligned}
H_{M R}^{\circ} & \rightarrow H_{M R} \\
\sigma^{*} & \mapsto \sigma^{-1}
\end{aligned}
$$

and so from the previous slide we get the dual map Sym $\rightarrow H_{M R}$, and all these together give the square.

