NSym 0000

CO739, Winter 2020

Don't forget course evals : evaluate. uwaterloo, ca Lost I checked roome had done it

くロン (語)とく ほどく ほとう ほう

200

NSym eooo

NSym as an algebra

As an algebra NSym = $K\langle h_1, h_2, \ldots \rangle$, noncommutative polynomials.

Take h_i to have degree i.

eg deg $(h_2h_1h_2h_3) = 8$

(日本人間を入るためをする

.

200

noncome. polys

Nsym Cet $h_{\alpha} = h_{\alpha_1}h_{\alpha_2}\cdots h_{\alpha_k}$ where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ is a composition. These are noncommensative in the L: Then $\{h_{\alpha}\}_{\alpha \text{ composition}}$ gives a vector space basis for NSym.

(白)(出)(ほ)(ほ)(ほ)

200

So dim NSym_n = 2^{n-1}

NSym 0000

NSym as a bialgebra

NSym is a bialgebra with $\Delta(h_n) = \sum_{k=0}^n h_k \otimes h_{n-k}$, and extended as an algebra homomorphism.

-

<ロン (語) (注) (注) (注) 注: のへび

It is graded and connected so it is a Hopf algebra. The degree

NSym 0000

We have es too Can define e_1, e_2, \ldots recursively by $\sum_{i=0}^{n} (-1)^i e_i h_{n-i} = \begin{cases} 1 & n > 0 \\ 0 & n = 0 \end{cases}$

Get that NSym =
$$K \langle e_1, e_2, \ldots \rangle$$
 and $\Delta(e_n) = \sum_{k=0}^n e_k \otimes e_{n-k}$.

I dea: Like Sym but the hi don't commute Just define it that way (what we did above) And don't worry about an interpretation as functions on the Xis.

<ロ> <西> <西> < 田> < 田> < 田> < 田> < 田> <