The chromatic symmetric function. an exauple of the previes theoren
CO739, Winter 2020

Return to the first Hopf algebra of graphs

Let H be the first Hopf algebra of graphs.
Multiplication is disjoint union.

$$
\Delta(G)=\sum_{W \subseteq V(G)} G[W] \otimes G[V-W]
$$

Let

$$
\zeta(G)= \begin{cases}1 & \text { if } G \text { is only isolated vertices } \\ 0 & \text { otherwise }\end{cases}
$$

What is ψ ?

What is $\psi(G)$?

$$
\psi(G)=\sum_{\lambda} \zeta_{\lambda}(G) m_{\lambda}
$$

But what is $\zeta_{\lambda}(G)$?

Chromatic symmetric function 0000
What is ζ_{λ} ?
let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}\right)$

$$
\begin{aligned}
\zeta_{\lambda}(G)= & \left(\int_{\lambda_{1}} * J_{\lambda_{2}} * \ldots * \zeta_{\lambda_{k}}\right)(G) \\
= & \left.\sum_{\omega_{1} v \ldots v \omega_{k}=v(G)} \int_{\lambda_{1}}\left(G\left[\omega_{1}\right]\right)\right]_{\lambda_{2}}\left(G\left[\omega_{2}\right]\right) \cdots \zeta_{\lambda_{k}}\left(G\left[\omega_{k}\right]\right)
\end{aligned}
$$

the ω_{i} dis.
ω_{i} has λ_{i} veshios
$=$ \# of paribus of $V(G)$ nb $\omega_{1}, \omega_{2} . ., \omega_{k}$ with ω_{i} having di vathics. with no edge in $G\left[\omega_{1}\right], G\left[\omega_{2}\right], \ldots, G\left[\omega_{k}\right]$
$=\#$ parblun of $V(\omega)$ into colour closes of sim $\lambda_{1}, \lambda_{2} \ldots$ with no ede having both ends the save colour
\# proper colourings of G using colour 1 exactly λ_{1} times colour 2 exactly λ_{2} times eh.

Chromatic symmetric function

So

$$
\psi(G)=\sum_{\substack{\text { proper colouringss } \\ \kappa: V(G) \rightarrow \mathbb{Z} \geq 1}} \prod_{v \in V(G)} x_{\kappa}(v)
$$

which is the chromatic symmetric function.

You'll probably hear more about chromatic symmetric functions starting in the fall with Sophie and Logan's arrival.

