
CO 430/630 W26 ASSIGNMENT 1

SOLUTIONS

(1) The interesting direction is the ⇐ direction so let’s start with that. It feels like this is
a Hensel’s lemma question, which is it, and you might first be tempted to set it up as
F (t, x) = x2 −A(t), but this doesn’t statisfy the hypotheses for Hensel’s lemma and
the problem comes down to the fact that we need to normalize A(x) by it’s lowest
order term. So, let [xm]A(x) = a2 and note that A(x)/(a2x2m) − 1 ∈ F [[x]]+. Then
set

F (t, x) = (1 + x)2 − A(t)

a2t2m

So F (0, 0) = 1 − 1 = 0 and F ′(t, x) = d
dx
F (t, x) = 2(1 + x) so F ′(0, 0) = 2 which is

invertible since char(F ) ̸= 2. So by Hensel’s lemma we get f(t) ∈ F [[x]]+ such that
0 = F (t, F (t)) = (1+f(t))2−A(t)/(a2t2m). Therefore axm(1+f(x)) is a square root
of A(x) in F [[x]].
Now for the ⇒ direction, suppose g(x) ∈ F [[x]] is a square root of A(x). Then

2valx(g(x)) = valx(A(x)) so letting m = valx(g(x)) ∈ Z>0 we have valx(A(x)) = 2m
as desired. Further [x2m](g(x)2) = ([xm]g(x))2 giving [x2m]A(x) = ([xm]g(x))2 which
is a square in F .

(2) (a) Let A(x) =
∑

n≥0 anx
n and B(x) =

∑
n≥0 bnx

n.
Let’s prove the sum and product rule first as they are each pretty straightforward
but then we’ll have them at hand.

d

dx
(A(x) +B(x)) =

∑
n≥0

n(an + bn)x
n−1 =

∑
n≥0

(nan + nbn)x
n−1 = A′(x)B′(x)

Additionally, we get an infinite sum rule because by definition an infinite sum is
defined as the limit of the partial sums and this limit converges if the coefficients
stabilize. So to calculate any particular coefficient in the derivative of the infinite
sum, it suffices to take a sufficiently large partial sum wherein that coefficient
stabilizes, which is just saying that the derivative of the limit of the partial sums
is the limit of the derivative of the partial sums. Now use the finite sum rule in
each partial sum and take the limit to obtain the expected infinite sum.

d

dx
(A(x)B(x)) =

∑
n≥0

n

(
n∑

k=0

akbn−k

)
xn−1

=
∑
n≥0

(
n∑

k=0

kakbn−k

)
xn−1 +

∑
n≥0

(
n∑

k=0

ak(n− k)bn−k

)
xn−1

= A′(x)B(x) + A(x)B′(x)
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Now the chain rule won’t be too messy to deal with.

d

dx
(A(B(x)) =

d

dx

∑
n≥0

anB(x)n

=
∑
n≥0

an
d

dx
B(x)n as noted above

=
∑
n≥1

annB
′(x)B(x)n−1 by repeated application of the product rule

= B′(x)
∑
n≥1

nB(x)n−1

= B′(x)A′(B(x))

(b) First note that L(x) and exp(x)−1 both have zero constant term so L(exp(x)−1)
also has zero constant term. It suffices then to check that d

dx
(L(exp(x)− 1) = 1.

This will be tidier than trying to do something more direct.
First calculate

d

dx
L(x) =

∑
n≥1

(−1)n−1

n
nxn−1 =

∑
n≥1

(−1)n−1xn−1 =
1

1 + x

and

d

dx
exp(x) =

∑
n≥1

1

n!
nxn−1 =

∑
n≥1

1

(n− 1)!
xn−1 = exp(x)

so
d

dx
L(exp(x)− 1) =

1

1 + (exp(x)− 1)
exp(x) = 1

by the chain rule.
(3) (a) Let An(x, y) = xny. Then

∑
n≥0An(x, y) converges to

y
1−x

in valx because

valx

(
N∑

n=0

An(x, y)−
y

1− x

)
= valx

(
N∑

n=0

xny − y

1− x

)
= N + 1 →N→∞ ∞.

However,
∑

n≥0An(x, y) does not converge in valy as the coefficient of [y] in the

partial sum
∑N

n=0An(x, y) is
1−xN+1

1−x
which does not stablize.

(b) We can do something similar here. Let A0(x, y) = x + y, A1(x, y) = xy and
An(x, y) = xny+ynx. Now

∑
n≥0An(x, y) does not converge in valy for the same

reason as in the previous part as the coefficient of [y] in
∑

n≥0An(x, y) is identical
in this part and in the previous part. Similarly

∑
n≥0An(x, y) does not converge

in valx because the An(x, y) are all symmetric in x and y so the analogous
argument holds. The sum does however, converge in valx,y to x

1−y
+ y

1−x
− xy

because

valx,y

(
N∑

n=0

An(x, y)−
x

1− y
− y

1− x
− xy

)
= N + 2 →N→∞ ∞
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(4) (a) Let A be the class of these trees with w the weight function which gives the
number of vertices. We see that each element ofA is a root along with a sequence
of some number of subtrees connected by red edges followed by a sequence of
some number of subtrees connected by blue edges, where all the subtrees are also
elements of A. In reverse, given a root and two sequences of elements of A, build
a new element of A by connecting those from the first sequence (in order) to the
root with red edges and then, moving leftward, connecting all those from the
second sequence (in order) to the root with blue edges. The maps thus described
are inverses and so we have

A ⇋ {•} × (A∗)2

Then by the product and sequence rules we have

A(x) =
x

(1− A(x))2

(b) By LIFT for n ≥ 1 we have

[xn]A(x) =
1

n
[λn−1](1− λ)2n =

1

n

(
3n− 2

n− 1

)
(5) (a)

[xn]
A(x)

1− x
= [xn]A(x)(1+x+x2+ · · · ) =

n∑
i=0

[xn]A(x)xi =
n∑

i=0

[xn−i]A(x) = a0+a2+ · · ·+an

as desired.
(b) Let P be the set of weak compositions with two parts.

The first decomposition that comes to my mind is such a composition is an
ordered pair of its two parts so P ⇋ Z2

>0, and hence P (x) = 1
(1−x)2

.

We could also use the previous part of the question (which is why it was there)
and say we can make a composition with two parts by first just taking weak
compositions with one part, and now if we consider all weak compositions of
one part with size up to n, then we can uniquely complete each of those with
a second part so they add to n, and hence by the previous part of the question

P (x) =
1

1−x

1−x
.

We could also see an element of P as follows. Take a nonnegative integer m,
viewed as a sequence of m dots, then apply the pointing operator to split the
sequence of dots into three parts, the part before the dot we’re pointing at,
which is a nonnegative integer, the pointed dot itself, and the part after which
is another nonnegative integer. The parts other than the pointed dot itself give
an element of P so we have P × {•} ⇋ Z•

≥0, which gives xP (x) = x d
dx

(
1

1−x

)
giving one more time the expression we know for P (x).
For a fourth, you could apply the result from the first part of the question twice
starting with •.
Did anyone find something other than those four?

(6) Let U be the class of unary-binary trees with the weight function which counts the
number of vertices.
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(a) With the usual decomposition of a class of trees in terms of the root and the
subtrees at the children of the root we have

U ⇋ {•} ∪ {•} × U ∪ {•} × U2.

So U(x) = x + xU(x) + xU(x)2. We can solve this using the quadratic formula
to get

U(x) =
−(x− 1)±

√
(x− 1)2 − 4x2

2x
Now expanding out the first terms we see that the square root begins with 1
and so the + root has first term 2/2x so is not a formal power series. Thus the
solution we want is the − root, that is,

U(x) =
1− x−

√
1− 2x− 3x2

2x
.

As it turns out this is the generating series for Motzkin numbers, which are a
nice sequence that’s not quite as ubiquitous as the Catalan numbers, but still
shows up a lot.

(b) Now let’s think about it another way. Let T be the combinatorial class of
binary trees counted by number of vertices. Consider a unary-binary tree t, we
can contract up any paths of vertices with a single child to obtain a binary tree
t′. To reconstruct t from t′ we need the information of how many single-child
vertices were contracted into each vertex – there must be at least one for each
vertex so this is the information of an element of Z>0 for each vertex of t′. This
we can represent as a composition of T with Z>0. In particular U ⇋ T ◦ Z>0

and so U(x) = T (x/(1− x))
To finish things off, we need an expression for T (x). You might know this in
which case you can just use it, but let’s derive it as it is similar but slightly
simpler than the previous part: T ⇋ {•} ∪ {•} × T 2 as we saw in class so
T (x) = x+ xT (x)2, so by the quadratic formula

T (x) =
1−

√
1− 4x2

2x
where as in the previous part we must take the − root as the other one is not a
formal power series. Therefore

U(x) =
1−

√
1− 4

(
x

1−x

)
2 x
1−x

=
1− x−

√
(1− x)2 − 4x2

2x
=

1− x−
√
1− 2x2 − 3x2

2x
as we had before.
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