CO 430/630 LECTURE 4 SUMMARY

WINTER 2026

SUMMARY

Today we talked about operations on combinatorial classes and how they correspond to
operations on the generating series. The first three were more of a review; if you don’t
already know them check out your favorite book on generating functions (I like the first
chapter of Flajolet and Sedgewick for this material, see the references below).

Let A and B be two combinatorial classes with weight functions w4 and wp respectively.
Then

e the disjoint union AUB with ANA = () is a combinatorial class with weight function
w: AUB — 25 given by w|4 = ws and w|s = wp and with ordinary generating
series A(z) + B(z),

e the cartesian product A x B is a combinatorial class with weight function w : AxB —
25 given by w((a, b)) = wa(a)+wp(b) and with ordinary generating series A(z)B(x),

e provided Ay = @ the sequence operator A* = |J,., A¥ gives a combinatorial class
with weight function w((ay,as,...,ax)) = walay) + - - + wa(az) and with ordinary
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generating series =A@

This is already enough to do some examples and we did binary strings, binary trees
counted by vertices and by leaves, plane trees counted by vertices, and finally with a bivariate
generating series plane trees counted by both vertices and leaves. All those tree examples
are well suited to using LIFT to compute the coefficients explicitly and we did so. If you
missed the examples check Flajolet and Sedgewick or your favorite source, or check with a
friend. The specific examples aren’t so important as having experience with the approach in
a variety of examples.

Next we revisited the Dirichlet set up. What if we were in the cartesian product set up
as above but the natural weight function for our situation was multiplicative rather than
additive, so w((a,b)) = wa(a) - wp(b). Then the ordinary generating series will not be well
behaved but the Dirichlet generating series will be.

Definition 1. Given A a combinatorial class with weight function w : A — Z~q the Dirichlet

generating series of A is
ORED S

acA n>1

Note that it is important that the weight function is going to positive integers.
Now suppose A has a multiplicative weight function over products and further has unique
factorization into some indecomposable elements. Let P be the set of indecomposable ele-

ments. Then we have the following proposition.
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Proposition 2. With setup as above

Z ayn = H(l —n ) bn

n>1 n>2

We sketched the proof. First define val as before (it really only cared about coefficients not
the kind of series) vals()_ o, a,n"°) = min{m : a,, # 0} and then can define convergence
as before and again the intuition is that convergence is when the coefficients stabilize. Then
we see the product above is convergent. Now we can just multiply out and interpret
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where we used that (1 — w(p)~*)~! is the Dirichlet generating series for {p}*, and the last
line is by unique factorization.

The first example is when A = Z-; and P is the set of primes and then the Dirichlet
generating series is the Riemann zeta function and the proposition gives its Euler product
form. Another example is finite abelian groups which decompose into finite cyclic groups of
size p™. Then if a,, is the number of finite abelian groups of size n the proposition tells us
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The last thing we did this lecture was the multiset operator. As a motivating example,
suppose you don’t want your rooted trees to have any order structure on the children at each
vertex. In this context, instead of a sequence of subtrees at the root you have a multiset
of subtrees at the root. How do we deal with this? The Euler product construction above
gives the idea but now we're in the formal power series context instead of the Dirichlet
context. Specifically let A be a combinatorial class and say we're interested in MSet(.A), the
combinatorial class of multisets of elements of A, where we need to assume Ay, = (). Without
loss of generality we can choose a convenience order, first order all the elements of A;, then
all the elements of As etc, and put the elements of our multiset by first all the copies of the
first element, then all the copies of the second element and so on. Then we have

MSet(A) = [[{a}’
acA
(with the order implicit in the product). Writing B = MSet(.A) we have
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acA n>1
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giving the product form of the multiset formula. We can rewrite this a bit more
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where we used some properties of the formal power series of exp and log which we haven’t
proved, but which you can prove and should as an exercise (one bit is one assignment 1).
This is the multiset formula. Notice how it has a different flavour than the formulas we’ve
had so far since it isn’t a composition where you plug A(z) into another series on account
of the z's showing up.

Then for rooted trees specifically with no plane structure, letting that class be 7 we’d
have T = {e} x MSet(T) and so T'(z) = zexp(>_,-, T() /).

NEXT TIME
Next time you’ll work on a combinatorial proof of LIFT.

REFERENCES

Chapter I of Flajolet and Sedgewick’s book Analytic Combinatorics gives a good presen-
tation of this material in much this language, (but not the Dirichlet part).



