Third definition of combinatorial Hopf algebras.

CO739, Winter 2020

Characters

Given a Hopf algebra H over K, a character of H is an algebra morphism $\zeta: H \rightarrow K$.

A particularly important character for QSym is

$$
\begin{aligned}
\zeta_{Q}: \text { QSym } & \rightarrow K \\
f\left(x_{1}, x_{2}, x_{3}, \ldots\right) & \mapsto f(1,0,0, \ldots)
\end{aligned}
$$

Compare with Feynman rules
Feyman rules should aliso be algebra maps
multiphichie multipliaghe
Target spiae oot K.
But foom an accued experinat youd get a number (is. on ett F) becare yo evalunte
 a disconnals Fegnman didgram

So if you ho valves of paramedio it ulhumety becones a charader.

Focthermee you wat your Feynma rulos to be Hopf chreacters Cones dau b a nice convoluher property. Sayg are acteral paract

Third definition of Combinatorial Hopf algebra

The third definition of Combinatorial Hopf algebra is:
A Combinatorial Hopf algebra is a pair (H, ζ) of a graded connected Hopf algebra H over K with each H_{n} finite dimensional and a character $\zeta: H \rightarrow K$.

Examples
We hadn't thought about characters before, but we can typically pick a fairly trivial ζ and get something good.
Eg first graph Hops algebra $\left(\begin{array}{c}\text { molt disjoint win } \\ (G) \\ \hline\end{array} \sum_{\omega \leq v(\omega)} G[\omega G[v-\omega])\right.$ $\omega \leq V(G)$

A nice character is

$$
\zeta(G)= \begin{cases}1 & \text { if } G \text { is jot sone isolated verities } \\ 0 & \text { otherwise. }\end{cases}
$$

What are the morphisms for this definition

What should a morphism of combinatorial Hopf algebras $\psi:\left(H_{1}, \zeta_{1}\right) \rightarrow\left(H_{2}, \zeta_{2}\right)$ mean?

Answer: $\quad \psi: H_{1} \rightarrow H_{2}$ is a Hepof al morphism and

Universal property

Theorem (Aguiar, Bergeron, Stile)
($Q S y m, \zeta_{Q}$) is the terminal object in the category of combinatorial Hoof algebras (in the sense of definition 3).
That is, for any combinatorial Hops algebra (H, ζ) there is a unique morphism ψ of combinatorial Hoof algebras,
$\psi:(H, \zeta) \rightarrow\left(Q S y m, \zeta_{Q}\right)$.
proof Write ζ_{n} la ζ restricted to H_{n}
Da $\zeta_{n} \in H_{n}^{*}$ all have $\zeta_{n}=H^{\circ}$
We know $Q S_{q^{\prime}}{ }^{0}=N S_{y_{\mu} n}=K\left\langle h_{1}, h_{2} \ldots\right\rangle$
So there n a wive alger mes
$\phi: N S_{y n} \rightarrow H^{\circ}$
$h_{n} \longmapsto \zeta_{n}$ sine $N S_{p_{m}} \quad$ o free

Proof If 0 ab a thpe ay. mep
corkived we now $\Delta\left(h_{n}\right)=\sum_{i=0}^{n} h_{i} \otimes h_{n-i}$. What abt $\Delta\left(\zeta_{n}\right)$?
5 o a derech so it omeliptate
so as a mp it copediot mil po by durided pares, lining up ut ln .
This ne have the dal mep

$$
\psi: H \rightarrow Q_{y^{m}}
$$

claim ψ is he mas ne unt
chack this. - ψ is a treft of me.
(frion ϕ an alg mep got ψ a coald mep ad 3 churach $\mathrm{o}^{\text {as }}$ de mulplati.ct y)

- Now for $g \in H$

$$
\begin{aligned}
& \left\langle\phi\left(h_{m}\right), g\right\rangle=\left\langle h_{m} \psi(g)\right\rangle \\
& \left\langle\zeta_{n}^{\prime \prime}, g\right\rangle
\end{aligned}
$$

Universal property 0000
Proof continued
so $\quad h_{n}(\psi(g))=\zeta_{n}(g)=\left\{\begin{array}{cc}\zeta(g) & g \in H_{n} \\ 0 & \text { oterue }\end{array}\right.$
sends M_{n} $\quad 1$
sends M_{λ} to 0 ba $\lambda \neq n$
But the S_{Q} restricted to degree n.
So in degree $\left.n \quad S_{Q}(\psi(g))=\right\}_{n}(g)=J(s)$ and the holds Cos all n so $S_{Q}(\Psi(g))=S(g)$.
S. ψ has the appropriate propertos to be de map we wart.

Formula for ψ

The formula for ψ is, for $g \in H$

$$
\psi(g)=\sum\left\langle h_{c}, \psi(g)\right\rangle M_{c}
$$

c composit

$$
=\sum \int_{c}(g) M_{c}
$$

whee

$$
\text { therese } 5 \text { restitch }
$$

c compusith

$$
0 .
$$

same as if sum. is over composites of $|\mathrm{g}|$ because if nob mist Le 0 .

Theorem

For any cocommutative combinatorial Hopf algebra (H, ζ) there is a unique morphism ψ of combinatorial Hopf algebras, $\psi:(H, \zeta) \rightarrow\left(\right.$ Sym $\left.^{\prime}, \zeta_{s}\right)$, where ζ_{s} is evaluation at $\left(x_{1}, x_{2}, \ldots\right)=(1,0,0, \ldots)$.

The proof is the same since $\mathrm{Sym}^{*}=K\left[h_{1}, h_{2}, \ldots\right]$ is free commutative.

The formula for ψ is, by the same argument,

$$
\begin{aligned}
& \psi(g)= \sum_{\lambda} \zeta_{\lambda}(g) m_{\lambda} \\
& \text { as before could sum our } \lambda \text { particles of }|\mathrm{g}| \\
& \text { sire other terms se all } 0 .
\end{aligned}
$$

