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ABSTRACT

Dyson-Schwinger equations are integral equations in quantum field theory that describe

the Green functions of a theory and mirror the recursive decomposition of Feynman di-

agrams into subdiagrams. Taken as recursive equations, the Dyson-Schwinger equations

describe perturbative quantum field theory. However, they also contain non-perturbative

information.

Using the Hopf algebra of Feynman graphs we will follow a sequence of reductions to

convert the Dyson-Schwinger equations to the following system of differential equations,

γr
1(x) = Pr(x) − sign(sr)γ

r
1(x)

2 +



∑

j∈R

|sj |γj
1(x)


x∂xγ

r
1(x)

where r ∈ R, R is the set of amplitudes of the theory which need renormalization, γr
1 is

the anomalous dimension associated to r, Pr(x) is a modified version of the function for

the primitive skeletons contributing to r, and x is the coupling constant.

Next, we approach the new system of differential equations as a system of recursive

equations by expanding γr
1(x) =

∑
n≥1 γ

r
1,nx

n. We obtain the radius of convergence of

∑
γr

1,nx
n/n! in terms of that of

∑
Pr(n)xn/n!. In particular we show that a Lipatov

bound for the growth of the primitives leads to a Lipatov bound for the whole theory.

Finally, we make a few observations on the new system considered as differential equa-

tions.
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Chapter 1

Introduction

Dyson-Schwinger equations are integral equations in quantum field theory that describe

the Green functions of a theory and mirror the recursive decomposition of Feynman di-

agrams into subdiagrams. Taken as recursive equations, the Dyson-Schwinger equations

describe perturbative quantum field theory, while as integral equations they also contain

non-perturbative information.

Dyson-Schwinger equations have a number of nice features. Their recursive nature gives

them a strong combinatorial flavor, they tie Feynman diagrams and the rest of perturbation

theory to non-perturbative quantum field theory, and on occasion they can be solved, for

example [5]. However, in general they are complicated and difficult to extract information

from.

The goal of the present work is to show how the Dyson-Schwinger equations for a

physical theory can be transformed into the more manageable system of equations

γr
1(x) = Pr(x) − sign(sr)γ

r
1(x)

2 +



∑

j∈R

|sj |γj
1(x)


x∂xγ

r
1(x) (1.1)

where r runs over R, the amplitudes which need renormalization in the theory, x is the

coupling constant, γr
1(x) is the anomalous dimension for r, and Pr(x) is a modified version

of the function of the primitive skeletons contributing to r, see Chapter 7 for details.

Chapter 2 discusses the general background with a focus on definitions and examples

rather than proofs. The approach taken is that Feynman graphs are the primary objects. In

an attempt to make matters immediately accessible to a wide range of mathematicians and
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to accentuate the combinatorial flavor, the physics itself is mostly glossed over. Readers

with a physics background may prefer to skip this chapter and refer to existing surveys,

such as [15], for the Hopf algebra of Feynman graphs.

Chapter 3 discusses the more specific background and setup for Dyson-Schwinger equa-

tions and the insertion operators B+ on Feynman graphs. Proofs are again primarily left

to other sources. [1] covers combinatorially similar material for rooted trees. Some im-

portant subtleties concerning B+ for Feynman diagrams are discussed in more detail in

[22] with important results proved in [32]. The approach to disentangling the analytic

and combinatorial information comes from [24]. This chapter leaves us with the following

input to the upcoming analysis: combinatorial Dyson-Schwinger equations and a Mellin

transform for each connected, divergent, primitive graph. The former consists of recursive

equations at the level of Feynman graphs with the same structure as the original analytic

Dyson-Schwinger equations. The latter contains all the analytic information.

The next four chapters derive (1.1) expanding upon the discussion in [25]. Chapter 4

derives a preliminary recursive equation in two different ways, first from the renormalization

group equation, and second from the Connes-Kreimer scattering-type formula [9]. Chapter

5 reduces to the case of single variable Mellin transforms and a single external scale.

The Mellin transform variables correspond to the different insertion places in the graph,

so we refer to this as the single insertion place case, though this is only literally true

for simple examples. The cost of this reduction is that we are forced to consider non-

connected primitive elements in the Hopf algebra. Chapter 6 reduces to the case where all

Mellin transforms are geometric series to first order in the scale parameters by exchanging

unwanted powers of the Mellin transform variable for a given primitive with lower powers

of the variable for a primitive with a larger loop number, that is, with a larger number

of independent cycles. The cost of this reduction is that we lose some control over the

residues of the primitive graphs. Chapter 7 applies the previous chapters to derive (1.1).

Chapter 8 considers (1.1) as a system of recursions. It is devoted to the result of [25]

where we bound the radii of convergence of the Borel transforms of the γr
1 in terms of
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those of Pr. For systems with nonnegative coefficients we determine the radius exactly as

min{ρr, 1/b1}, where ρr is the radius of the Borel transform of Pr, the instanton radius,

and b1 the first coefficient of the β-function1. In particular this means that a Lipatov

bound2 for the superficially convergent Green functions leads to a Lipatov bound for the

superficially divergent Green functions. This generalizes and mathematizes similar results

obtained in particular cases, such as φ4, through quite different means by constructive field

theory [13]. Both approaches require estimates on the convergent Green functions which

can also be obtained in some cases from constructive field theory, for example [26].

Chapter 9 considers (1.1) as a system of differential equations. We are not able to prove

any non-trivial results, and so simply discuss some tantalizing features of vector field plots

of some important examples. More substantial results will appear in [31].

1This is the physicists’ β-function, see Section 4.1, not the Euler β function.
2A Lipatov bound for

P

dnnk means that |dn| ≤ cnn! for some c.



Chapter 2

Background

2.1 Series

Definition 2.1. If {an}n≥0 is a sequence then A(x) =
∑

n≥0 anx
n is its (ordinary) gener-

ating function and
∑

n≥0 anx
n/n! is its exponential generating function.

Bold capital letters are used for the ordinary generating function for the sequence

denoted by the corresponding lower case letters. ρ will often denote a radius of convergence.

We will make use of the standard combinatorial notation for extracting coefficients.

Definition 2.2. If A(x) =
∑

n≥0 anx
n then [xn]A(x) = an.

Definition 2.3. Call a power series
∑

k≥0 a(k)x
k Gevrey-n if

∑
k≥0 x

ka(k)/(k!)n has

nonzero radius of convergence.

For example, a convergent power series is Gevrey-0 and
∑

k≥0(xk)
k is Gevrey-1 due to

Stirling’s formula. Trivially, a series which is Gevrey-n is also Gevrey-m for all m ≥ n.

Gevrey-1 series are important in perturbative quantum field theory since being Gevrey-

1 is necessary (but not sufficient) for Borel resummation. Resummation and resurgence

are an enormous topic which will not be touched further herein; one entry point is [29].

Generally very little is known about the growth rates of the series appearing in perturbation

theory. They are usually thought to be divergent, though this is questioned by some [11],

and hoped to be Borel resummable.



5

2.2 Feynman graphs as combinatorial objects

Feynman graphs are graphs, with multiple edges and self loops permitted, made from a

specified set of edge types, which may include both directed and undirected edges, with a

specified set of permissible edge types which can meet at any given vertex. Additionally

there are so-called external edges, weights for calculating the degree of divergence, and

there may be additional colorings or orderings as necessary.

There are many possible ways to set up the foundational definitions, each with sufficient

power to fully capture all aspects of the combinatorial side of Feynman graphs. However

it is worth picking a setup which is as clean and natural as possible.

For the purposes of this thesis graphs are formed out of half edges. This naturally

accounts for external edges and symmetry factors and permits oriented and unoriented

edges to be put on the same footing.

Definition 2.4. A graph consists of a set H of half edges, a set V of vertices, a set of vertex

- half edge adjacency relations (⊆ V × H), and a set of half edge - half edge adjacency

relations (⊆ H ×H), with the requirements that each half edge is adjacent to at most one

other half edge and to exactly one vertex.

Graphs are considered up to isomorphism.

Definition 2.5. Half edges which are not adjacent to another half edge are called external

edges. Pairs of adjacent half edges are called internal edges.

Definition 2.6. A half edge labelling of a graph with half edge set H is a bijection H →

{1, 2, . . . , |H|}. A graph with a half edge labelling is called a half edge labelled graph.

2.2.1 Combinatorial physical theories

Feynman graphs will be graphs with extra information and requirement. In order to define

this extra structure we need to isolate the combinatorial information that the physical
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theory, such as quantum electrodynamics (QED), scalar φ4, or quantum chromodynamics

(QCD), requires of the graph.

Each edge in the graph corresponds to a particle and a given physical theory describes

only certain classes of particles, hence the physical theory determines a finite set of per-

missible edge types. For our half edge based setup, an edge type E consists of two, not

necessarily distinct, half edge types, with the restriction that each half edge type appears in

exactly one edge type. An edge composed of two adjacent half edges, one of each half edge

type in E, is then an edge of type E. An edge type made up of the same half edge type

twice is called an unoriented edge type. An edge type made up of two distinct half edge

types is called an oriented edge type. The half edge types themselves contain no further

structure and thus can be identified with {1, . . . , n} for appropriate n.

For example in QED there are two edge types, an unoriented edge type, , repre-

senting a photon, and an oriented edge type, , representing an electron or positron1.

At the level of half edge types we thus have a half photon, a front half electron, and a back

half electron.

Each vertex in the graph corresponds to an interaction of particles and only certain

interactions are permitted in a given physical theory, hence the physical theory also deter-

mines a set of permissible vertex types. A vertex type V consists of a multiset of half edge

types with 3 ≤ |V | < ∞. A vertex in a graph which is adjacent to half edges one of each

half edge type in V is then a vertex of type V . For example in QED there is one type of

vertex, .

The physical theory determines a formal integral expression for each graph by associ-

ating a factor in the integrand to each edge and vertex according to their type. This map

is called the Feynman rules, see subsection 2.3.1. On the combinatorial side the only part

of the Feynman rules we need is the net degree of the integration variables appearing in

the factor of the integrand associated to each type. Traditionally this degree is taken with

1If we chose a way for time to flow through the graph then the edge would represent an electron or
positron depending on whether it was oriented in the direction of time or not. However part of the beauty
of Feynman graphs is that both combinatorially and analytically they do not depend on a flow of time.
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a negative sign; specifically for a factor N/D this net degree is deg(D)−deg(N), which we

call the power counting weight of this vertex type or edge type.

The other thing needed in order to determine the divergence or convergence of these

integrals at large values of the integration variables, which will be discussed further in

subsection 2.2.4, is the dimension of space time. We are not doing anything sophisticated

here and this value will be a nonnegative integer, 4 for most theories of interest.

Thus we define,

Definition 2.7. A combinatorial physical theory T consists of a set of half edge types, a set

of edge types with associated power counting weights, a set of vertex types with associated

power counting weights, and a nonnegative integer dimension of space-time.

More typically the dimension of space-time is not included in the definition of the

theory, and so one would say a theory T in dimension D to specify what we have called a

physical theory.

Our examples will come from five theories

Example 2.8. QED describes photons and electrons interacting electromagnetically. As a

combinatorial physical theory it has 3 half-edge types, a half-photon, a front half-electron,

and a back half-electron. This leads to two edge types a photon, , with weight 2, and

an electron, , with weight 1. There is only one vertex consisting of one of each half-edge

type and with weight 0. The dimension of space-time is 4.

Example 2.9. Quantum chromodynamics (QCD) is the theory of the interactions of

quarks and gluons. As a combinatorial physical theory it has 5 half-edge types, a half-

gluon, a front half-fermion, a back half-fermion, a front half-ghost, and a back half-ghost.

There are 3 edge types and 4 vertex types with weights as described in Table 2.1. The

dimension of space-time is again 4.

Example 2.10. φ4, a scalar field theory, is the arguably the simplest renormalizable

quantum field theory and is often used as an example in quantum field theory textbooks.
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name graph weight

gluon 2

fermion 1

ghost 1

0

0

-1

0

Table 2.1: Edge and vertex types in QCD with power counting weights

As a combinatorial theory it consists of one half-edge type, one edge type, , with weight

2, one vertex type, , with weight 0, and space-time dimension 4.

Example 2.11. φ3, also a scalar field theory, is another candidate for the simplest renor-

malizable quantum field theory. It is not as physical since to be renormalizable the dimen-

sion of space-time must be 6, and hence it is not as pedagogically popular. However the

Feynman graphs in φ3 are a little simpler in some respects and so it will be used here in

longer examples such as Example 5.12. φ3 consists of half-edges and edges as in φ4 but the

single vertex type, which has weight 0, is 3-valent.

Example 2.12. The final physical theory which we will use for examples is Yukawa theory

in 4 dimensions, which has 3 half-edge types, a half-meson edge, a front half-fermion edge,

and a back half-fermion edge. The edge types are a meson edge, , with weight 2 and

a fermion edge , with weight 1. There is one vertex type, , with weight 0. This

example arises for us because of [5].
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2.2.2 Feynman graphs

Notice that given a graph G, a combinatorial physical theory T , and a map from the half

edge of G to the half edge types of T , there is at most one induced map from the internal

edges of G to the edge types of T and at most one induced map from the vertices of G to

the vertex types of T . Thus we can make the following definition.

Definition 2.13. A Feynman graph in a combinatorial physical theory T is

• a graph G,

• a map from the half edges of G to the half edge types of T which is compatible with

the edges and vertices of G in the sense that it induces a map from the internal edges

of G to the edge types of T and induces a map from the vertices of G to the vertex

types of T , and

• a bijection from the external edges of G to {1, . . . n} where n is the number of external

edges.

The final point serves to fix the external edges of G, which is traditional among physi-

cists.

Lemma 2.14. Let G be a connected Feynman graph with n half edges. Let m be the number

of half edge labelled Feynman graphs (up to isomorphism as labelled Feynman graphs) giving

G upon forgetting the labelling, and let Aut be the automorphism group of G. Then

m

n!
=

1

|Aut|

Proof. Aut acts freely on the n! half edge labellings of G. The orbits are the m isomorphism

classes of half edge labellings. The result follows by elementary group theory.

The primary consequence of Lemma 2.14 is that the exponential generating function

for half-edge labelled graphs is identical to the generating function for Feynman graphs
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graph symmetry factor
1
2

1

1
4
1
2
1
6

Table 2.2: Examples of symmetry factors

weighted with 1/|Aut|. 1/|Aut| is known as the symmetry factor of the graph. Table 2.2

gives some examples.

We will be concerned from now on with Feynman graphs which are connected and which

remain connected upon removal of any one internal edge, a property which physicists call

one particle irreducible (1PI) and which combinatorialists call 2-edge connected. Another

way to look at this definition is that a 1PI graph is a unions of cycles and external edges.

We’ll generally be interested in Feynman graphs with each connected component 1PI.

2.2.3 Operations

For us subgraphs are always full in the sense that all half edges adjacent to a vertex in a

subgraph must themselves be in the subgraph.

The most important operations are contraction of subgraphs and insertion of graphs.

To set these definitions up cleanly we need a preliminary definition.

Definition 2.15. The set of external edges of a connected Feynman graph is called the

external leg structure of the Feynman graph. The set of half edge types associated to the

external edges of a Feynman graph can be identified with at most one edge or vertex type.

This edge or vertex type, if it exists, is also called the external leg structure.

Definition 2.16. Let G be a Feynman graph in a theory T , γ a connected subgraph with

external leg structure a vertex type V . Then the contraction of γ, denoted G/γ is the

Feynman graph in T with
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• vertex set the vertex set of G with all vertices of γ removed and a new vertex v of

type V added,

• half edge set the half edge set of G with all half edges corresponding to internal edges

of γ removed,

and with adjacencies induced from G along with the adjacency of the external edges of γ

with v.

Definition 2.17. Let G be a Feynman graph in a theory T , γ a connected subgraph with

external leg structure an edge type E. Then the contraction of γ, denoted G/γ is the

Feynman graph in T with

• vertex set the vertex set of G with all vertices of γ removed,

• half edge set the half edge set of G with all the half edges of γ removed,

and with the induced adjacencies from G along with the adjacency of the two half edges

adjacent to the external edges of γ if they exist.

Definition 2.18. Let G be a Feynman graph in a theory T , γ a not necessarily connected

subgraph with the external leg structure of each connected component an edge or vertex

type in T . Then the contraction of γ, also denoted G/γ is the graph resulting from

contracting each connected component of γ.

For example in QED

/ =

Also useful is the operation of inserting a subgraph, which is the opposite of contracting

a subgraph.

Definition 2.19. LetG and γ be Feynman graphs in a theory T with γ connected. Suppose

γ has external leg structure a vertex type and let v be a vertex of G of the same type. Let
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f be a bijection from the external edges of γ to the half edges adjacent to v preserving half

edge type. Then G ◦v,f γ is the graph consisting of

• the vertices of G except for v, disjoint union with the vertices of γ,

• the half edges of G and those of γ with the identifications given by f ,

with the induced adjacencies from G and γ.

Definition 2.20. LetG and γ be Feynman graphs in a theory T with γ connected. Suppose

γ has external leg structure an edge type and let e be an edge of G of the same type. Let

f be a bijection from the external edges of γ to the half edges composing e, such that if

a is an external edge of G then (a, f(a)) is a permissible half edge - half edge adjacency.

Then G ◦e,f γ is the graph consisting of

• the vertices of G disjoint union with the vertices of γ,

• the half edges of G disjoint union with those of γ,

with the adjacency of a and f(a) for each external edge a of γ along with the induced

adjacencies from G and γ.

The vertices and edges of G viewed as above are called insertion places.

For example if

G = γ =

then there is only one possible insertion place for γ in G, namely the bottom internal edge

e of G, and there is only one possible map f . Thus

G ◦e,f γ = .

On the other hand if

G = γ =
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then there are 2 possible insertion places for γ in G, namely the right vertex and the left

vertex. Let e be the left vertex. Then there are also 4! possibilities for f , however 8 of

them give

G ◦f,g γ =

and 16 of them give

G ◦f,g γ = .

Proposition 2.21. 1. Contracting any subgraph γ of a 1PI graph G results in a 1PI

graph.

2. Inserting a 1PI graph γ into a 1PI graph G results in a 1PI graph.

Proof. 1. Without loss of generality suppose γ is connected. Suppose the result does not

hold and e is an internal edge in Γ = G/γ which disconnects Γ upon removal. Since

G is 1PI, e cannot be an internal edge of G and hence must be the insertion place

for γ in Γ. However then removing either half edge of e from G would disconnect G

which is also impossible.

2. Suppose e is an internal edge in Γ = G ◦ γ. Removing e removes at least one internal

half edge of G or of γ which cannot disconnect either since both are themselves 1PI,

and hence cannot disconnect Γ.

2.2.4 Divergence

For a 1PI Feynman graph G and a physical theory T let w(a) be the power counting weight

of a where a is an edge or a vertex of G and let D be the dimension of space-time. Then

the superficial degree of divergence is

Dℓ−
∑

e

w(e) −
∑

v

w(v)
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where ℓ is the loop number of the graph, that is, the number of independent cycles. If the

superficial degree of divergence of a graph is nonnegative we say the graph is divergent. It

is the divergent graphs and subgraphs which we are primarily interested in.

The notion of superficial divergence comes from the fact that the Feynman rules asso-

ciate to a graph a formal integral, as will be explained in subsection 2.3.1; the corresponding

weights w(a) give the degree in the integration variables of the inverse of each factor of

the integrand, while the loop number ℓ gives the number of independent integration vari-

ables, each running over RD. Thus the superficial degree of divergence encodes how badly

the integral associated to the graph diverges for large values of the integration variables.

The adjective superficial refers to the fact that the integral may have different, poten-

tially worse, behavior when some subset of the integration variables are large, hence the

importance of divergent subgraphs.

In this context we say a theory T (in a given dimension) is renormalizable if graph

insertion within T does not change the superficial degree of divergence of the graph.

A theory being renormalizable means more than that the integrals associated to the

graphs of the theory can be renormalized in the sense of Subsection 2.3.2. In fact even if

insertion increases the superficial degree of divergence, and so the theory is called unrenor-

malizable, the individual graphs can typically still be renormalized. Rather, a theory being

renormalizable refers to the fact that the theory as a whole can be renormalized, all of its

graphs at all loop orders, without introducing more than finitely many new parameters.

Combinatorially this translates into the fact that there are finitely many families of di-

vergent graphs, typically indexed by external leg structures. In the unrenormalizable case

by contrast there are infinitely many families of divergent graphs and, correspondingly, to

renormalize the whole theory would require infinitely many new parameters.

The interplay of renormalizability and dimension explains our choices for the dimension

of space-time in our examples. In particular φ4, QED, and QCD are all renormalizable in

4 dimensions and φ3 is renormalizable in 6 dimensions.

By viewing a divergent graph in terms of its divergent subgraphs we see a structural
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self-similarity. This insight leads to the recursive equations which are the primary object

of interest in this thesis.

Another useful definition is

Definition 2.22. Suppose G is a Feynman graph and γ and τ are divergent subgraphs.

Then γ and τ are overlapping if they have internal edges or vertices in common, but neither

contains the other.

2.2.5 The Hopf algebra of Feynman graphs

The algebra structure on divergent 1PI Feynman graphs in a given theory is reasonably

simple.

Definition 2.23. Let H be the vector space formed by the Q span of disjoint unions of

divergent 1PI Feynman graphs including the empty graph denoted I.

Proposition 2.24. H has an algebra structure where multiplication m : H ⊗ H → H is

given by disjoint union and the unit by I.

Proof. This multiplication can immediately be checked to be commutative and associative

with unit I, and to be a linear map.

Another way to look at this is that as an algebra H is the polynomial algebra over Q in

divergent 1PI Feynman graphs with the multiplication viewed as disjoint union. Note that

we are only considering one graph with no cycles (the empty graph I); from the physical

perspective this means we are normalizing all the tree-level graphs to 1.

We will use the notation e : Q → H for the unit map e(q) = qI. Also useful is the

notation Hlin ⊂ H for the Q span of connected nonempty Feynman graphs in H and

Plin : H → Hlin for the corresponding projection. That is Hlin is the parts of degree 1.

Note that H is graded by the number of independent cycles in the graph, which is known

as the loop number of the graph. This grading, not the degree as a monomial, is the more

relevant in most circumstances.
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The coalgebra structure encodes, as is common for combinatorial Hopf algebras, how

the objects decompose into subobjects.

Definition 2.25. The coproduct ∆ : H → H ⊗ H is defined on a connected Feynman

graph Γ by

∆(Γ) =
∑

γ⊆Γ
γ product of divergent

1PI subgraphs

γ ⊗ Γ/γ

and extended to H as an algebra homomorphism.

Note that the sum in the definition of ∆ includes the cases γ = I and γ = Γ, since Γ

is divergent and 1PI, hence includes the terms I ⊗ Γ + Γ ⊗ I. Note also that γ may be a

product, that is a disjoint union. This is typically intended in presentations of this Hopf

algebra, but not always clear.

Definition 2.26. Let η : H → Q be the algebra homomorphism with η(I) = 1 and

η(G) = 0 for G a non-empty connected Feynman graph.

Proposition 2.27. H has a coalgebra structure with coproduct ∆ and counit η as above.

Proof. We will verify only coassociativity. Calculate (id ⊗ ∆)∆Γ =
∑

γ′ γ′ ⊗ ∆(Γ/γ′) =
∑

γ′

∑
γ γ

′ ⊗ γ/γ′ ⊗ Γ/γ where γ′ ⊆ γ ⊆ Γ with each connected component of γ′ and γ/γ′

1PI divergent. This calculation holds because every subgraph of Γ/γ′ is uniquely of the

form γ/γ′ for some γ′ ⊆ γ ⊆ Γ. Further by Proposition 2.21 and renormalizability each

connected component of γ is 1PI divergent, so we can switch the order of summation to

see that the above sum is simply (∆ ⊗ id)∆Γ giving coassociativity.

From now on we will only be concerned with the sort of Feynman graphs which appear

in H, that is, Feynman graphs with connected components which are divergent and 1PI.

H is graded by the loop number, that is the first Betti number. H is commutative but

not in general cocommutative. For example in φ3 theory

∆
( )

= ⊗ I + I ⊗ + 2 ⊗ + ⊗ .
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Definition 2.28. For f1, f2 : H → H define the convolution f1 ⋆ f2 = m(f1 ⊗ f2)∆

We will use the notation id for the identity map H → H.

Proposition 2.29. With antipode S : H → H defined recursively by S(I) = I and

S(Γ) = −Γ −
∑

γ⊆Γ
I6=γ 6=Γ

γ product of divergent
1PI subgraphs

S(γ) Γ/γ

on connected graphs, and extended to all of H as an antihomomorphism, H is a Hopf

algebra

Proof. The defining property of the antipode is eη = S ⋆ id = id ⋆ S. The first equality

gives exactly the proposition in view of the definitions of ∆ and ⋆, the second equality is

then standard since H is commutative, see for instance [30, Proposition 4.0.1].

Note that since H is commutative S is in fact a homomorphism. S is not, however,

an interesting antipode from the quantum groups perspective since H is commutative and

thus S ◦ S = id (see again [30, Proposition 4.0.1]).

Definition 2.30. An element γ of H is primitive if ∆(γ) = γ ⊗ I + I ⊗ γ.

A single Feynman graph is primitive iff it has no divergent subgraphs. However appro-

priate sums of nonprimitive graphs are also primitive. For example

∆
(

− 2
)

=
(

− 2
)
⊗ I + I ⊗

(
− 2

)

+ 2 ⊗ − 2 ⊗

=
(

− 2
)
⊗ I + I ⊗

(
− 2

)

This phenomenon will be important in Chapter 5.

We will make sparing but important use of the Hochschild cohomology of H. To define

the Hochschild cohomology we will follow the presentation of Bergbauer and Kreimer [1].
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The n-cochains are linear maps L : H → H⊗n. The coboundary operator b is defined by

bL = (id ⊗ L)∆ +
n∑

i=1

(−1)i∆iL+ (−1)n+1L⊗ I

where ∆i = id⊗ · · ·⊗ id⊗∆⊗ id⊗ · · · id with the ∆ appearing in the ith slot. b2 = 0 since

∆ is coassociative and so we get a cochain complex and hence cohomology. The only part

of the Hochschild cohomology which will be needed below are the 1-cocycles L : H → H,

whose defining property bL = 0 gives

∆L = (id ⊗ L)∆ + L⊗ I. (2.1)

2.3 Feynman graphs as physical objects

2.3.1 Feynman rules

The information in the Feynman rules is the additional piece of analytic information con-

tained in a physical theory, so for us we can define a physical theory to be a combinatorial

physical theory along with Feynman rules. In the following definition we will use the term

tensor expression for a tensor written in terms of the standard basis for RD where D is

the dimension of space-time. Such expressions will be intended to be multiplied and then

interpreted with Einstein summation. An example of a tensor expression in indices µ and

ν is
gµ,ν − ξ

kµkν

k2

k2

where g is the Euclidean metric, k ∈ R4, k2 is the standard dot product of k with itself,

and ξ is a variable called the gauge. Such a tensor expression is meant to be a factor of a

larger expression like

γµ
1

/k + /p−m
γν

(
gµ,ν − ξ

kµkν

k2

k2

)
(2.2)
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where the γµ are the Dirac gamma matrices, /k is the Feynman slash notation, namely

/k = γµkµ, and m is a variable for the mass. In this example (2.2) is the integrand for the

Feynman integral for the graph

k + p

k

p p

Definition 2.31. Let T be a combinatorial physical theory with dimension of space-time

D. Let ξ be a real variable. Feynman rules consist of 3 maps

1. the first takes a half edge type (viewed as an external edge), an RD vector (the

momentum), and a tensor index µ to a tensor expression in µ,

2. the second takes an edge type e, an RD vector (the momentum), and tensor indices

µ, ν for each half edge type making up e to a tensor expression in µ, ν,

3. the third takes a vertex type v and one tensor index µ1, µ2, . . . for each half edge type

making up v to a tensor expression in µ1, µ2, . . ..

In each case the tensor expressions may depend on ξ.

If there is a non-trivial dependence on ξ in the Feynman rules then we say we are

working in a gauge theory. QED and QCD are gauge theories. If the Feynman rules are

independent of the tensor indices then we say we are working in a scalar field theory. φ4

and φ3 are scalar field theories. Note that unoriented edges have no way to distinguish

their two tensor indices and hence must be independent of them. For us the Feynman rules

do not include a dependence on a coupling constant x since we wish to use x at the level of

Feynman graphs as an indeterminate in which to write power series. This setup ultimately

coincides with the more typical situation because there the dependence of the Feynman

rules on x is contrived so that it ultimately counts the loop number of the graph and so

functions as a counting variable.
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Using the Feynman rules we can associate to each graph γ in a theory T a formal

integral, that is, an integrand and a space to integrate over but with no assurances that

the resulting integral is convergent. We will denote the integrand by Intγ and take it over

a Euclidean space RD|vγ | where D is the dimension of space time and vγ is a finite index

set corresponding to the set of integration variables appearing in Intγ . Then the formal

integral is given by ∫

RD|vγ |
Intγ

∏

k∈vγ

dDk

where D is the dimension of space-time in T and where Intγ and vγ are defined below.

Associate to each half edge of γ a tensor index. Associate to each internal and external

edge of γ a variable (the momentum, with values in RD) and an orientation of the edge

with the restriction that for each vertex v the sum of the momenta of edges entering v

equals the sum of the momenta of edges exiting v. Consequently the R-vector space of the

edge variables has dimension the loop number of the graph. Let vγ be a basis of this vector

space. Let Intγ be the product of the Feynman rules applied to the type of each external

edge, internal edge, and vertex of γ, along with the assigned tensor indices and the edge

variables as the momenta.

Note that Intγ depends on the momenta q1, . . . , qn for the external edges and that these

variables are not “integrated out” in the formal integral. Consequently we may also use

the notation Intγ(q1, . . . , qn) to show this dependence. The factors associated to internal

edges are called propagators.

In practice the integrals we obtain in this way are not arbitrarily bad in their divergence.

In fact for arbitrary Λ <∞ each will converge when integrated over a box consisting of all

parameters running from −Λ to Λ.

For example consider φ4 with Euclidean Feynman rules, see [18, p.268]. The Feynman

rules in this case say that an edge labelled with momentum k is associated to the factor

1/(k2 +m2), where the square of a vector means the usual dot product with itself and m

is the mass of the particle. The Feynman rules say that the vertex is associated to −1 (if
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the coupling constant λ was included in the Feynman rules the vertex would be associated

with −λ.) Consider

γ =

k + p

k
oriented from left to right with the momenta associated to the two right hand external

edges summing to p and hence the momenta associated to the two left hand external edges

also summing to p. Then the integral associated to γ is

∫
d4k

1

(k2 +m2)((p+ k)2 +m2)

where d4k = dk0dk1dk2dk3 with k = (k0, k1, k2, k3) and squares stand for the standard dot

product.

The above discussion of Feynman rules is likely to appear either unmotivated or glib

depending on one’s background, particularly the rather crass gloss of gauge theories, so it

is worth briefly mentioning a few important words of context.

More typically a physical theory might be defined by its Lagrangian L. For example

for φ4

L =
1

2
∂µφ∂µφ− 1

2
m2φ2 − λ

4!
φ4.

There is one term for each vertex and edge of the theory and for massive particles an

additional term. In this case 1
2∂

µφ∂µφ is the term for the edge of φ4, −1
2m

2φ2 is the mass

term, and − λ
4!φ

4 is the term for the vertex. One of the many important properties of the

Lagrangian is that it is Lorentz invariant.

The Feynman rules can be derived from the Lagrangian in a variety of ways to suit

different tastes, for instance directly [12, p.16], or by expanding the path integral in the

coupling constant.

Gauge theories are a bit more complicated since they are defined on a fibre bundle over

space-time rather than directly on space-time. The structure group of the fibre bundle is

called the gauge group. A gauge field (for example the photon in QED or the gluon in
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QCD) is a connection. A gauge is a local section. Choosing a gauge brings us back to

something closer to the above situation.

There are many ways to choose a gauge each with different advantages and disadvan-

tages. For the present purpose we’re interested in a 1-parameter family of Lorentz covariant

gauges called the Rξ gauges. The parameter for the family is denoted ξ and is the ξ which

we have called the gauge in the above. The Rξ gauges can be put into the Lagrangian in

the sense that in these gauges we can write a Lagrangian for the theory which depends on

ξ. For example, for QED in the Rξ gauges we have (see for example [6, p.504])

L = −1

4
(∂µAν − ∂νAµ)2 − 1

2ξ
(∂µA

µ)2 + ψ̄(iγµ(∂µ − ieAµ) −m)ψ

where the γµ are the Dirac gamma matrices. Whence ξ also appears in the Feynman rules,

giving the definition of gauge theory used above.

Another perspective, perhaps clearer to many mathematicians is Polyak [27].

2.3.2 Renormalization

Definition 2.32. Let

I =

∫

RD|v|

Int
∏

k∈v

dDk

be a formal integral. I is logarithmically divergent if the net degree (that is the degree of

the numerator minus the degree of the denominator) of the integration variables in Int is

−D|v|. I diverges like an nth power (or, is linearly divergent, quadratically divergent, etc.)

if the net degree of the integration variables in Int is −D|v| + n.

Let φ be the Feynman rules viewed as map which associates formal integrals to ele-

ments of H. Next we need a method (called renormalization) which can convert the formal

integrals for primitive graphs into convergent integrals. There are many possible choices;

commonly first a regularization scheme is chosen to introduce one or more additional vari-

ables which convert the formal integrals to meromorphic expressions with a pole at the
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original point. For instance one may raise propagators to non-integer powers (analytic reg-

ularization) or take the dimension of space-time to be complex (dimensional regularization,

see for instance [8] on setting up the appropriate definitions). Then a map such as minimal

subtraction is chosen to remove the pole part.

We will take a slightly different approach. First we will set

∫
(k2)r = 0 (2.3)

for all r. This is the result which is obtained, for instance, from dimensional regularization

and from analytic regularization, but simply taking it as true allows us to remain agnostic

about the choice of regularization scheme. To see the origin of this peculiar identity consider

the following computation with q ∈ RD and the square of an element of RD denoting its

dot product with itself.

∫
dDk

1

(k2)r((k + q)2)s

=

∫
dDk

Γ(r + s)

Γ(r)Γ(s)

∫ 1

0
dx

xr−1(1 − x)s−1

(xk2 + (1 − x)(k + q)2)r+s

=
Γ(r + s)

Γ(r)Γ(s)

∫ 1

0
dxxr−1(1 − x)s−1

∫
dDk

1
(
xk2 + (1 − x)(k + q)2

)r+s

=
Γ(r + s)

Γ(r)Γ(s)

∫ 1

0
dxxr−1(1 − x)s−1

∫
dDk

1
(
(k + q(1 − x))2 + q2(x− x2)

)r+s

=
Γ(r + s)

Γ(r)Γ(s)

∫ 1

0
dxxr−1(1 − x)s−1

∫
dDk

1

(k2 + q2(x− x2))r+s

=
Γ(r + s)

Γ(r)Γ(s)

∫ 1

0
dxxr−1(1 − x)s−1

∫ ∞

0
d|k| |k|D−1

(|k|2 + q2(x− x2))r+s

∫
dΩk

=
Γ(r + s)

Γ(r)Γ(s)

2π
D
2

Γ(D
2 )

∫ 1

0
dxxr−1(1 − x)s−1

∫ ∞

0
d|k| |k|D−1

(|k|2 + q2(x− x2))r+s

=
Γ(r + s)

Γ(r)Γ(s)

2π
D
2

Γ(D
2 )

Γ(r + s− D
2 )Γ(D

2 )

2Γ(r + s)
(q2)

D
2
−r−s

∫ 1

0
dxx

D
2
−1−s(1 − x)

D
2
−1−r

=
π

D
2 Γ(r + s− D

2 )

Γ(r)Γ(s)
(q2)

D
2
−r−s Γ(D

2 − r)Γ(D
2 − s)

Γ(D − r − s)
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when 2r + 2s > D > 0, D > 2r > 0, and D > 2s > 0, and where the first equality is by

Feynman parameters:

1

aαbβ
=

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
dx

xα−1(1 − x)β−1

(ax+ b(1 − x))α+β
for α, β > 0

and where dΩk refers to the angular integration over the unit D − 1-sphere in RD. Now

consider just the final line and suppose s = 0, then since Γ has simple poles precisely at

the nonpositive integers, is never 0, and

Γ(x)Γ(−x) =
−π

x sin(πx)

we see that for D > 0 the result is 0 for s = 0 and r not a half-integer. If we view the

original integral as a function of complex variables r and s for fixed integer D (analytic

regularization), or as a function of complexD (dimensional regularization), then by analytic

continuation the above calculations gives (2.3).

Returning to the question of renormalization, in view of (2.3) we need only consider

logarithmically divergent integrals since by subtracting off 0 in the form of a power of

k2 which is equally divergent to the original integral the whole expression becomes less

divergent. Logarithmically divergent integrals with no subdivergences can then be made

finite simply by subtracting the same formal integral evaluated at fixed external momenta.

Let R be the map which given a formal integral returns the formal integral evaluated

at the subtraction point. In our case then R has as domain and range the algebra of formal

integrals where relations are generated by evaluating convergent integrals and (2.3). Let

φ be the Feynman rules, the algebra homomorphism which given a graph G returns the

formal integral φ(G). We suppose φ(I) = 1 and R(1) = 1.

If instead we had chosen to use a regulator and corresponding renormalization scheme

then φ would give the regularized integral of a graph, and R would implement the scheme

itself. One such example would be dimensional regularization with the minimal subtraction
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scheme. In that case φ would take values in the space of Laurent series in the small

parameter ǫ and R would take such a Laurent series and return only the part with negative

degree in ǫ. That is Rφ(Γ) is the singular part of φ(Γ), the part one wishes to ignore. Note

that in this case R(1) = 0. The key requirement in general is that R be a Rota-Baxter

operator see [14], [15].

To deal with graphs containing subdivergences, define Sφ
R recursively by Sφ

R(I) = 1,

Sφ
R(Γ) = −R(φ(Γ)) −

∑

I6=γ(Γ
γ product of divergent

1PI subgraphs

Sφ
R(γ)R(φ(Γ/γ))

for connected Feynman graphs Γ extended to all of H as an algebra homomorphism. Sφ
R

can be thought of as a twisted antipode; the defining recursion says that Sφ
R ⋆Rφ = η. Use

Sφ
R to define the renormalized Feynman rules by

φR = Sφ
R ⋆ φ.

When Γ contains no subdivergences, φR(Γ) = φ(Γ)−Rφ(Γ); in view of Subsection 2.3.2 we

may assume that φ(Γ) is log divergent and so φR(Γ) is a convergent integral. Inductively

one can show that φR maps H to convergent integrals. This result is the original purpose of

the Hopf algebraic approach to renormalization. It gives a consistent algebraic framework

to the long-known but ad-hoc renormalization procedures of physicists. For more details

and more history see for instance instance the survey [15] and the references therein.

These integrals lead to interesting transcendental numbers, but that is very much an-

other story [2], [23], [3].

Example 2.33. To illustrate the conversion to log divergence and renormalization by
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subtraction consider the following graph in massless φ3

k + q

k

q q

The Feynman rules associate to it the integral

I =
1

q2

∫
d6k

1

k2(k + q)2
.

The factor of 1/q2 is there because our conventions have that the graphs with no cycles are

all normalized to 1. This integral is quadratically divergent and so can not be renormalized

by a simple subtraction. However we take

∫
d6k

1

(k2)2
= 0,

so

I =
1

q2

∫
d6k

1

k2(k + q)2
− 1

q2

∫
d6k

1

(k2)2

= − 2

q2

∫
d6k

k · q
(k2)2(k + q)2

−
∫
d6k

1

(k2)2(k + q)2

= − 2I1 − I2.

Each of the two resulting terms are now less divergent.

To illustrate renormalization by subtraction consider the integral from the second of

the above terms. As formal integrals (or carrying along the subtraction which we will add

below), using the same tricks as the calculation earlier this section,

I2 =

∫
d6k

1

(k2)2(k + q)2
=

∫
d6k

∫ 1

0
dx

2x

(xk2 + (1 − x)(k + q)2)3
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=2

∫ 1

0
dxx

∫
d6k

1
(
xk2 + (1 − x)(k + q)2

)3

=2

∫ 1

0
dxx

∫
d6k

1
(
(k + q(1 − x))2 + q2(x− x2)

)3

=2

∫ 1

0
dxx

∫
d6k

1

(k2 + q2(x− x2))3

=2

∫ 1

0
dxx

∫ ∞

0
d|k| |k|5

(|k|2 + q2(x− x2))3

∫
dΩk

=2π3

∫ 1

0
dxx

∫ ∞

0
d|k| |k|5

(|k|2 + q2(x− x2))3

Now consider the result of subtracting at q2 = µ2. By Maple

I2 −RI2 = 2π3

∫ 1

0
dxx

∫ ∞

0
d|k| |k|5

(|k|2 + q2(x− x2))3
− |k|5

(|k|2 + µ2(x− x2))3

= 2π3

∫ 1

0
dxx

(
−1

2
log(q2(x− x2)) +

1

2
log(µ2(x− x2))

)

= −π
3

2
log(q2/µ2)

giving us a finite value.

To finish the example we need to consider the integral

I1 =
1

q2

∫
d6k

2k · q
(k2)2(k + q)2

.

This integral is linearly divergent so it needs another subtraction of 0. However, this time

we only need ∫
d6k

2k · q
(k2)3

= 0.

which we can derive from (2.3). Write k = k⊥ + k‖ where k‖ is the orthogonal projection

of k onto span(q) and k⊥ is the orthogonal complement, and notice that

∫
d6k

2k · q
(k2)3

=

∫
d6k

2k‖|q|
(k2

‖ + k2
⊥)3



28

=

∫
d5k⊥

∫ ∞

0
dk‖

2k‖|q|
(k2

‖ + k2
⊥)3

+

∫
d5k⊥

∫ 0

−∞
dk‖

2k‖|q|
(k2

‖ + k2
⊥)3

=
|q|
2

∫
d5k⊥

1

(k2
⊥)2

− |q|
2

∫
d5k⊥

1

(k2
⊥)2

= 0 − 0 = 0.

So returning to I1, as formal integrals,

I1 =
1

q2

∫
d6k

2k · q
(k2)2(k + q)2

− 1

q2

∫
d6k

2k · q
(k2)3

= − 4

q2

∫
d6k

(k · q)2
(k2)3(k + q)2

−
∫
d6k

k · q
(k2)3(k + q)2

.

The second term is convergent and so needs no further consideration. The first term is

now log divergent, call it −4I3. Writing k = k⊥ + k‖ as above, we get

I3 =
1

q2

∫
d6k

(k · q)2
(k2)3(k + q)2

=
1

q2

∫
d5k⊥

∫ ∞

−∞
dk‖

(k‖|q|)2
(k2

‖ + k2
⊥)3(k2

⊥ + (k‖ + q)2)

=

∫ ∞

0
d|k⊥|

∫ ∞

−∞
dk‖

k2
‖|k⊥|4

(k2
‖ + |k⊥|2)3(|k⊥|2 + (k‖ + q)2)

∫
dΩk⊥

=
2π5/2

Γ(5/2)

∫ ∞

0
d|k⊥|

∫ ∞

−∞
dk‖

k2
‖k

4
⊥

(k2
‖ + |k⊥|2)3(|k⊥|2 + (k‖ + q)2)

.

The inner integral Maple can do, and then subtracting at q2 = µ2 the outer integral is

again within Maple’s powers and we finally get a finite answer

I3 −RI3 = − 1

16
π log(q2/µ2).

Combining these various terms together we have finally computed I −RI. This completes

this example.

Example 2.34. Subtracting 0 in this way also plays nicely with analytic regularization,
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and is less messy on top of it. Consider the example

∫
d4k

k · q
(k2)1+ρ1((k + q)2)1+ρ2

Then

∫
d4k

k · q
(k2)1+ρ1((k + q)2)1+ρ2

=

∫
d4k

k · q
(k2)1+ρ1((k + q)2)1+ρ2

− k · q
(k2)2+ρ1+ρ2

=

∫
d4k

k · q
(
(k2)1+ρ2 − ((k + q)2)1+ρ2

)

(k2)2+ρ1+ρ2((k + q)2)1+ρ2

which is merely log divergent and so can be renormalized by subtracting the same integrand

at q2 = µ2. This sort of example will be important later on, as we can simply take this

integral with q = 1 as the Mellin transform which we need in Section 3.2.

Subtracting off zero in its various forms and subtracting at fixed momenta should not

be confused. The former consists just of adding and subtracting zero and so can be done

in whatever way is convenient. In the following we will assume that it has been done,

and so that all integrals are log divergent. The latter, however, we will always explicitly

keep track of. It is our choice of renormalization scheme and a different choice would give

different results.

2.3.3 Symmetric insertion

For one of the upcoming reductions we will need to define a symmetric insertion with a

single external momentum q2. Let p be a primitive of H, not necessarily connected. For

the purposes of symmetric insertion define the Mellin transform Fp of p (see Section 3.2)

as

Fp(ρ) = (q2)ρ

∫
Intp(q

2)


 1

|p|

|p|∑

i=1

(k2
i )

−ρ




|p|∏

i=1

d4ki,
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where Intp(q
2) is the integrand determined by p. We’ll renormalize by subtraction at

q2 = µ2 and let

Int−p (q2) = Intp(q
2) − Intp(µ

2).

So define renormalized Feynman rules for this symmetric scheme with subtractions at

q2 = µ2 by

φR(Bp
+(X))(q2/µ2) =

∫
Int−p (q2)


 1

|p|

|p|∑

i=1

φR(X)(−k2
i /µ

2)




|p|∏

i=1

d4ki.

We have

φR(Bp
+(X))(q2/µ2) = lim

ρ→0
φR(X)(∂−ρ)Fp(ρ)

(
(q2/µ2)−ρ − 1

)
,

where ∂−ρ = − ∂
∂ρ .



Chapter 3

Dyson-Schwinger equations

3.1 B+

For γ a primitive Feynman graph, Bγ
+ denotes the operation of insertion into γ. There are,

however, a few subtleties which we need to address.

In the closely related Connes-Kreimer Hopf algebra of rooted trees [10], see Chapter 5,

B+(F ) applied to a forest F denotes the operation of constructing a new tree by adding a

new root with children the roots of each tree from F . For example

B+

( )
= .

B+ in rooted trees is a Hochschild 1-cocycle [10, Theorem 2],

∆B+ = (id ⊗B+)∆ +B+ ⊗ I.

This 1-cocycle property is key to many of the arguments below. The corresponding property

which is desired of the various B+ appearing in the Hopf algebras of Feynman graphs is

that the sum of all B+ associated to primitives of the same loop number and the same

external leg structures is a Hochschild 1-cocycle.

In the case where all subdivergences are nested rather than overlapping, and where

there is only one way to make each insertion, a 1PI Feynman graph Γ can be uniquely

represented by a rooted tree with labels on each vertex corresponding to the associated

subdivergence. Call such a tree an insertion tree. For example the insertion tree for the
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graph in Yukawa theory

is

.

In such cases Bγ
+ is the same operation as the B+ for rooted trees (with the new root

labelled by the new graph). So the 1-cocycle identity holds for Bγ
+ too.

However in general there are many possible ways to insert one graph into another so

the tree must also contain the information of which insertion place to use. Also when there

are overlapping subdivergences different tree structures of insertions can give rise to the

same graph. For example in φ3 the graph

can be obtained by inserting

into

either at the right vertex or at the left vertex giving two different insertion trees. Provided

any overlaps are made by multiple copies of the same graph, as in the previous example,
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then, since γ is primitive, the same tensor products of graphs appear on both sides of (2.1)

but potentially with different coefficients. Note that this only requires γ to be primitive,

not necessarily connected. Fortunately it is possible to make a choice of coefficients in the

definition of Bγ
+ which fixes this problem. This is discussed in the first and second sections

of [22], and the result is the definition

Definition 3.1. For γ a connected Feynman graph define

Bγ
+(X) =

∑

Γ∈Hlin

bij(γ,X,Γ)

|X|∨
1

maxf(Γ)

1

(γ|X)
Γ

where maxf(Γ) is the number of insertion trees corresponding to Γ, |X|∨ is the number

of distinct graphs obtainable by permuting the external edges of X, bij(γ,X,Γ) is the

number of bijections of the external edges of X with an insertion place of γ such that the

resulting insertion gives Γ, and (γ|X) is the number of insertion places for X in γ.

Extend Bγ
+ linearly to all primitives γ.

Note that Bγ
+(I) = γ. Also with the above definition we have Bγ

+ defined even for

nonprimitive graphs, but this was merely our approach to make the definition for primitives

which are sums; now that the definitions are settled we will only consider Bγ
+ for primitives.

The messy coefficient in the definition of Bγ
+ assures that if we sum all Bγ

+ running over

γ primitive 1PI with a given external leg structure (that is, over all primitives of the Hopf

algebra which are single graphs and which have the given external leg structure), inserting

into all insertion places of each γ, then each 1PI graph with that external leg structure

occurs and is weighted by its symmetry factor. This property is [22, Theorem 4] and is

illustrated in Example 3.4.

Gauge theories are more general in one way; there may be overlapping subdivergences

with different external leg structures. Consequently we may be able to form a graph G

by inserting one graph into another but in the coproduct of G there may be subgraphs

and cographs completely different from those which we used to form G as in the following

example.
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Example 3.2. In QCD

can be obtained by inserting

into

or by inserting

into .

This makes it impossible for every Bγ
+ for γ primitive to be a Hochschild 1-cocycle since

there may be graphs appearing on the right hand side of (2.1) which do not appear on the

left. In these cases there are identities between graphs, known as Ward identities for QED

and Slavnov-Taylor identities for QCD, which guarantee that
∑
Bγ

+ is a 1-cocycle where

the sum is over all γ with a given loop number and external leg structure. This phenomenon

is discussed in [22] and the result is proved for QED and QCD by van Suijlekom [32].

For our purposes we will consider sets of B+ operators,

{Bk,i;r
+ }tr

k

i=0

where k is the loop number, r is an index for the external leg structure, and i is an additional

index running over the primitive graphs under consideration with k loops and external leg

structure r. In the case where there is only one r under consideration write {Bk,i
+ }tk

i=0. Now

assume that in this more general case, as in QED and QCD, that the required identities

form a Hopf ideal so that by working in a suitable quotient Hopf algebra we get

Assumption 3.3.
∑tr

k

i=0B
k,i;r
+ is a Hochschild 1-cocycle.
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3.2 Dyson-Schwinger equations

Consider power series in the indeterminate x with coefficients in H where x counts the

loop number, that is the coefficient of xk lives in the kth graded piece of H. By combinato-

rial Dyson-Schwinger equations we will mean a recursive equation, or system of recursive

equations, in such power series written in terms of insertion operations B+. The particular

form of combinatorial Dyson-Schwinger equation which we will be able to analyze in detail

will be discussed further in section 3.3.

One of the most important examples is the case where the system of equations ex-

presses the series of graphs with a given external leg structure in terms of insertion into all

connected primitive graphs with that external leg structure. More specifically for a given

primitive we insert into each of its vertices the series for that vertex and for each edge all

possible powers of the series for that edge, that is, a geometric series in the series for that

edge. The system of such equations generates all 1PI graphs of the theory.

Example 3.4. For QED the system to generate all divergent 1PI graphs in the theory is

X = I +
∑

γ primitive with

external leg structure

x|γ|Bγ
+




(
X

)1+2k

(
X

)k (
X

)2k




X = I − xB+




(
X

)2

(
X

)2




X = I − xB+




(
X

)2

X X


 .

where |γ| is the loop number of γ.

X is the vertex series. The coefficient of xn in X is the sum of all 1PI QED

Feynman graphs with external leg structure and n independent cycles. In QED all
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graphs have symmetry factor 1 so this example hides the fact that in general each graph

will appear weighted with its symmetry factor. X and X are the two edge series.

The coefficient of xn for n > 0 in X is minus the sum of all 1PI QED Feynman graphs

with external leg structure and n independent cycles. The negative sign appears in

the edge series because when we use these series we want their inverses; that is, we are

interested in the series where the coefficient of xn consists of products of graphs each with

a given edge as external leg structure and with total loop number n. The arguments to

each Bγ
+ consist of a factor of the vertex series in the numerator for each vertex of γ, a

factor of the photon edge series in the denominator for each photon edge of γ, and a factor

of the electron edge series in the denominator for each electron edge of γ.

To illustrate these features lets work out the first few coefficients of each series. First

work out the coefficient of x.

X = I + xB+




(
X

)3

X
(
X

)2


+O(x2)

= I + xB+ (I) +O(x2)

= I + x +O(x2)

X = I − xB+




(
X

)2

(
X

)2




= I − xB+ (I) +O(x2)

= I − x +O(x2)
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X = I − xB+




(
X

)2

X X




= I − xB+ (I) +O(x2)

= I − x +O(x2)

Next work out the coefficient of x2.

X = I + xB+




(
X

)3

X
(
X

)2




+ x2B+




(
X

)5

(
X

)2 (
X

)4


+O(x3)

= I + xB+




(
I + x

)3

(
I − x

)(
I − x

)2




+ x2B+ (I) +O(x3)

= I + x + x2B+

(
3 + + 2

)
+ x2 +O(x3)

= I + x + x2

(
+ +

+ + + +

)
+O(x3)
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X = I − xB+




(
X

)2

(
X

)2




= I − x − x2B+

(
2 + 2

)
+O(x3)

= I − x − x2

(
+ +

)
+O(x3)

X = I − xB+




(
X

)2

X X




= I − x − x2B+

(
2 + +

)
+O(x3)

= I − x − x2

(
+ +

)
+O(x3)

The fact that

and

appear with coefficient 1 and not 2 is due to the two insertion trees contributing a 2 to the

denominator in Definition 3.1.

By analytic Dyson-Schwinger equations we will mean the result of applying the renor-

malized Feynman rules to combinatorial Dyson-Schwinger equations. These are the Dyson-

Schwinger equations which a physicist would recognize. The counting variable x becomes

the physicists’ coupling constant (which we will also denote x, but which might be more

typically denoted α or g2 depending on the theory). The Feynman rules also introduce

one or more scale variables Lj which come from the external momenta qi and the fixed
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momentum values µi used to renormalize by subtracting. In the case of one scale variable

we have L = log q2/µ2. See Example 3.5. Note that in the case of more than one scale

the Lj are not just log q2i /µ
2, but also include other expressions in the qi and the µi, such

as ratios of the qi (such ratios are not properly speaking scales, but there is no need for a

more appropriate name for them since we will quickly move to the case of one scale where

this problem does not come up).

The functions of Lj and x appearing in analytic Dyson-Schwinger equations are called

Green functions, particularly in the case where the Green functions are the result of ap-

plying the renormalized Feynman rules to the series of all graphs with a given external leg

structure.

We can begin to disentangle the analytic and combinatorial information in the following

way. Suppose we have a combinatorial Dyson-Schwinger equation, potentially a system.

Suppose the series in Feynman graphs appearing in the Dyson-Schwinger equation are

denoted Xr with r ∈ R some index set. Denote Gr the corresponding Green functions.

For each factor (Xr)s in the argument to some Bγ
+ take the formal integrand and

multiply it by (Gr)s. For the scale arguments to these Gr use the momenta of the edges

where the graphs of Xr are inserted. Then subtract this integral at the fixed external

momenta µi as when renormalizing a single Feynman integral. Then the analytic Dyson-

Schwinger equation has the same form as the combinatorial one but with Gr replacing

Xr and with the expression described above replacing Bγ
+. Example 3.5 illustrates this

procedure.

In the case with more than one scale the Green functions may depend on ratios of the

different momenta, and we can progress no further in simplifying the setup. Fortunately, in

the case with only one scale, which suffices to describe the general case in view of Chapter

5, we can further disentangle the analytic and combinatorial information as follows, see

[24] for more details.

Suppose we have a combinatorial Dyson-Schwinger equation and a single scale. For
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each primitive graph γ appearing as a Bγ
+ we have a formal integral expression

∫

RD|v|

Int
∏

k∈v

dDk

coming from the unrenormalized Feynman rules. Number the edges, say from 1 to n. Raise

the factor associated to the ith edge to 1 + ρi where ρi is a new variable. We now have an

analytically regularized integral which can be evaluated for suitable values of ρi. Finally

set all external momenta to 1. Call the resulting function of ρ1, . . . , ρn the Mellin transform

Fγ(ρ1, . . . , ρn) associated to γ. We are interested in Fγ near the origin.

Then, another way to see the analytic Dyson-Schwinger equation as coming from the

combinatorial Dyson-Schwinger equation by replacing Xr with Gr and Bγ
+ with Fγ . The

factor with exponent ρi indicates the argument for the recursive appearance of the Xj

which is inserted at the insertion place corresponding to edge i. This will be made precise

for the cases of interest in the following section, and will be motivated by Example 3.7.

Example 3.5. Broadhurst and Kreimer in [5] discuss the Dyson-Schwinger equation for

graphs from massless Yukawa theory where powers of the one loop fermion self energy

are inserted into itself. The result is that they consider any graph made of

nestings and chainings of this one primitive, for example

.

A graph like

is not allowed. These graphs are in one-to-one correspondence with planar rooted trees.
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The combinatorial Dyson-Schwinger equation is

X(x) = I − xB+

(
1

X(x)

)
.

The Mellin transform associated to the single one loop primitive

k

k + q

q q

is, according to the Feynman rules of Yukawa theory,

F (ρ1, ρ2) =
1

q2

∫
d4k

k · q
(k2)1+ρ1((k + q)2)1+ρ2

∣∣∣∣
q2=1

.

However we are only inserting in the insertion place corresponding to ρ1 so the Mellin

transform we’re actually interested in is

F (ρ) =
1

q2

∫
d4k

k · q
(k2)1+ρ(k + q)2

∣∣∣∣
q2=1

.

Next combine these two facts as described above to get that the Green function satisfies

the analytic Dyson-Schwinger equation

G(x, L) = 1 −
(
x

q2

∫
d4k

k · q
k2G(x, log(k2/µ2))(k + q)2

− · · ·
∣∣∣∣
q2=µ2

)

where L = log(q2/µ2) and · · · stands for the same integrand evaluated as specified. This

is the same as what we would have obtained from applying the Feynman rules directly to

the combinatorial Dyson-Schwinger equation.

3.3 Setup

We will restrict our attention to Dyson-Schwinger equations of the following form.
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3.3.1 Single equations

Fix s ∈ Z. The case s = 0 is not of particular interest since it corresponds to the strictly

simpler linear situation discussed in [21]. However, to include s = 0 as well, we will make

the convention that sign(0) = 1.

Let Q = X−s. We call Q the combinatorial invariant charge. Applying the Feynman

rules to Q gives the usual physicists’ invariant charge.

Consider the Dyson-Schwinger equation

X(x) = I − sign(s)
∑

k≥1

tk∑

i=0

xkBk,i
+ (XQk). (3.1)

This includes Example 3.5 where s = 2 and there is only one B+ having k = 1.

Let Fk,i(ρ1, . . . , ρn) be the Mellin transform associated to the primitive Bk,i
+ (I). In view

of Chapter 5 we’re primarily interested in the case where n = 1 at which point we’ll assume

that the Mellin transforms of the primitives each have a simple pole at ρ = 0, which is the

case in physical examples. We expand the Green functions in a series in x and in L (which

will in general be merely an asymptotic expansion in x) using the following notation

G(x, L) = 1 − sign(s)
∑

k≥1

γk(x)L
k γk(x) =

∑

j≥k

γk,jx
j (3.2)

The idea is to follow the prescriptions of the previous section to obtain the analytic

Dyson-Schwinger equation, then simplify the resulting expression by following the following

steps. See Example 3.7 for a worked example. First, expand G as a series in L. Second,

convert the resulting logarithms of the integration variables into derivatives via the identity

∂k
ρy

−ρ|ρ=0 = (−1)k logk(y). The choice of name for the new variable ρ is not coincidental.

Third, switch the order of integration and derivation. The result then is a complicated

expression in derivatives of the Mellin transforms of the primitives.

However, to avoid the need for additional notation and for appropriate assumptions on

the Fk,i, instead of following this path we will instead define our analytic Dyson-Schwinger
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equations to be the final result of this procedure.

Definition 3.6. For a single scale µ2, the analytic Dyson-Schwinger equation associated

to (3.1) is

G(x, L) = 1 − sign(s)
∑

k≥1

tk∑

i=0

xkG(x, ∂−ρ1)
−sign(s) · · ·G(x, ∂−ρnk

)−sign(s)

(e−L(ρ1+···+ρnk
) − 1)F k,i(ρ1, . . . , ρnk

)

∣∣∣∣
ρ1=···=ρnk

=0

where nk = sign(s)(sk − 1).

We only need one subtraction because in view of the discussion at the end of Subsection

2.3.2 all the integrals of interest are log divergent.

In view of the following chapters we need not concern ourselves with the complexity

of the general definition as we will further reduce to the case where there is only one

symmetric insertion place and a single scale giving

G(x, L) = 1 − sign(s)
∑

k≥1

tk∑

i=0

xkG(x, ∂−ρ)
1−sk(e−Lρ − 1)F k,i(ρ)

∣∣∣∣
ρ=0

or rewritten

γ · L =
∑

k≥1

xk(1 − sign(s)γ · ∂−ρ)
1−sk(e−Lρ − 1)F k(ρ)

∣∣∣∣
ρ=0

(3.3)

where γ · U =
∑
γkU

k, F k(ρ) =
∑tk

i=0 F
k,i(ρ).

The connection between the different forms of the analytic Dyson-Schwinger equation

and the notational messiness of the original presentation can be explained by a motivating

example.

Example 3.7. Let us return to Example 3.5. The analytic Dyson-Schwinger equation is

G(x, L) = 1 − x

q2

∫
d4k

k · q
k2G(x, log(k2/µ2))(k + q)2

− · · ·
∣∣∣∣
q2=µ2
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where L = log(q2/µ2).

Substitute in the Ansatz

G(x, L) = 1 −
∑

k≥1

γk(x)L
k

to get

∑

k≥1

γk(x)L
k =

x

q2

∫
d4k

∑

ℓ1+···+ℓs=ℓ

(k · q)γℓ1(x) · · · γℓs
(x) logℓ(k2/µ2)

k2(k + q)2
− · · ·

∣∣∣∣
q2=µ2

=
x

q2

∑

ℓ1+···+ℓs=ℓ

γℓ1(x) · · · γℓs
(x)

∫
d4k

(k · q) logℓ(k2/µ2)

k2(k + q)2
− · · ·

∣∣∣∣
q2=µ2

=
x

q2

∑

ℓ1+···+ℓs=ℓ

γℓ1(x) · · · γℓs
(x)

∫
d4k

(k · q)(−1)ℓ∂ℓ
ρ(k

2/µ2)−ρ|ρ=0

k2(k + q)2
− · · ·

∣∣∣∣
q2=µ2

=
x

q2

∑

ℓ1+···+ℓs=ℓ

γℓ1(x) · · · γℓs
(x)(−1)ℓ

· ∂ℓ
ρ(µ

2)ρ

∫
d4k

k · q
(k2)1+ρ(k + q)2

− · · ·
∣∣∣∣
q2=µ2

∣∣∣∣∣
ρ=0

= x


1 −

∑

k≥1

γk(x)∂
k
−ρ




−1

(µ2)ρ

q2

∫
d4k

k · q
(k2)1+ρ(k + q)2

− · · ·
∣∣∣∣
q2=µ2

∣∣∣∣∣
ρ=0

= x


1 −

∑

k≥1

γk(x)∂
k
−ρ




−1

(µ2)ρ

(q2)ρ

∫
d4k0

k0 · q0
(k2

0)
1+ρ(k0 + q0)2

− · · ·
∣∣∣∣
q2=µ2

∣∣∣∣∣
ρ=0

where q = rq0 with r ∈ R, r2 = q2, q20 = 1 and k = rk0

= x


1 −

∑

k≥1

γk(x)∂
k
−ρ




−1

(e−Lρ − 1)F (ρ)

∣∣∣∣
ρ=0

using ∂k
ρy

−ρ|ρ=0 = (−1)k logk(y). Thus using the notation γ · U =
∑
γkU

k we can write

γ · L = x(1 − γ · ∂−ρ)
−1(e−Lρ − 1)F (ρ)|ρ=0

Example 3.8. To see an example of a two variable Mellin transform (a slightly different
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example can be found in [24]) consider again the graph

γ =

k + p

k
with the momenta associated to the two right hand external edges summing to p. As an

integral the Mellin transform of γ is

∫
dDk

1

(k2)1+ρ1((k + q)2)1+ρ2

∣∣∣∣
q2=1

.

By the calculations of Subsection 2.3.2

∫
d4k

1

(k2)1+ρ1((k + q)2)1+ρ2

∣∣∣∣
q2=1

=
π2Γ(ρ1 + ρ2)

Γ(1 + ρ1)Γ(1 + ρ2)
(q2)−ρ1−ρ2

Γ(−ρ1)Γ(−ρ2)

Γ(2 − ρ1 − ρ2)

So the Mellin transform is

Fγ(ρ1, ρ2) =
π2Γ(ρ1 + ρ2)

Γ(1 + ρ1)Γ(1 + ρ2)
(q2)−ρ1−ρ2

Γ(−ρ1)Γ(−ρ2)

Γ(2 − ρ1 − ρ2)
.

Upon subtracting at q2 = µ2 then we get

((q2)−ρ1−ρ2 − (µ2)−ρ1−ρ2)Fγ(ρ1, ρ2) = (e−L(ρ1+ρ2) − 1)(µ2)−ρ1−ρ2Fγ(ρ1, ρ2)

So the only dependence on q is the dependence on L which is showing up in the correct

form for Definition 3.6. The extra powers of µ2 would get taken care of by the recursive

iteration as in Example 3.7.

3.3.2 Systems

Now suppose we have a system of Dyson-Schwinger equations

Xr(x) = I − sign(sr)
∑

k≥1

tr
k∑

i=0

xkBk,i;r
+ (XrQk) (3.4)
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for r ∈ R with R a finite set and where

Q =
∏

r∈R

Xr(x)−sr . (3.5)

The fact that the system can be written in terms of the invariant charge Q in this form

is typical of realistic quantum field theories. For example, in QED (see Example 3.4)

Q =

(
X

)2

(
X

)(
X

)2 .

Suppose a theory T has a single vertex v ∈ R with external legs ei ∈ R appearing with

multiplicity mi, i = 1, . . . , n where the external legs (made of half-edges types under our

definitions) are viewed as full edge types, hence as being in R, by simply taking the full

edge type which contains the given half-edge types (hence ignoring whether the edge is the

front or back half of an oriented edge type). Let val(v) be the valence of the vertex type

v. Then we define

Q =

(
(Xv)2∏n

i=1(X
ei)mi

)1/(val(v)−2)

(3.6)

For theories with more than one vertex we form such a quotient for each vertex. We

are again (see section 3.1) saved by the Slavnov-Taylor identities which tell us that these

quotients agree, giving a unique invariant charge [22, section 2]. Then XrQk is exactly

what can be inserted into a graph with external leg structure r and k loops.

Proposition 3.9. Suppose Q is as defined as in the previous paragraph. Let G be a 1PI

Feynman graph with external leg structure r and k > 0 loops. Then XrQk is exactly what

can be inserted into G in the sense that we can write XrQk =
∏

j∈R(Xj)tj so that G has

tj vertices of type j for j a vertex type and G has −tj edges of type j for j an edge type.
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Proof. In view of (3.6) for r a vertex type it suffices to prove that we can write

Qk+(val(r)−2)/2 =
∏

j∈R

(Xj)
etj

so that G has t̃j vertices of type j for j a vertex type and G has −2t̃j half edges in edge

type j (including external half edges) for j an edge type. For r an edge type it likewise

suffices to prove that we can do the same where we define val(r) = 2.

This holds for some k by viewing a graph as made from a set consisting of vertices each

attached to their adjacent half edges.

To see that k is correct note that since G has 1 connected component, e − v + 1 = ℓ,

where e is the number of internal edges of G, v the number of vertices of G, and ℓ the loop

number of G. Letting h be the number of half edges (including external half edges) of G

we have

h

2
− v + 1 − val(r)

2
= ℓ. (3.7)

Each Q contributes val(r)/(val(r)− 2) edge insertions and 2/(val(r)− 2) vertex insertions;

so each Q contributes

val(r)

val(r) − 2
− 2

val(r) − 2
= 1

to (3.7). So if k is so that Qk+(val(r)−2)/2 counts the half edges and vertices of G as described

above then

ℓ = k +
val(r) − 2

2
+ 1 − val(r)

2
= k.

So k is the loop number as required.

The specific form of Q from (3.6) will only be used in the renormalization group deriva-

tion of the first recursion, section 4.1.

Write Fk,i;r(ρ1, . . . , ρnk,i;r
) for the Mellin transform associated to the primitive Bk,i;r

+ (I).

Again assume a simple pole at the origin. We can then write the analytic Dyson-Schwinger
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equations as in the single equation case.

Definition 3.10. The analytic Dyson-Schwinger equations associated to (3.4) are

Gr(x, L1, . . . , Lj)

= 1 − sign(sr)
∑

k≥1

tr
k∑

i=0

xkGr(x, ∂−ρr
1
)−sign(sr) · · ·Gr(x, ∂−ρr

sign(sr)(srk−1)
)−sign(sr)

∏

t∈Rr{r}

Gt(x, ∂−ρt
1
)−sign(st) · · ·Gt(x, ∂−ρt

sign(st)(stk)
)−sign(st)

(e−L(ρ1+···+ρnk,i;r
) − 1)F k,i;r(ρ1, . . . , ρnk,i;r

)

∣∣∣∣
ρ1=···=ρnk,i;r

=0

where the ρj
i run over the ρk so that the ith factor of Gj is inserted at ρj

i .

The following notation will be used for expanding the analytic Dyson-Schwinger equa-

tions as (in general asymptotic) series about the origin,

Gr(x, L) = 1 − sign(sr)
∑

k≥1

γr
k(x)L

k γr
k(x) =

∑

j≥k

γr
k,jx

j (3.8)

In view of the following chapters we will reduce to the case

Gr(x, L) =

1 − sign(sr)
∑

k≥1

tk∑

i=0

xkGr(x, ∂−ρ)
1−srk

∏

j∈Rr{r}

Gj(x, ∂−ρ)
−sjk(e−Lρ − 1)F k,i(ρ)

∣∣∣∣
ρ=0

or rewritten

γr · L =
∑

k≥1

tk∑

i=0

xk(1 − sign(sr)γ
r · ∂−ρ)

1−sk
∏

j∈Rr{r}

(1 − sign(sj)γ
j · ∂−ρ)

−sjk

(e−Lρ − 1)F k,i(ρ)

∣∣∣∣
ρ=0

(3.9)

where γj · U =
∑
γj

kU
k.



Chapter 4

The first recursion

There are two approaches to deriving the first recursion, neither of which is completely self

contained. The first goes directly through the renormalization group equation, and the

second through the Connes-Kreimer scattering-type formula [9].

4.1 From the renormalization group equation

This is primarily an exercise in converting from usual physics conventions to ours.

Using the notation of section 3.3.2 the renormalization group equation, see for instance

[7, Section 3.4] or [17], reads


 ∂

∂L
+ β(x)

∂

∂x
−

∑

e adjacent to v

γe(x)


x(val(v)−2)/2Gv(x, L) = 0 for v a vertex type

(
∂

∂L
+ β(x)

∂

∂x
− 2γe(x)

)
Ge(x, L) = 0 for e an edge type

where β(x) is the β function of the theory, γe(x) is the anomalous dimension for Ge(x, L)

(both of which will be defined in our notation below), and val(v) is the valence of v. The

edge case and vertex case can be unified by writing val(e) = 2 and taking the edges adjacent

to e to be two copies of e itself (one for each half edge making e). Our scale variable L

already has a log taken so ∂L often appears as µ∂µ in the literature where µ is the scale

before taking logarithms. The use of x(val(v)−2)/2Gv(x, L) in the vertex case in place of what

is more typically simply Gv(x, L) comes about because by taking the coupling constant to

count the loop number rather than having the Feynman rules associate a coupling constant
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factor to each vertex we have divided out by the coupling constant factor for one vertex,

that is by x(val(v)−2)/2. As a result our series begin with a constant term even for vertices.

To see that it makes sense that a vertex v contributes a factor of x(val(v)−2)/2 recall that

that for a graph G with one connected component and external leg structure r we have

(3.7) which reads

h

2
− t+ 1 − val(r)

2
= ℓ

where h is the number of half edges of G, t the number of vertices, ℓ the loop number,

and where we take val(r) = 2 for if r is an edge type. Suppose vertices, but not edges,

contribute some power of x. Then a vertex v contributes val(v)/2− 1 to the left hand side

of (3.7), so it is consistent that v also contribute the same power of x. The whole graph G

then has xℓ+val(r)/2−1 as expected. If the power of x associated to a vertex depends only

on its valence, then this is the only way to make the counting work.

Returning to β and γ, define

β(x) = ∂LxφR(Q)|L=0 (4.1)

and

γe(x) = −1

2
∂LG

e(x, L)|L=0 =
1

2
γe

1 (4.2)

for e an edge, that is se > 0 as discussed in subsection 3.3.2. The factor of x in β comes again

from our normalization of the coupling constant powers to serve to count the loop number

(recall from the discussion surrounding (3.6) that Q contributes a 1 to (3.7) and so, in view

of the previous paragraph, Q is short one power of x), while the factor of 1/2 in (4.2) is

usual. The sign in (4.2) comes from the fact that our conventions have the Green functions

for the edges with a negative sign, while the second equality uses the explicit expansion

(3.8). Note that this β-function is not the Euler β function, Γ(x)Γ(y)/Γ(x + y); rather it

encodes the flow of the coupling constant depending on the energy scale. Another way to

look at matters is that the β-function measures the nonlinearity in a theory, specifically it
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is essentially the coefficient of L in the invariant charge, as in the definition above.

In the case of an edge type e we obtain quickly from (4.1), (4.2), (3.5), and (3.8), that

0 =

(
∂

∂L
+ β(x)

∂

∂x
− γe

1(x)

)
Ge(x, L)

=


 ∂

∂L
+
∑

j∈R

|sj |γj
1(x)x

∂

∂x
− γe

1(x)


Ge(x, L).

In the case of a vertex type v compute as follows.

0 =


 ∂

∂L
+ β(x)

∂

∂x
−

∑

e adjacent to r

γe(x)


x(val(v)−2)/2Gv(x, L)

= x(val(v)−2)/2 ∂

∂L
Gv(x, L) + x(val(v)−2)/2β(x)

∂

∂x
Gv(x, L)

+
val(v) − 2

2
x(val−4)/2β(x)Gv(x, L) − x(val(v)−2)/2

∑

e adjacent to r

γe(x)Gv(x, L)

= x(val(v)−2)/2 ∂

∂L
Gr(x, L) + x(val(v)−2)/2β(x)

∂

∂x
Gr(x, L)

+ x(val−2)/2 val(v) − 2

2

1

val(v) − 2


2γv

1 (x) +
∑

e adjacent to r

γe(x)


Gv(x, L)

− x(val(v)−2)/2
∑

e adjacent to r

1

2
γe

1(x)G
v(x, L)

from (4.1), (3.6), and (3.8)

= x(val(v)−2)/2

(
∂

∂L
Gv(x, L) + β(x)

∂

∂x
Gv(x, L) + γv

1G
v(x, L)

)

Dividing by x(val(v)−2)/2 and using (3.5) and (3.8) we have


 ∂

∂L
+
∑

j∈R

|sj |γj
1(x)x

∂

∂x
+ γv

1 (x)


Gv(x, L) = 0.

In both cases extracting the coefficient of Lk−1 and rearranging gives
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Theorem 4.1.

γr
k(x) =

1

k


sign(sr)γ

r
1(x) −

∑

j∈R

|sj |γj
1(x)x∂x


 γr

k−1(x).

Specializing to the single equation case gives

Theorem 4.2.

γk =
1

k
γ1(x)(sign(s) − |s|x∂x)γk−1(x).

Note that the signs in the above do not match with [25] because here the sign conven-

tions have that the Xr have their graphs appear with a negative sign precisely if r is an

edge type, whereas in [25] there was a negative sign in all cases.

4.2 From S ⋆ Y

Definition 4.3. Y is the grading operator on H. Y (γ) = |γ|γ for γ ∈ H.

Definition 4.4. Let

σ1 = ∂LφR(S ⋆ Y )|L=0

and

σn =
1

n!
mn−1(σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸

n times

)∆n−1

Lemma 4.5. S ⋆ Y is zero off Hlin

Proof. First S ⋆ Y (I) = I · 0 = 0. Suppose Γ1,Γ2 ∈ H \ QI. Since S is a homomorphism

and Y is a derivation,

S ⋆ Y (Γ1Γ2) =
∑

S(γ′1γ
′
2)Y (γ′′1γ

′′
2 )

=
(∑

S(γ′1)γ
′′
1

)(∑
S(γ′2)Y (γ′′2

)
+
(∑

S(γ′1)Y (γ′′1 )
)(∑

S(γ′2)γ
′′
2

)

= 0



53

since by definition S ⋆ id(Γ1) = S ⋆ id(Γ2) = 0. Here we used the Sweedler notation,
∑
γ′j ⊗ γ′′j = ∆(Γj).

Lemma 4.6.

∆([xk]Xr) =
k∑

j=0

[xj ]XrQk−j ⊗ [xk−j ]Xr

∆([xk]XrQℓ) =
k∑

j=0

[xj ]XrQk+ℓ−j ⊗ [xk−j ]XrQℓ

where [·] denotes the coefficient operator as in Definition 2.2.

Proof. The proof follows by induction. Note that both equations read I ⊗ I = I ⊗ I when

k = 0. For a given value of k > 0 the second equality follows from the first for all 0 ≤ ℓ ≤ k

using the multiplicativity of ∆ and the fact that partitions of k into m parts each part then

partitioned into two parts are isomorphic with partitions of k into two parts with each part

then partitioned into m parts.

Consider then the first equation with k > 0. By Assumption 3.3, for all 1 ≤ ℓ,
∑tr

ℓ

i=0B
ℓ,i;r
+ is a Hochschild 1-cocycle. Thus using (3.4)

∆([xk]Xr) = ∆


−sign(sr)

∑

1≤ℓ≤k

tr
ℓ∑

i=0

Bℓ,i;r
+ ([xk−ℓ]XrQℓ)




= −sign(sr)
∑

1≤ℓ≤k

tr
ℓ∑

i=0

(id ⊗Bℓ,i;r
+ )∆([xk−ℓ]XrQℓ)

− sign(sr)
∑

1≤ℓ≤k

tr
ℓ∑

i=0

(Bℓ,i;r
+ ([xk−ℓ]XrQℓ) ⊗ I)

= −sign(sr)
∑

1≤ℓ≤k

tr
ℓ∑

i=0

(id ⊗Bℓ,i;r
+ )




k−ℓ∑

j=0

[xj ]XrQk−j ⊗ [xk−ℓ−j ]XrQℓ




+ [xk]Xr ⊗ I

=
k−1∑

j=0


[xj ]XrQk−j ⊗−sign(sr)

∑

1≤ℓ≤k−j

tr
ℓ∑

i=0

Bℓ,i;r
+ ([xk−ℓ−j ]XrQℓ)
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+ [xk]Xr ⊗ I

=
k−1∑

j=0

[xj ]XrQk−j ⊗ [xk−j ]Xr + [xk]Xr ⊗ I

The result follows.

Note that ∆(Xr) =
∑∞

k=0X
rQk ⊗ (terms of degree k in Xr).

4.2.1 Single equations

Proposition 4.7. σn(X) = sign(s)γn(x)

Proof. For n = 1 this appears as equation (25) of [9] and equation (12) of [4]. For n > 1

expand the scattering type formula [9, (14)]. The sign is due to our sign conventions, see

(3.2).

Rephrasing Lemma 4.6 we have

Corollary 4.8. Suppose Γxk appears in X with coefficient c and Z ⊗ Γxk consists of all

terms in ∆X with Γ on the right hand side. Then Z = cXQk.

Proposition 4.9.

(Plin ⊗ id)∆X = X ⊗X − sX ⊗ x∂xX

Proof. The Corollary implies that every graph appearing on the right hand side of ∆X

also appears in X and vice versa. Suppose Γxk appears in X and Z ⊗ Γxk consists of all

terms in ∆X with Γ on the right hand side.

By Corollary 4.8 XQk = Z. So in (Plin ⊗ id)∆X we have the corresponding terms

Plin(XQ
k) ⊗ Γ.

Compute

Plin(XQ
k) = PlinX + PlinQ

k

= PlinX + kPlinQ
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= PlinX − ksPlinX

= X − ksX

Thus

(Plin ⊗ id)∆X = X ⊗X − sX ⊗ x∂xX

Theorem 4.10.

γk =
1

k
γ1(x)(sign(s) − |s|x∂x)γk−1(x)

Proof.

γk = sign(s)σk(X) by Proposition 4.7

=
sign(s)

k!
mk−1(σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸

k times

)∆k−1(X)

=
sign(s)

k
m


σ1 ⊗

1

(k − 1)!
mk−2(σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸

k−1 times

)∆k−2


∆(X)

=
sign(s)

k
m(σ1Plin ⊗ σk−1)∆(X) by Lemma 4.5

=
1

k
sign(s)σ1(X)σk−1(X) − sσ1(X)x∂xσk−1(X) by Proposition 4.9

=
1

k
γ1(x)(sign(s)γk−1(x) − |s|x∂xγk−1(x))

4.2.2 Systems of equations

Proposition 4.11. σn(Xr) = sign(sr)γ
r
n(x)

Proof. The arguments of [9] and [4] do not depend on how or whether the Green functions

depend on other Green functions, so the same arguments as in the single equation case

applied. The sign comes from our conventions, see (3.8). Note that β in [9] is the operator
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associated to the β-function only in the single equation case, otherwise it is simply the

anomalous dimension.

As in the single equation case we can rewrite Lemma 4.6 to get

Corollary 4.12. Suppose Γxk appears in Xr with coefficient c and Z⊗Γxk consists of all

terms in ∆Xr with Γ on the right hand side. Then Z = cXrQk.

Proposition 4.13.

(Plin ⊗ id)∆Xr = Xr ⊗Xr −
∑

j∈R

sjX
j ⊗ x∂xX

r

Proof. As in the single equation case every graph appearing on the right hand side of ∆Xr

also appears in Xr and vice versa. Suppose Γxk appears in Xr and Z ⊗Γxk consists of all

terms in ∆X with Γ on the right hand side.

By Corollary 4.12 XrQk = Z, and

Plin(X
rQk) = PlinX

r + PlinQ
k

= PlinX
r + kPlinQ

= PlinX
r − k

∑

j∈R

sjPlinX
j

= Xr − k
∑

j∈R

sjX
j

The result follows.

Theorem 4.14.

γr
k =

1

k


sign(sr)γ

r
1(x)

2 −
∑

j∈R

|sj |γj
1(x)x∂xγ

r
k−1(x)




Proof.

γr
k = sign(sr)σk(X

r) by Proposition 4.11
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=
sign(sr)

k
m(σ1Plin ⊗ σk−1)∆(Xr) as in the single equation case

=
k


sign(sr)σ1(X

r)σk−1(X
r) −

∑

j∈R

sjσ1(X
j)x∂xsign(sr)σk−1(X

r)




by Proposition 4.13

=
1

k


sign(sr)γ

r
1(x)γ

r
k−1(x) −

∑

j∈R

|sj |γj
1(x)x∂xγ

r
k−1(x))


 .

As in the previous section the signs do not match with [25] because here the sign

conventions have that the Xr have their graphs appear with a negative sign precisely if r

is an edge type, whereas in [25] there was a negative sign in all cases.

4.3 Properties

The following observation is perhaps obvious to the physicists, but worth noticing

Lemma 4.15. As a series in x, the lowest term in γr
k is of order at least k. If γr

1,1 6=

ℓ
∑

j∈R sjγ
j
1,1, for ℓ = 0, . . . , k − 1 then the lowest term in γr

k is exactly order k.

Note that in the single equation case, the condition to get lowest term exactly of order

k is simply γ1,1 6= 0.

Proof. Expanding the combinatorial Dyson-Schwinger equation, (3.1) or (3.4), in x we see

immediately that the x0 term is exactly I. The Feynman rules are independent of x so the

x0 term in the analytic Dyson-Schwinger equation is 1 − 1 = 0 due to the fact that we

renormalize by subtractions.

Then inductively the γr
k recursion, Theorem 4.1 or 4.14, gives that as a series in x, γr

k

has no nonzero term before

xk

k


sign(sr)γ

r
1,1 − (k − 1)

∑

j∈R

|sj |γj
1,1


 γr

k−1,k−1
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The result follows.

We also can say that γr
k,j is homogeneous in the coefficients of the Mellin transforms

in the sense indicated below. This will not be used in the following. For simplicity we will

only give it in the single equation case with one insertion place.

Expand Fk,i(ρ) =
∑

j≥−1mj,k,iρ
j .

Recall (3.3)

γ · L =
∑

k≥1

xk(1 − sign(s)γ · ∂−ρ)
1−sk(e−Lρ − 1)F k(ρ)

∣∣∣∣
ρ=0

Taking one L derivative and setting L to 0 we get

γ1 = −
∑

k

∑

i

xk(1 − sign(s)γ · ∂−ρ)
1−skρFk,i(ρ)|ρ=0 (4.3)

Proposition 4.16. Writing γk,j =
∑
ck,j,j1,···ju,ℓ,imj1,ℓ1,i1 · · ·mju,ℓu,iu for j ≥ k we have

that j1 + · · · + ju = j − k

Proof. The proof proceeds by induction. Call j1 + · · ·+ ju the m-degree of γk,j . First note

that γ1,1 =
∑

im0,1,i from (4.3).

Assume the result holds for k, j < n.

Then from Theorem 4.2 or 4.10 γ1,n is a sum over s of terms of the form

Cγℓ1,t1 · · · γℓu,su
ms (4.4)

where ℓ1 + · · · + ℓu = s and t1 + · · · tu = n − 1. By the induction hypothesis γℓi,ti has

m-degree ti − ℓi, so (4.4) has m-degree
∑
ti −

∑
ℓi + s = n− 1− s+ s = n− 1 as desired.

Next from Theorem 4.2 or 4.10 γk,j , for k, j ≤ n, is a sum over 1 ≤ i ≤ n of terms of

the form

Cγ1,iγk−1,j−i (4.5)

By the induction hypothesis γ1,i has m-degree i−1 and γk−1,j−1 has m-degree j− i−k+1
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so (4.5) has m-degree j − k as desired.



Chapter 5

Reduction to one insertion place

5.1 Colored insertion trees

From now on we will need to carry around some additional information with our Feynman

graphs. Namely we want to keep track of two different kinds of insertion, normal insertion,

and a modified insertion which inserts symmetrically into all insertion places. Symmetric

insertion does not analytically create overlapping divergences, but simply marking each

subgraph by how it was inserted may be ambiguous as in the example below. We will use

insertion trees to retain the information of how a graph was formed by insertions.

In examples without overlaps, and even in simple overlapping cases, it suffices to label

the divergent subgraphs with one of two colors, black for normal insertion and red for

symmetric insertion. To see that coloring does not suffice in the general case consider the

graph

There are three proper subdivergent graphs; give them the following names for easy refer-

ence

A =

B =

C =
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Then if A is red while B and C are black then this could represent A inserted symmetri-

cally into or it could represent B inserted into while B itself is made of A

symmetrically inserted into and likewise for C.

Definition 5.1. A decorated rooted tree is a finite rooted tree (not embedded in the plane)

with a map from its vertices to a fixed, possibly infinite, set of decorations.

The polynomial algebra over Q generated by (isomorphism classes) of decorated rooted

trees forms a Hopf algebra as follows.

Definition 5.2. The (Connes-Kreimer) Hopf algebra of decorated rooted trees, HCK , con-

sists of the Q span of forests of decorated rooted trees with disjoint union as multiplication,

including the empty forest I. The coproduct on HCK is the algebra homomorphism defined

on a tree by

∆(T ) =
∑

c

Pc(T ) ⊗Rc(T )

where the sum runs over ways to cut edges of T so that each path from the root to a

leaf is cut at most once, Rc(T ) is the connected component of the result connected to the

original root, and Pc(T ) is the forest of the remaining components. The antipode is defined

recursively from S ⋆ id = eη (as in the Feynman graph situation),

See [10] for more details on HCK . Insertion trees are decorated rooted trees where each

element in the decoration set consists of an ordered triple of a primitive of H (potentially a

sum), an insertion place in the primitive of the parent of the current vertex, and a bijection

from the external edges of the Feynman graph to the half edges of the insertion place. The

second and third elements of the triple serve to unambiguously define an insertion as in

Subsection 2.2.3. Often the insertion information will be left out if it is unambiguous.

Definition 5.3. For a 1PI Feynman graph G in a given theory let F (G) be the forest of

insertion trees which give G.

From F (G), or even just one tree of F (G), we can immediately recover G simply by

doing the specified insertions. The result of the insertion defined by a particular parent
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and child pair of vertices is unambiguous since all the insertion information is included in

the decoration. The choice of order to do the insertions defined by an insertion tree does

not affect the result due to the coassociativity of the Feynman graph Hopf algebra.

Extend F to F : H → HCK as an algebra homomorphism. In fact it is an injective

Hopf algebra morphism by the following proposition.

Proposition 5.4. F (∆(G)) = ∆(F (G)).

Proof. Let γ be a (not necessarily connected) divergent subgraph of G. Since G can be

made by inserting γ into G/γ, then among F (G) we can find each tree of F (γ) grafted

into each tree of F (G/γ). Cutting edges where F (γ) is grafted into F (G/γ) we see that

F (γ) ⊗ F (G/γ) appears in ∆(F (G)). The coefficients are the same since each insertion

place for γ in G/γ which gives G we have a grafting with this insertion information and

vice versa. Finally every cut of F (G) consists of a forest of insertion trees, which by doing

the insertions gives a divergent subgraph of G. The result follows.

Now we wish to extend this situation by coloring the edges of the insertion trees.

Definition 5.5. Let T be a decorated rooted tree with edge set E. Define an insertion

coloring map to be a map f : E → {black, red}. If T is an insertion tree when call T with

f a colored insertion tree.

Definition 5.6. For a colored insertion tree define the coproduct to be as before with the

natural colorings.

To translate back to Feynman graphs think of the edge as coloring the graph defined by

the insertion tree below it. The result is a Feynman graph with colored proper subgraphs.

The coproduct in the tree case forgets the color of the cut edges. Correspondingly in the

Feynman graph case the color of the graphs, but not their subgraphs, on the left hand

sides of the tensor product are forgotten.

Proposition 5.7. Colored insertion trees form a Hopf algebra with the above coproduct

which agrees with HCK upon forgetting the colors.
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Proof. Straightforward.

Call the Hopf algebra of colored insertion trees Hc. In view of the above R : H →֒ Hc

by taking R : H →֒ HCK and coloring all edges black.

Analytically, black insertion follows the usual Feynman rules, red insertion follows the

symmetric insertion rules as defined in subsection 2.3.3.

Definition 5.8. For γ a primitive element of H or Hc, write Rγ
+ : Hc → Hc for the

operation of adding a root decorated with γ with the edges connecting it colored red. Also

write Bγ
+ : Hc → Hc for ordinary insertion of Feynman graphs translated to insertion trees

with new edges colored black. Note that this is not the usual B+ on rooted trees in view

of overlapping divergences.

When working directly with Feynman graphs Rγ
+ corresponds to insertion with the

inserted graphs colored red and no overlapping divergences.

Another way of understanding the importance of Definition 3.1 and Theorem 3.3 is

that
∑tr

k

i=0B
k,i;r
+ is the same whether interpreted as specified above by B+ on Feynman

graphs translated to Hc, or directly on Hc simply by adding a new root labelled by γ and

the corresponding insertion places without consideration for overlapping divergences.

Lemma 5.9. Rγ
+ is a Hochschild 1-cocycle for Hc.

Proof. The standard B+ of adding a root is a Hochschild 1-cocycle in HCK , see [10, The-

orem 2]. Edges attached to the root on the right hand side of the tensors are red on both

sides of the 1-cocycle identity. The remaining edge colors must also satisfy the 1-cocycle

property which we can see by attaching this information to the decoration of the node

which is further from the root.

5.2 Dyson-Schwinger equations with one insertion place

To reduce to one insertion place we need to show that we can write Dyson-Schwinger

equations in which only involves R+s but which, results in the same series Xr which



64

contains only black insertions. We can achieve this recursively, while viewing H →֒ Hc.

Suppose our combinatorial Dyson-Schwinger equation is as in (3.4)

Xr(x) = I − sign(sr)
∑

k≥1

tr
k∑

i=0

xkBk,i;r
+ (XrQk).

Then, using [·] to denote the coefficient operator as in Definition 2.2, define

qr
1 = −sign(sr)[x]X

r =

tri∑

i=0

B1,i;r
+ (I)

qr
n = −sign(sr)[x

n]Xr + sign(sr)
n−1∑

k=1

R
qr
k

+ ([xn−k]XrQk)

=
n∑

k=1

tr
k∑

i=0

Bk,i;r
+ ([xn−k]XrQk) + sign(sr)

n−1∑

k=1

R
qr
k

+ ([xn−k]XrQk)

In order to know that the qr
n are well defined we need to know that they are primitive.

Proposition 5.10. qr
n is primitive for r ∈ R and n ≥ 1.

Proof. First note that B+(I) is primitive for any B+ and the sum of primitives is primitive,

so qr
1 is primitive for each r ∈ R.

Then inductively for n > 1

∆(qr
n) =

n∑

k=1

tr
k∑

i=0

(id ⊗Bk,i;r
+ )(∆[xn−k]XrQk) −

n−1∑

k=1

(id ⊗R
qr
k

+ )(∆[xn−k]XrQk)

+
n∑

k=1

tr
k∑

i=0

Bk,i;r
+ ([xn−k]XrQk) ⊗ I −

n−1∑

k=1

R
qr
k

+ ([xn−k]XrQk) ⊗ I

=
n∑

k=1

tr
k∑

i=0

n−k∑

ℓ=0

(
[xℓ]XrQk ⊗Bk,i;r

+ ([xn−ℓ−k]XrQk)
)

−
n−1∑

k=1

n−k∑

ℓ=0

(
[xℓ]XrQk ⊗R

qr
k

+ ([xn−ℓ−k]XrQk)
)

+ qr
n ⊗ I

= I ⊗ qr
n + qr

n ⊗ I
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+
n−1∑

ℓ=1

n−ℓ∑

k=1


[xℓ]XrQn−ℓ ⊗




tr
k∑

i=0

Bk,i;r
+ ([xn−ℓ−k]XrQk) −R

qr
k

+ ([xn−ℓ−k]XrQk)






= I ⊗ qr
n + qr

n ⊗ I −
n−1∑

ℓ=1

(
[xℓ]XrQn−ℓ ⊗ (qr

ℓ − qr
ℓ )
)

= I ⊗ qr
n + qr

n ⊗ I.

Theorem 5.11.

Xr = 1 − sign(sr)
∑

k≥1

xkR
qr
k

+ (XrQk).

Proof. The constant terms of both sides of the equation match and for n ≥ 1

−sign(sr)[x
n]
∑

k≥1

xkR
qr
k

+ (XrQk) = −sign(sr)
n∑

k=1

xkR
qr
k

+ ([xn−k]XrQk)

= −sign(sr)q
r
k − sign(sr)

n−1∑

k=1

xkR
qr
k

+ ([xn−k]XrQk)

= [xn]Xr.

The interpretation of the Theorem is that we can reduce to considering only red inser-

tion, that is to a single symmetric insertion place.

In simple cases we can avoid the not only the insertion trees, but also the subgraph col-

oring, and literally reduce to a single insertion place in the original Hopf algebra. However

this cannot work with different types of insertions or with vertex insertions where each

vertex can not take an arbitrary number of inserted graphs. Consequently such simple

examples can only arise with a single type of edge insertion as in the following example.
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Example 5.12. Suppose we have the Dyson-Schwinger equation

X = 1 − xB
1
2
+

(
1

X2

)
.

where we insert into both internal edges. In this case we need not resort to red insertion

in order to reduce to one insertion place.

Let

q1 =
1

2

where we only insert into the bottom edge and let

X1 = 1 − xBq1
+

(
1

X2
1

)

Then to order x3 we have that

X = 1 − x
1

2
− x2 1

2
− x3

(
1

8
+

1

2
+

1

4

)

and

X1 = 1 − x
1

2
− x2 1

2
− x3

(
3

8
+

1

2

)

so

q2 = 0 and q3 =
1

8
− 1

16
− 1

16

where in the first graph of q3 we insert only in the bottom edge of the bottom inserted

bubble, in the second graph we insert only in the bottom edge of the leftmost inserted

bubble, and in the third graph we insert only in the bottom edge of the rightmost inserted

bubble.

Note that q3 is primitive. Let

X2 = 1 − xBq1
+

(
1

X2
1

)
− x3Bq3

+

(
1

X8

)
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The order x4 we have

X =1 − x
1

2
− x2 1

2
− x3

(
1

8
+

1

2
+

1

4

)

− x4

(
1

8
+

1

4
+

1

2
+

1

8
+

1

4

+
1

8
+

1

4
+

1

4

)

and

X2 =1 − x
1

2
− x2 1

2
− x3

(
1

2
+

3

8

)

− x4

(
3

8
+

1

4
+

1

2
+

3

8
+

3

8

+
1

8
− 1

8

)

where the first 2 lines come from insertingX2 into q1 and the third line comes from inserting

X2 into q3.

Consequently let

q4 =
1

8
− 1

8
− 1

4
+

1

8
+

1

8

which we can check is primitive. Continue likewise.
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Reduction to geometric series

6.1 Single equations

Let D = sign(s)γ · ∂−ρ and Fk(ρ) =
∑tk

i=0 Fk,i(ρ) so the Dyson-Schwinger equation (3.3)

reads

γ · L =
∑

k≥1

xk(1 −D)1−sk(e−Lρ − 1)Fk(ρ)

∣∣∣∣
ρ=0

Only terms Ljxk with k ≥ j ≥ 1 occur by Lemma 4.15 so this series lies in (R[L])[[x]].

Then we have the following

Theorem 6.1. There exists unique rk, rk,i ∈ R, k ≥ 1, 1 ≤ i < k such that

∑

k

xk(1 −D)1−sk(e−Lρ − 1)Fk(ρ)

∣∣∣∣
ρ=0

=
∑

k

xk(1 −D)1−sk(e−Lρ − 1)


 rk
ρ(1 − ρ)

+
∑

1≤i<k

rk,iL
i

ρ



∣∣∣∣
ρ=0

Proof. For ℓ ≥ 0 the series in x

xk(1 −D)1−skρℓ|ρ=0

has no term of degree less than k+ℓ since γi(x) has no term of degree less than i by Lemma

4.15. It follows that

xk(1 −D)1−sk(e−Lρ − 1)
1

ρ(1 − ρ)

∣∣∣∣
ρ=0

= −Lxk +O(xk+1)
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and

xk(1 −D)1−sk(e−Lρ − 1)
Li

ρ

∣∣∣∣
ρ=0

= −Li+1xk +O(xk+1)

Now expand

Fk,i =
∞∑

j=−1

fk,i,jρ
j .

and define rn, rn,i recursively in n so

∑

k

xk(1 −D)1−sk(e−Lρ − 1)Fk(ρ)

∣∣∣∣
ρ=0

=
∑

k

xk(1 −D)1−sk(e−Lρ − 1)


 rk
ρ(1 − ρ)

+
∑

1≤i<k

rk,iL
i

ρ



∣∣∣∣
ρ=0

+O(xn+1).

This is possible since as noted above the coefficient of xn in
∑

k x
k(1 − D)1−sk(e−Lρ −

1)Fk(ρ)|ρ=0 is a polynomial in L with degree at most n− 1.

The meaning of this theorem is that we can modify the Mellin transforms of the prim-

itives to be geometric series at order L. The higher powers of ρ in the Mellin transform of

a primitive at k loops become part of the coefficients of primitives at higher loops. Note

that there are now terms at each loop order even if this was not originally the case.

Example 6.2. Consider the case s = 2 with a single B+ at order 1 as in Example 3.5.

Write

F =

∞∑

j=−1

fjρ
j .

then computation gives

r1 =f−1

r2 =f2
−1 − f−1f0

r2,1 =0

r3 =2f3
−1 + f2

−1(−4f0 + f1) + f−1f
2
0
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r3,1 = − f3
−1 + f2

−1f0

r3,2 =0

r4 =2f4
−1 + f3

−1(−12f0 + 6f1 − f2) + f2
−1(9f

2
0 − 3f0f1) − f−1f

3
0

r4,1 = − f4
−1 + f3

−1(6f0 − 2f1) − 3f2
−1f

2
0

r4,2 =
7

6
f4
−1 −

7

6
f3
−1f0

r4,3 =0

r5 = − 10f5
−1 + f4

−1(−6f0 + 18f1 − 8f2 + f3) + f3
−1(40f2

0 − 32f0f1 + 4f0f2 + 2f2
1 )

+ f2
−1(−16f3

0 + 6f2
0 f1) + f−1f

4
0

...

These identities are at present still a mystery. Even the coefficients of fk
−1 in rk do not

appear in Sloane’s encyclopedia of integer sequences [28] in any straightforward manner.

In the case

F (ρ) =
−1

ρ(1 − ρ)(2 − ρ)(3 − ρ)
,

as in the φ3 example from [5], the above specializes to the also mysterious sequence

r1 = − 1

6

r2 = − 5

63
r2,1 =0

r3 = − 14

65
r3,1 =

−5

64
r3,2 =0

r4 =
563

67
r4,1 =

−173

66
r4,2 =

−35

66

r5 =
13030

69

...
...

r6 = − 194178

611

Note that even if the coefficients of the original Mellin transforms are all of one sign

the rk may unfortunately not be so.
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6.2 Systems

As in the single equation case we can reduce to geometric series Mellin transforms at order

L.

Theorem 6.3. There exists unique rj
k, r

j
k,i ∈ R, k ≥ 1, 1 ≤ i < k, j ∈ R such that

∑

k≥1

tk∑

i=0

xk(1 − sign(sr)γ
r · ∂−ρ)

1−srk
∏

j∈Rr{r}

(1 − sign(sj)γ
j∂−ρ)

−sjk(e−Lρ − 1)F k,i(ρ)

∣∣∣∣
ρ=0

=
∑

k≥1

tk∑

i=0

xk(1 − sign(sr)γ
r · ∂−ρ)

1−srk
∏

j∈Rr{r}

(1 − sign(sj)γ
j∂−ρ)

−sjk

(e−Lρ − 1)


 rr

k,i

ρ(1 − ρ)
+
∑

1≤i<k

rr
k,iL

i

ρ



∣∣∣∣
ρ=0

Proof. The proof follows as in the single equation case with the observation that for ℓ ≥ 0

xk
∏

j∈R

(1 + γj · ∂−ρ)
−sjk+1ρℓ|ρ=0

still has lowest term xk+ℓ.



Chapter 7

The second recursion

7.1 Single equations

Reducing to geometric series Mellin transforms at order L allows us to write a tidy recursion

for γ1. Again let D = sign(s)γ · ∂−ρ and Fk(ρ) =
∑tk

i=0 Fk,i(ρ). By Theorem 6.1 we have

γ · L =
∑

k

xk(1 −D)1−sk(e−Lρ − 1)


 rk
ρ(1 − ρ)

+
∑

1≤i<k

rk,iL
i

ρ



∣∣∣∣
ρ=0

(7.1)

Taking the coefficients of L and L2 gives

γ1 =
∑

k

xk(1 −D)1−sk

( −rk
1 − ρ

) ∣∣∣∣
ρ=0

γ2 =
∑

k

xk(1 −D)1−sk

(
ρ

rk
2(1 − ρ)

− rk,1

) ∣∣∣∣
ρ=0

So

γ1 + 2γ2 =
∑

k

xk(1 −D)1−sk(−rk − 2rk,1)

∣∣∣∣
ρ=0

=
∑

k

p(k)xk = P (x)

where p(k) = −rk − 2rk,1. Then from Theorem 4.2 or 4.10

γ1 = P (x) − 2γ2 = P (x) − γ1(sign(s) − |s|x∂x)γ1

giving

Theorem 7.1.

γ1(x) = P (x) − γ1(x)(sign(s) − |s|x∂x)γ1(x)
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or at the level of coefficients

γ1,n = p(n) +
n−1∑

j=1

(|s|j − sign(s))γ1,jγ1,n−j

Notice that in defining the rk and rk,i we only used a geometric series in the first case.

Specifically, we used 1/(ρ(1−ρ)) for rk but 1/ρ for rk,i. We could have used 1/ρ in all cases;

then one L derivative would give γ1(x) =
∑
rkx

k so all the information of γ1 is in the rk, we

learn nothing recursively. The choice of a geometric series at order L was made to capture

the fact that conformal invariance tells us that the Mellin transform will be symmetrical

when ρ 7→ 1 − ρ, and it also entirely captures examples such as the Yukawa example from

[5] and Example 3.5. On the other hand choosing to use a geometric series for the rk,i as

well would not have resulted in a tidy recursion for γ1 using these techniques. We hope that

the choice here gives an appropriate balance between representing the underlying physics

and giving tractable results all without putting too much of the information into P (x).

Another important question is how to interpret P (x). In cases like the Yukawa example

of [5] where the various reductions are unnecessary, then P (x) is simply the renormalized

Feynman rules applied to the primitives. In that particular example there is only one

primitive, and P (x) = cx for appropriate c. In the general case we would like to interpret

P (x) as a modified version of the renormalized Feynman rules applied to the primitives.

For the first reduction this is a reasonable interpretation since that reduction simply makes

new primitives, either within the Hopf algebra of Feynman graphs or more generally. For

the second reduction the idea is that the geometric series part of each Mellin transform is

the primary part due to conformal invariance. At order L the rest of the Mellin transform

gets pushed into higher loop orders, while at order L2 the reduction is a bit more crass.

This information together gives the rk and the rk,1 and hence gives P (x). So again, in

view of the previous paragraph, we view this as a modified version of the Feynman rules

applied to the primitives.
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7.2 Systems

Theorem 6.3 gives us

γr · L

=
∑

k≥1

tk∑

i=0

xk(1 − sign(sr)γ
r · ∂−ρ)

1−srk
∏

j∈Rr{r}

(1 − sign(sj)γ
j∂−ρ)

−sjk

(e−Lρ − 1)


 rr

k,i

ρ(1 − ρ)
+
∏

1≤i<k

rr
k,iL

i

ρ



∣∣∣∣
ρ=0

As in the single equation case we can find tidy recursions for the γr
1 by comparing the

coefficients of L and L2 in the above. We get

γr
1 = −

∑

k

xk(1 − sign(sr)γ
r · ∂−ρ)

1−srk
∏

j∈Rr{r}

(1 − sign(sj)γ
j · ∂−ρ)

−sjk −rr
k

1 − ρ
|ρ=0

and

2γr
2 =

∑

k

xk(1 − sign(sr)γ
r · ∂−ρ)

1−srk
∏

j∈Rr{r}

(1 − sign(sj)γ
j · ∂−ρ)

−sjk

(
ρrr

k

1 − ρ
− 2rr

k,1

)
|ρ=0

= −γr
1 −

∑

k≥1

(rr
k + 2rr

k,1)x
k

Thus letting pr(k) = −rr
k − 2rr

k,1 and using the first recursion (Theorem 4.1 or 4.14)

γr
1 =

∑

k≥1

pk(k)xk − 2γr
2 =

∑

k≥1

pr(k)xk − sign(sr)γ
r
1(x)

2 +
∑

j∈R

|sj |γj
1(x)x∂xγ

r
1(x)

giving
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Theorem 7.2.

γr
1 =

∑

k≥1

pr(k)xk − sign(sr)γ
r
1(x)

2 +
∑

j∈R

|sj |γj
1(x)x∂xγ

r
1(x)

or at the level of coefficients

γr
1,n = pr(n) +

n−1∑

i=1

(|sr|i− sign(sr))γ
r
1,iγ

r
1,n−i +

∑

j∈R
j 6=r

n−1∑

i=1

(|sj |i)γj
1,n−iγ

r
1,i

7.3 Variants

The value of the reduction to geometric series is that if F (ρ) = r/(ρ(1−ρ)) then ρ2F (ρ) =

ρF (ρ)− 1. However this reduction is rather crass, particularly for higher orders of L, so it

is worth considering other special forms of F as in the following example.

Example 7.3. Consider again the φ3 example from [5] as setup in Example 6.2. We have

s = 2 and

F (ρ) =
−1

ρ(1 − ρ)(2 − ρ)(3 − ρ)
,

so

ρF (ρ) =
−1

(1 − ρ)(2 − ρ)(3 − ρ)

= − 1

6

(
1 +

ρ− 11
6 ρ

2 + 1
6ρ

3

(1 − ρ)(2 − ρ)(3 − ρ)

)

= − 1

6
+ ρ2F (ρ) − 11

6
ρ3F (ρ) +

1

6
ρ4F (ρ)

This gives that

γ1 = − x(1 − γ · ∂−ρ)
−1ρF (ρ)|ρ=0

=
1

6
x(1 − γ · ∂−ρ)

−11|ρ=0 − x(1 − γ · ∂−ρ)
−1ρ2F (ρ)|ρ=0

+
11

6
x(1 − γ · ∂−ρ)

−1ρ3F (ρ)|ρ=0 −
1

6
x(1 − γ · ∂−ρ)

−1ρ4F (ρ)|ρ=0
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=
x

6
− 2γ2 − 11γ3 − 4γ4.

In view of Theorem 4.2 or 4.10, which in this case reads

γk =
1

k
γ1(x)(1 − 2x∂x)γk−1(x),

we thus get a fourth order differential equation for γ1 which contains no infinite series and

for which we completely understand the signs of the coefficients.



Chapter 8

The radius of convergence

8.1 Single equations

We see from the second recursion, Theorem 7.1, that if
∑
p(k)xk is Gevrey-n but not

Gevrey-m for any m < n, then γ1 is at best Gevrey-n.

Of most interest for quantum field theory applications is the case where only finitely

many p(k) are nonzero but all are nonnegative and the case where p(k) = ckk! giving

the Lipatov bound. In both cases
∑
p(k)xk is Gevrey-1. Also for positivity reasons we

are interested in s ≥ 1 or s < 0. Thus for the remainder of this section the following

assumptions are in effect.

Assumption 8.1. Assume |s| ≥ 1 or s < 0. Assume p(k) ≥ 0 for k ≥ 1 and

∑

k≥1

xk p(k)

k!
= f(x)

has radius of convergence 0 < ρ ≤ ∞ and is not identically zero.

Under these assumptions γ1 is also Gevrey-1 and the radius is the minimum of ρ and

1/(sa1) (where we view 1/(sa1) as +∞ in the case a1 = 0) the proof of which is the content

of this section.

Definition 8.2. Let an = γ1,n/n!, A(x) =
∑

n≥1 anx
n, and let ρa be the radius of conver-

gence of A(x).
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Then a1 = γ1,1 = p(1) and

an =
p(n)

n!
+

n−1∑

j=1

(|s|j − sign(s))

(
n

j

)−1

ajan−j

=
p(n)

n!
+

1

2

n−1∑

j=1

(|s|j − sign(s) + |s|(n− j) − sign(s))

(
n

j

)−1

ajan−j

=
p(n)

n!
+
(
|s|n

2
− sign(s)

) n−1∑

j=1

(
n

j

)−1

ajan−j (8.1)

Inductively, we see that a1, a2, . . . are all nonnegative

Note that if s = 1, p(1) > 0, and p(n) = 0 for n > 1 then a1 = p(1), an = 0 for n > 1

solves the recursion. In this case ρa = ρ = ∞, but 0 < 1/(|s|a1) <∞. This boundary case

is the only case with this behavior as we see in the following Proposition.

Proposition 8.3. Suppose that either s 6= 1, or p(n) > 0 for some n > 1. Then ρa ≤

min{ρ, 1/(|s|a1)} where 1/(|s|a1) = ∞ when a1 = 0

Proof. Take the first and last terms of the sum (8.1) to get

an ≥ p(n)

n!
+ |s|n− 2

n
a1an−1 (8.2)

for n ≥ 2. In particular

an ≥ p(n)

n!

so ρa ≤ ρ. Further if a1 and at least one aj , j > 1 are nonzero then by (8.2) an > 0 for all

n > j, since the p(n) are assumed nonnegative. In this case, then, we also have

an−1

an
≤ n

(n− 2)a1|s|

and so ρa ≤ 1/(|s|a1). The inequality ρa ≤ 1/(|s|a1) also holds by convention if a1 = 0.

Finally suppose a1 6= 0 but an = 0 for all n > 1. Then p(n) = 0 for all n > 1, and, from

(8.1) for n = 2, s = 1. This is the case we have excluded. The result follows.
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For the lower bound on the radius we need a few preliminary results. First, some simple

combinatorial facts.

Lemma 8.4. (
n

k

)
≥
(n
k

)k

for n, k ∈ Z, n ≥ k ≥ 0.

Proof. (
n

k

)
=
n

k

n− 1

k − 1
· · · n− k + 1

1
≥ n

k

n

k
· · · n

k
=
(n
k

)k

Lemma 8.5. Given 0 < θ < 1

1

n

(
n

j

)
≥ θ−j+1

j

for 1 ≤ j ≤ θn and n ≥ 2.

Proof. Fix n. Write j = λn, 0 < λ ≤ θ. Then using Lemma 8.4

1

n

(
n

j

)
=

1

n

(
n

λn

)
≥ nλn−1

(λn)λn
=
λ−λn+1

λn
≥ θ−j+1

j

Second, we need to understand the behavior of
∑
anx

n at the radius of convergence.

Lemma 8.6.

A(x) ≤ f(x) + x|s|(1 + ǫ)A′(θx)A(x) +
|s|
2x

d

dx

(
x2A2(θθx)

)
+ Pǫ(x)

for all 0 < θ < 1/e, ǫ > 0, and 0 < x < ρa, where Pǫ(x) is a polynomial in x with

nonnegative coefficients.
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Proof. Take 0 < θ < 1/e and ǫ > 0.

an =
p(n)

n!
+
(
|s|n

2
− sign(s)

) n−1∑

j=1

(
n

j

)−1

ajan−j

≤p(n)

n!
+ |s|(n+ 2)

∑

1≤j≤θn

(
n

j

)−1

ajan−j + |s|n+ 2

2

∑

θn≤j≤n−θn

(
n

j

)−1

ajan−j

≤p(n)

n!
+ |s|n+ 2

n

∑

1≤j≤θn

jθj−1ajan−j + |s|
(

n

⌈θn⌉

)−1n+ 2

2

∑

θn≤j≤n−θn

ajan−j

by Lemma 8.5

≤p(n)

n!
+ |s|n+ 2

n

∑

1≤j≤θn

jθj−1ajan−j +
|s|
2

(n+ 2)θθn
∑

θn≤j≤n−θn

ajan−j

by Lemma 8.5 and since (x/n)x is decreasing for 0 < x < n/e

Thus for n sufficiently large that (n + 2)/n ≤ 1 + ǫ the coefficients of A(x) are bounded

above by the coefficients of

f(x) + x|s|(1 + ǫ)A′(θx)A(x) +
|s|
2x

d

dx

(
x2A2(θθx)

)
.

Adding a polynomial to dominate the earlier coefficients of A(x) we get that the coefficients

of A(x) are bounded above by the coefficients of

f(x) + x|s|(1 + ǫ)A′(θx)A(x) +
|s|
2x

d

dx

(
x2A2(θθx)

)
+ Pǫ(x).

Since all coefficients are nonnegative, for any 0 < x < ρa we have

A(x) ≤ f(x) + x|s|(1 + ǫ)A′(θx)A(x) +
|s|
2x

d

dx

(
x2A2(θθx)

)
+ Pǫ(x).

Lemma 8.7. If ρa < ρ and ρa < 1/(|s|a1) then A(ρa) <∞.
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Proof. Consider Lemma 8.6. Choose θ > 0 and ǫ > 0 so that

ρa <
1

|s|(1 + ǫ)A′(θρa)
(8.3)

which is possible since limθ→0 A′(θx) = a1 and ρa < 1/(|s|a1). Letting x→ ρa we see that

lim
x→ρa

A(x) ≤ C + ρa|s|(1 + ǫ)A′(θρa) lim
x→ρa

A(x)

where C is constant, since θθ < 1, and ρa < ρ. So

(1 − ρa|s|(1 + ǫ)A′(θρa)) lim
x→ρa

A(x) ≤ C.

But by (8.3), 1 − ρa|s|(1 + ǫ)A′(θρa) > 0, so A(ρa) <∞.

Lemma 8.8. If ρa < ρ and ρa < 1/(|s|a1) then A(x) is unbounded on 0 < x < ρa.

Proof. Take any ǫ > 0. Then there exists an N > 0 such that for n > N

an ≤ p(n)

n!
+ |s|a1an−1 + ǫ

n−1∑

j=1

ajan−j

Define

cn =





an if an >
p(n)
n! + |s|c1cn−1 + ǫ

∑n−1
j=1 cjcn−j

p(n)
n! + |s|c1cn−1 + ǫ

∑n−1
j=1 cjcn−j otherwise (in particular when n > N)

In particular c1 = a1. Let C(x) =
∑

x≥1 cnx
n (which implicitly depends on ǫ) have radius

ρǫ. Since an ≤ cn, ρa ≥ ρǫ. Rewriting with generating series

C(x) = f(x) + |s|a1xC(x) + ǫC2(x) + Pǫ(x)

where Pǫ(x) is some polynomial. This equation can be solved by the quadratic formula.
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The discriminant is

∆ǫ = (1 − |s|a1x)
2 − 4ǫ(f(x) + Pǫ(x)).

ρǫ is the closest root to 0 of ∆ǫ.

By construction, the coefficient of xn in Pǫ(x) is bounded by an. Suppose A(ρa) <∞.

Thus f(ρa) +Pǫ(ρa) ≤ f(ρa) + A(ρa). By the nonnegativity of the coefficients of f and Pǫ

then f(x) + Pǫ(x) independently of ǫ for for 0 < x ≤ ρa. Thus

lim
ǫ→0

∆ǫ = (1 − |s|a1ρa)
2

for 0 < x ≤ ρa. So

1

|s|a1
> ρa ≥ ρǫ →

1

|s|a1

as ǫ→ 0 which is a contradiction, giving that A(x) is unbounded on 0 < x < ρa.

Proposition 8.9. ρa ≥ min{ρ, 1/(|s|a1)}, where 1/(|s|a1) = ∞ when a1 = 0.

Proof. Suppose on the contrary that ρa < ρ and ρa < 1/(|s|a1) then Lemmas 8.7 and 8.8

contradict each other so this cannot be the case.

Taking the two bounds together we get the final result

Theorem 8.10. Assume
∑

k≥1 x
kp(k)/k! has radius ρ. Then

∑
xnγ1,n/n! converges with

radius of convergence min{ρ, 1/(sγ1,1)}, where 1/(|s|γ1,1) = ∞ if γ1,1 = 0.

Proof. Immediate from Lemmas 8.3 and 8.9.

8.2 Systems

Now suppose we have a system of Dyson-Schwinger equations as in (3.4)

Xr(x) = I − sign(sr)
∑

k≥1

tr
k∑

i=0

xkBk,i;r
+ (XrQk)
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for r ∈ R with R a finite set and where

Q =
∏

r∈R

Xr(x)−sr

for all r ∈ R.

To attack the growth of the γr
1 we will again assume that the series of primitives is

Gevrey-1 and that the sr give nonnegative series.

Assumption 8.11. Assume sr ≥ 1 or sr < 0 for each r ∈ R. Assume that

∑

k≥1

xk p
r(k)

k!
= f r(x)

has radius 0 < ρr ≤ ∞, pr(k) > 0 for k ≥ 1, and the f r(x) are not identically 0.

We’ll proceed by similar bounds to before.

Definition 8.12. Let ar
n = γr

1,n/n! and Ar(x) =
∑

n≥1 a
r
nx

n.

Again the ar
i are all nonnegative.

Then

ar
n =

pr(n)

n!
+

n−1∑

i=1

(|sr|i− sign(sr))a
r
ia

r
n−i

(
n

i

)−1

+
∑

j∈R
j 6=r

n−1∑

i=1

(|sj |i)aj
n−ia

r
i

(
n

i

)−1

(8.4)

Proposition 8.13. For all r ∈ R, the radius of convergence of Ar(x) is at most

min

{
ρr,

1
∑

j∈R |sj |aj
1

}

interpreting the second possibility to be ∞ when
∑

j∈R |sj |aj
1 = 0.

Proof. Taking the last term in each sum of (8.4) we have

ar
n ≥ pr(n)

n!
+



∑

j∈R

|sj |aj
1


 n− 2

n
ar

n−1
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Let brn be the series defined by br1 = ar
1 and equality in the above recursion. Then argue as

in the single equation case, Proposition 8.3, to get that the radius of Ar(x) is at most

min

{
ρr,

1
∑

j∈R |sj |aj
1

}
.

Proposition 8.14. The radius of convergence of
∑

r∈R Ar(x) is at least

min
r∈R

{
ρr,

1
∑

j∈R |sj |aj
1

}

interpreting the second possibility to be ∞ when
∑

j∈R |sj |aj
1 = 0.

Proof. The overall structure of the argument is as in the single equation case.

The equivalent of Lemma 8.6 for this case follows from

∑

r∈R

ar
n ≤

∑

r∈R

pr(n)

n!
+
n+ 2

n

∑

j∈R

|sj |aj
1

∑

r∈R

ar
n−1 +

∑

r,j∈R

n−1∑

i=1

(|sj |(i+ 1))aj
n−ia

r
i

(
n

i

)−1

≤
∑

r∈R

pr(n)

n!
+
n+ 2

n

∑

j∈R

|sj |aj
1

∑

r∈R

ar
n−1

+ max
j

(|sj |)
n−2∑

i=2

(i+ 1)

(
n

i

)−1
(
∑

r∈R

ar
n−i

)(
∑

r∈R

ar
i

)

=
∑

r∈R

pr(n)

n!
+
n+ 2

n

∑

j∈R

|sj |aj
1

∑

r∈R

ar
n−1

+ max
j

(|sj |)(n+ 2)
∑

2≤i≤θn

(
n

i

)−1
(
∑

r∈R

ar
n−i

)(
∑

r∈R

ar
i

)

+ max
j

(|sj |)
n+ 2

2

∑

θn≤i≤n−θn

(
n

i

)−1
(
∑

r∈R

ar
n−i

)(
∑

r∈R

ar
i

)

for θ as in Lemma 8.6 with
∑

r∈R Ar(x) in place of A(x), where Ar(x) =
∑
ar(n)xn. Then

continue the argument as in Lemma 8.6 with
∑

r∈R f
r(x) in place of f(x) and maxj(sj) in

place of s, and using the second term to get the correct linear part.
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For the argument as in Lemma 8.8 Take any ǫ > 0 then there exists an N > 0 such

that for n > N we get

ar
n ≤ pr(n)

n!
+



∑

j∈R

|sj |aj
1


 ar

n−1 + ǫ
n−1∑

i=1

∑

j∈R

ar
ia

j
n−i

Taking Cr(x) to be the series whose coefficients satisfy the above recursion with equality

in the cases when this gives a result ≥ ar
n and equal to ar

n otherwise we get

Cr(x) = f r(x) +



∑

j∈R

|sj |aj
1


xCr(x) + ǫ

∑

j∈R

Cr(x)Cj(x) + P r
ǫ (x)

where P r
ǫ is a polynomial.

Summing over r we get a recursive equation for
∑

r∈R Cr(x) of the same form as in

the single equation case. Note that since each Cr is a series with nonnegative coefficients

there can be no cancellation of singularities and hence the radius of convergence of each

Cr is at least that of the sum. Thus by the analysis of the single equation case we get a

lower bound on the radius of
∑

r Ar(x) of mins∈R{ρs, 1/
∑

j∈R |sj |aj
1}.

Proposition 8.15. Each As(x), s ∈ R, has the same radius of convergence.

Proof. Suppose the radius of As(x) was strictly greater than that of Ar(x). Then we can

find β > δ > 0 such that

ar
n > βn > δn > as

n

for n sufficiently large. Pick a k ≥ 1 such that as
k > 0. Then

δn > as
n ≥ |sr|k!as

k

n · · · (n− k + 1)
ar

n−k >
|sr|k!as

k

n · · · (n− k + 1)
βn−k

so

δk

|sr|as
k

(
δ

β

)n−k

>
k!

n · · · (n− k + 1)

which is false for n sufficiently large, giving a contradiction.
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Theorem 8.16. For all r ∈ R,
∑
xnγr

1,n/n! converges with radius

min
r∈R

{ρr, 1/
∑

j∈R

|sj |γj
1,1},

where the second possibility is interpreted as ∞ when
∑

j∈R |sj |γj
1,1 = 0.

Proof. Take s ∈ R such that ρs is minimal.

Since we are working with nonnegative series the radius of As(x) is at least that of
∑

r∈R Ar(x). Hence by Lemmas 8.13 and 8.14 As(x) has radius exactly

min
r∈R

{ρr, 1/
∑

j∈R

|sj |aj
1}.

Thus by Lemma 8.15 all the
∑
as

nx
n have the same radius minr∈R{ρr, 1/

∑
j∈R |sj |aj

1}

8.3 Possibly negative systems

Let us relax the restriction that pr(n) ≥ 0. It is now difficult to make general statements

concerning the radius of convergence of the Ar(x). For example consider the system

a1
n =

p1(n)

n!
+

n−1∑

j=1

(2j − 1)a1
ja

1
n−j

(
n

j

)−1

+

n−1∑

j=1

ja1
ja

2
n−j

(
n

j

)−1

a2
n =

p2(n)

n!
+

n−1∑

j=1

(j + 1)a2
ja

2
n−j

(
n

j

)−1

+
n−1∑

j=1

2ja2
ja

1
n−j

(
n

j

)−1

so s1 = 2 and s2 = −1. Suppose also that

p2(2) = −4(a2
1)

2

a1
1 = a2

1

p2(n) = −2(n− 1)!a2
1a

1
n−1
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Then a2
2 = 0 and inductively a2

n = 0 for n ≥ 2 so the system degenerates to

a1
n =

p1(n)

n!
+

n−1∑

j=1

(2j − 1)a1
ja

1
n−j

(
n

j

)−1

− n− 1

n
a1

1a
1
n−1

a2
n =





a1
1 if n = 1

0 otherwise

We still have a free choice of p1(n), and hence control of the radius of the a1 series. On

the other hand the a2 series trivially has infinite radius of convergence.

Generally, finding a lower bound on the radii of the solution series, remains approach-

able by the preceding methods while control of the radii from above is no longer apparent.

Precisely,

Theorem 8.17. The radius of convergence of
∑

n≥1 x
nγr

1,n/n! is at least

min
r∈R



ρr,

1∣∣∣
∑

j∈R |sj |γj
1,1

∣∣∣





where the second possibility is interpreted as ∞ when
∑

j∈R |sj |γj
1,1 = 0.

Proof. for any ǫ > 0

|ar
n| ≤

|pr(n)|
n!

+

∣∣∣∣∣∣

∑

j∈R

|sj |aj
1

∣∣∣∣∣∣
|ar

n−1| +
n−2∑

i=1

|(|sr|i− sign(sr))||ar
i ||ar

n−i|
(
n

i

)−1

+
∑

j∈R
j 6=r

n−2∑

i=1

|sj |i|aj
n−i||ar

i |
(
n

i

)−1

≤ |pr(n)|
n!

+

∣∣∣∣∣∣

∑

j∈R

|sj |aj
1

∣∣∣∣∣∣
|ar

n−1| + ǫ

n−1∑

i=1

∑

j∈R

|ar
i ||aj

n−i|

So, for a lower bound on the radius we may proceed as in the nonnegative case using the

absolute value of the coefficients.



Chapter 9

The second recursion as a differential equation

In this final chapter let us consider the second recursion derived in Chapter 7 as a differential

equation rather than as a recursive equation. That is, in the system case

γr
1(x) = Pr(x) − sign(sr)γ

r
1(x)

2 +



∑

j∈R

|sj |γj
1(x)


x∂xγ

r
1(x) (9.1)

as r runs over R, the residues of the theory. While in the single equation case

mγ1(x) = P (x) − sign(s)γ1(x)
2 + |s|γ1(x)x∂xγ1(x) (9.2)

The parameter m was added to keep the QED example in the most natural form, however

it is not interesting since since we can remove it by the transformation γ1(x) 7→ mγ1(x),

P (x) 7→ m2P (x).

No non-trivial results will be proved in this chapter, we will simply discuss some features

of some important examples. More substantial results will appear in [31].

As a consequence of the renormalization group origin of the first recursion discussed in

section 4.1 the β-function for the system shows up as the coefficient of (γr
1)

′(x), namely

β(x) = x
∑

j∈R

|sj |γj
1(x)

in the system case and

β(x) = x|s|γ1(x)
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in the single equation case. Consequently this differential equation is well suited to im-

proving our understanding of the β-function.

In particular in the single equation case, we see immediately from (9.2) that any zeroes

of β(x) must occur either where P (x) = 0 or where γ′1(x) is infinite. The second of these

possibilities does not turn out to be physically reasonable as we will discuss in more detail

below. The system case is not quite so simple. Assume β(x) = 0. If we rule out infinite

(γr
1)

′(x), then we can only conclude that for each r ∈ R

γr
1(x) + sign(sr)γ

r
1(x)

2 − Pr(x) = 0.

In order to extract further information in both the single equation and the system case

we will proceed to examine plots of the vector field of (γr
1)

′(x), first in some toy single

equation cases, second in the case of QED reduced to one equation, and finally in the 2

equation example of φ4.

9.1 Toys

First let us consider a family of examples which are simpler than those which occur in full

quantum field theories, namely the family where m = 1 and P (x) = x.

9.1.1 The case s = 2

If we set s = 2 we get the situation explored in [5] which describes the piece of massless

Yukawa theory consisting of nestings and chainings of the one loop fermion self energy into

itself as discussed in Example 3.5. The second recursion viewed as a differential equation

is

γ1(x) = x− γ1(x)(1 − 2x∂x)γ1(x).

Broadhurst and Kreimer [5] solved this Dyson-Schwinger equation by clever rearranging

and recognizing the resulting asymptotic expansion. The solution, written in a slightly
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Figure 9.1: The vector field of γ′1(x) with s = 2, m = 1, and P (x) = x.

different form, is given implicitly by

exp

(
(1 + γ1(x))

2

2x

)√
−x+ erf

(
1 + γ1(x)√

−2x

) √
π√
2

= C

with integration constant C.

We can proceed to look at the vector field of γ′1(x), see Figure 9.1.

We are primarily interested in the behavior in the first quadrant. Of particular interest

are possible zeros of solutions since, in this simple single equation situation, xγ1(x) = β(x)

where β(x) is the β-function of the system.

From the figures we notice a family of solutions which come down to hit the x axis

with vertical tangent. These solutions have no real continuation past this point. These

solutions are consequently unphysical. It is not clear from the figure whether all solutions

have this behavior. One of the major goals of [31] is to find conditions guaranteeing the

existence of a separatrix.
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Figure 9.2: Solutions which die in finite time along with the curve where γ′1(x) = 0.
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Viewing the vector field near the origin can be quite misleading, since it appears to

have both types of behavior simply because all the solutions have the same asymptotic

expansion at the origin. Additionally this implies that the apparent, but potentially false,

separatrix is well matched by the first four terms of the asymptotic expansion as illustrated

in Figure 9.3. Of course given that we have a recursive equation and an implicit solution

we can easily calculate the asymptotic series out to hundreds of terms [5], and the use of

a four loop approximation is merely meant to be illustrative.

Another simple observation is that we can derive the equation for the curve where the

solutions are horizontal by solving for γ′1(x)

γ′1(x) =
γ1(x) + γ2

1(x) − x

2xγ1(x)

and then solving the numerator to get the curve

y =
−1 +

√
1 + 4x

2

illustrated in Figure 9.2.

9.1.2 Other cases

Let us return to general s while maintaining the assumption m = 1, P (x) = x.

The case s = 0 is degenerate, giving the algebraic equation γ1(x) = x − γ1(x)
2 with

solutions

γ1(x) =
−1 ±

√
1 + 4x

2
.

From now on we will assume s 6= 0.

We can obtain implicit solutions for a few other isolated values of s using Maple

s = 1 :γ1(x) = x+ xW

(
C exp

(
−1 + x

x

))
,

s =
3

2
:A (X) − x1/321/3A′ (X) = C

(
B (X) − x1/321/3B′ (X)

)
where X =

1 + γ1(x)

22/3x2/3
,
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Figure 9.4: The vector field of γ′1(x) with m = 1 and P (x) = x, showing the dependence
on s > 0.

s = 2 : exp

(
(1 + γ1(x))

2

2x

)√
−x+ erf

(
1 + γ1(x)√

−2x

) √
π√
2

= C,

s = 3 :(γ1(x) + 1)A (X) − 22/3A′ (X) = C
(
(γ1(x) + 1)B (X) − 22/3B′ (X)

)

where X =
(1 + γ1(x))

2 + 2x

24/3x2/3
,

where A is the Airy Ai function, B the Airy Bi function and W the Lambert W function.

Qualitatively the vector fields are rather similar, see Figure 9.4. The same qualitative

picture also remains for values of s > 0 where we do not have exact solutions. For s < 0

the picture is somewhat different, see Figure 9.5, but we still see solutions which die and

can still ask whether there are solutions which exist for all x > 0
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Figure 9.5: The case P (x) = x and s = −2. A typical example with s < 0.

In the case s = 1, γ1(x) = x is manifestly a solution, so there are solutions which exist

for all x for some values of s. γ1(x) = x is illustrated in Figure 9.6.

Note also that we can, as before, calculate the curve where solutions are flat for general

s, and it depends only on the sign of s since

γ′1(x) =
γ1(x) + sign(s)γ2

1(x) − x

|s|xγ1(x)

giving the curve

y =
−1 +

√
1 + sign(s)4x

2
.

9.2 QED as a single equation

In this section we are interested in the case where m = 2, and s = 1 in (9.2). In view of

the Ward identities and the work of Johnson, Baker, and Willey [19] the QED system can

be reduced by a suitable choice of gauge to the single equation with those values of m and
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s describing the photon propagator.

The first question is how to choose P (x). To 2 loops

P (x) =
x

3
+
x2

4

To 4 loops we need to correct the primitives in view of the reductions of the previous

chapters. Values are from [16].

P (x) =
x

3
+
x2

4
+ (−0.0312 + 0.06037)x3 + (−0.6755 + 0.05074)x4

In the first of these cases little has changed from the simple examples of the previous

sections. At 4 loops, however, P (0.992 . . .) = 0 which causes substantial changes to the

overall picture, see Figure 9.7.

This zero in P (x) is expected to be spurious, due only to taking the 4 loop approxima-
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(b) P (x) taken to 4 loops.

Figure 9.7: The vector field of γ′1(x) for QED with different choices for P (x).

tion out beyond where it is valid, and the qualitative behavior of the solutions looks much

more familiar if we restrict our attention to 0 ≤ x < 0.992 . . ., see Figure 9.8.

Note that if P (x) > 0 for x > 0 then by the same analysis as in the P (x) = x case we

can determine the curve where the solutions are flat. The curve is

y =
−1 +

√
1 + 4P (x)

2
.

The first four loops of perturbation theory give a good approximation to reality, and

also as expected match the apparent separatrix for small values of x, which is illustrated

quite strikingly in Figure 9.9.

9.3 φ4

Let us now consider φ4 as an example which legitimately leads to a system of equations, but

for which it remains possible to create illustrations, and perhaps even to analyze. Taking

advantage of the graphical similarity between the vertex and propagator in φ4 and the

symbols + and − respectively we will write the specialization of (9.1) for φ4 as the system

γ+
1 (x) = P+(x) + γ+

1 (x)2 + (γ+
1 (x) + 2γ−1 (x))x∂xγ

+
1 (x)
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Figure 9.8: The region between x = 0 and x = 1 in the vector field of γ′1(x) for QED with
P (x) taken to 4 loops.
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γ−1 (x) = P−(x) − γ−1 (x)2 + (γ+
1 (x) + 2γ−1 (x))x∂xγ

−
1 (x)

The values of γ+
1 and γ−1 up to order x5 can be obtained from [20] and hence so can

those of P+ and P−. Close to the origin we see a distinguished solution, see Figure 9.10.

As in subsection 9.1.1, this may not indicate a solution which exists for all x, but we hope

that this solution is physical.

There are many tantalizing features appearing in these examples which will hopefully

be the genesis for future work linking to different fields. The equations derived in Chapter

7 seem considerably more tractable than the original Dyson-Schwinger equations when

viewed either as recursive equations or as differential equations. They have already led to

physically interesting results as in Chapter 8 and hold much promise for the future.
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