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Permutations return

Recall the Hopf algebra of permutations we discussed early on.

o Start with the set P = Un>0 P, where P, is the set of
permutations of {1,2,...,n}.

o As a vector space the Malvenuto Reutenauer Hopf algebra of
permutations is: Spany(P).

o Product shuffles with the second permutati i the higher
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o Coproduct is cut and We.
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Example continued
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Then we have a square

It turns out

And duality is veflecko. A%
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Descent sets
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Given o € P, the descent set of o is
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Composition of the descent set

Treat the descent set as cut pointsin 1234 --- n
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The sizes of the parts give a composition. Call this the
composition of the descent set, comp(Des(o)).

g0 comp(Des(56221834)) = 2 2 21 |
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The surjection

Malvenuto showed

HMR — QSym

o= Fcomp(Des(cr))

is a surjective Hopf morphism, where

F. :%;

(fundamental quasisymmetric functions), and > is mﬁ,\qme,cl/cm-?
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Another self-duality

Also, Hyr is self-dual via

(4
H;/IR — HMR
o* ot
and so from the previous slide we get the dual map NSym — Hyg,
and all these together give the square.
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