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SUMMARY

We started by using Hensel’s lemma to prove the condition for when a formal power series
has a compositional inverse.

Proposition 1. A(z) € R[[z]]+ has a compositional inverse iff [x]A(x) is invertible.

Proof. (sketch) The real work is a good example of how Hensel’s lemma is used. For the <
direction let F'(t,z) = t — A(x), check the hypotheses of Hensel’s lemma are satisfied and
so obtain B(t) € R|[t]]; such that 0 = F(t, B(t)) =t — A(B(t)). This gives one side of the
inverse. The other side is always true in this context. One nice way to show it is to define
eve : R[[z]] = R[[z]] by eve(A(x)) = A(C(z)) and show that this map is injective for C' # 0
(use val!). For the = direction consider the coefficient of z in B(A(x)) = z. We gave all the
details in class. U

Next we talked about some other kinds of formal series. The two we discussed are formal
Laurent series and formal Dirichlet series, though I briefly mentioned formal Puisseaux series
and formal series in noncommuting variables.

Definition 2. The ring of formal Laurent series R((z)) over R is

R((z)) = {Z a,x" : N € Z,a, € R}

n>N

with anNl anxn+2n2N2 bnl’n = anmin{Nl,NQ}(an_'_bn)xn and (anNl anx”) (anNg bnxn) =
Zn2N1+N2 (ZieZ a,»bn_i) "™ where we take the convention that a; = 0 for i < Ny and b; =0
for i < Ny, which also guarantees that the inner sum in the definition of product is a finite
sum.

Much of what we discussed still works, coefficent extraction (but useful to define [z~ A(z)
as the formal residue operator), val (but it can be negative). If F'is a field then F'((z)) is
also a field.

There are two cautions, you don’t want two way infinite series because you don’t want
a calculation like Y ,a" = > _ja" + 3 o " = =+ 1f;1,1 = 0. Secondly, the
difference between R((z))((y)) and R((y))((z)) is important (and it wasn’t for formal power
series. To see this is we expand (z +y)~' in Q((z))((y)) we get > ~o(—1)"y"z~""! but get
it with 2 and y flipped which is quite a different expression if we expand in Q((y))((z)).

This is a good time to state the Lagrange implicit function theorem (LIFT)

Theorem 3. Suppose Q C R and ¢(\) € R[[A]] is invertible. Then

o there exists a unique A(z) € R[[z]]+ such that A(x) = x¢p(A(x))
o [z"A(z) = LA\ YoM forn > 1.
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o for any f(N\) € R((N\))
I FAW) = TIPS forn £0
7] f(A(z)) = [WIF(N) + AT/ (M) log(6(N)/¢(0))
where the second term of the last expression is 0 when valy(f(X)) > 0.

Note that the second point is the special case of the third point when f(A) = A. It’s nice
to state separately since the second point is the one you’ll use most often in combinatorial
applications (but not always!). See the CO330 notes (linked in the references below) for a
proof using the formal residue operator. We’ll do a combinatorial proof in class next week.

Definition 4. The ring of formal Dirichlet series over R s the set of expressions of the form
Yons1 @ with Y5 o annT Y S b =30 o (an+by)n T and (2@1 ann_s) (2@1 bnn‘s) =

anl (ka akbn/k) n-®

Dirichlet series can be useful for counting things where the weight of a product of two
objects is the product of the weights rather than the sum of the weights as you’d expect for
ordinary generating series (which are coming right up!). The prototypical example is the

Riemann zeta function |
=Y = 11

n>1 p prime

which is the Dirichlet generating series for the positive integers.
We finished the class by setting up ordinary generating series.

Definition 5. e A combinatorial class A is a finite or countably infinite set with a
weight function w : A — Zsq such that A, = {a € A:w(a) =n} is finite for all n.
e The counting sequence of A is ag, ay,as, ... where a; = |A;.

e The ordinary generating series of A is A(x) =Y, 4 2%@ = Y 0 A" € Z[[z]].

This is notation mostly in the style of Flajolet and Sedgewick’s book (see references below),
but you can use a different style if you prefer. Unless otherwise specified the letters will line
up as above (curly for the class, capital roman for the generating series and lower case for
the sequence) and I will use this convention without comment in the future.

We can also have multivariate ordinary generatin gseries with multiple weight functions
wy 2 A= Zsg, w0 A — Lg, ..., 80 A(T1,22,...) =D 4ca 2@ 2@ You still want
each A, n,... to be finite and you want finitely many w;, or at least you want each a to only
have finitely many nonzero w;.

The point of this set up is to enumerate things by the symbolic method. There are four
basic steps

e Pin down what A and w are.

e Find a way to decompose A so each element is decomposed into smaller or simpler
pieces. The decomposition should give bijections that are weight preserving and
behave appropriately on the standard operations (which are to come)

e Convert the decomposition into equations for the generating series

e Solve or manipulate or extract coefficient or otherwise analyse in order to ansewr the

question at hand.
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NEXT TIME

Next time we’ll look at the operations, first the ones that come up in math 239 and then
some more and also give examples.

REFERENCES

Already mentioned are the videos from one of Kevin’s offerings https://www.math.
uwaterloo.ca/~kpurbhoo/winter2021-co630/co630-videos.html.

The CO 330 notes by David Wagner https://uwaterloo.ca/combinatorics-and-optimization/
sites/default/files/uploads/documents/co330-notes_0.pdf

Chapter I of Flajolet and Sedgewick’s book Analytic Combinatorics gives a good presen-
tation of this combinatorial set up in much this language with lots of examples and in a way
that’s pretty practical for someone who wants to use it.



