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Categorification

We don’t need no stinkin’ underlying combinatorial
objects

You’ve categorified a structure if you’ve obtained it from some
categorical construction.
Specifically, as representations of something.

The combinatorial objects are no longer inputs to your
construction but arise from the construction.

If you’ve done it right you get new insight into the concrete objects
as well as having a nice new abstract structure.
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Towers

If you like thinking of symmetric functions as representations of the
symmetric group then you already like categorification.
The key is that you have a tower of groups {Sn}.

As well as Sym, the Malvenuto Reutenauer Hopf algebra of
permutations can also be categorified by representations of a tower
of groups.

To step beyond Sym you can move from towers of groups to
towers of algebras. (QSym and NSym can be done this way.)
Another way to step beyond Sym is be more general in what you
allow the representation theory to be. With supercharacter theory
you can build NCSym.
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Other ways

Towers aren’t the only way.
Matt Szczesny spoke in the algebraic combinatorics seminar a
month or so ago on an approach via Hall algebras.
The Connes-Kreimer Hopf algebra and it’s friends can also be
categorified operadically.
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Don’t ask me, ask these people

Some of our York colleagues are experts on this. Check out this
talk http://garsia.math.yorku.ca/NantelTalk/

Lothar2017_Bergeron.pdf

Here’s an introduction from a thesis
https://amypang.github.io/notes/cha_thesis4pt1.pdf
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