
Counting trees with applications

to counting Feynman diagrams

Karen Yeats
Boston University; visiting IHES

March 14, 2006
CIRM Renormalization and Galois theories

Unlabelled rooted trees

Let t(n) be the number of unlabelled rooted trees
with n vertices. Let T(x) =

∑

n≥1 t(n)xn be the
corresponding generating function.

Decompose a rooted tree into its root and the forest
of its subtrees; an arbitrary multiset of rooted trees.

T(x) = x + xMSet(T)(x).

That is

T(x) = x exp

(

∑

m≥1

T(xm)/m

)

.

The radius of convergence, ρ, of T(x) is
(the reciprocal of) Otter’s tree constant. ρ =
0.3383218568992076952 . . ..
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Pólya’s analysis of rooted trees

Pólya converted the recursive equation

T(x) = x exp

(

∑

m≥1

T(xm)/m

)

to a bivariate function

E(x, y) = xey exp

(

∑

m≥2

T(xm)/m

)

.

The recursive equation is then T(x) = E(x,T(x)).

Weierstrass preparation on E gives a square root
singularity at ρ. Then the Cauchy integral theorem
gives

t(n) ∼ Cρ−nn−3/2

2

The universal law

Asymptotics of the form Cρ−nn−3/2 are ubiquitous
for classes of rooted trees with recursive definitions,
hence the term universal law.

• plane trees: T(x) = x + xSeq(T)(x)

• plane binary trees: T(x) = x + xSeq{2}(T)(x)

• (0, 1, 2, 3)-trees: T(x) = x + xMSet{1,2,3}(T)(x)

• trees with cyclically ordered subtrees at each vertex:
T = x + xDCycle(T)(x)

• identity trees: T(x) = x + xSet(T)(x)

• labelled trees: T(x) = xeT(x)

and anything defined by a huge swath of other recursive
equations built out of (most) iterations of the basic
building blocks above and others.
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Recursive systems

The solutions of polynomial recursive systems also
satisfy the universal law under reasonable conditions
(independently: Drmota, Lalley, and Woods)

Suppose

y1 = Φ1(x, y1, . . . , ym)

...

ym = Φm(x, y1, . . . , ym)

with the Φi polynomials with real coefficients.

Note that geometric series can be converted to
polynomials at the expense of a new variable: replace
1/(1−T ) with a new variable F and add the equation

F = 1 + F · T.

This is enough for systems coming from quantum field
theory.
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5 conditions on systems

1. The system is nonlinear if at least one of the Φi is
nonlinear in y1, . . . , ym.

2. The system is nonnegative if each Φi has
nonnegative coefficients.

3. For y = (y1, . . . , ym) ∈ R[[x]]m define the
x-valuation by val(y) = mini(val(yi)) where
val(

∑∞
n=k anxn) = k with ak 6= 0, and val(0) = ∞.

Define d(y, y′) = 2−val(y−y′). Then the system is
proper if

d(Φ(y), Φ(y′)) < Kd(y, y′) for some K < 1.

4. The system is irreducible if its dependency graph is
strongly connected.

5. A power series T(x) is aperiodic if it cannot be
written T(x) = xa

U(xd). The system is aperiodic

if each component solution is aperiodic.
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Theorem for systems

Theorem 1. Suppose y = Φ(y) is a polynomial

system that is nonlinear, proper, nonnegative, and

irreducible.

Then all component solutions yj have the same

radius of convergence ρ < ∞ and have a square root

singularity at ρ.

If furthermore the system is aperiodic then all yj

satisfy the universal law.
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QED with 1 primitive per loop order

system drawn with diagrams goes here

T1 = 1 +
∑

k≥1

xk T 2k+1
1

(1 − (T2 − 1))2k(1 − (T3 − 1))k

T2 = 1 + x
T1

(1 − (T2 − 1))(1 − (T3 − 1))

T3 = 1 + x
T1

(1 − (T2 − 1))2

A canonical subsystem; convergent, but captures
renormalization.
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Make the system nonnegative

T1 = 1 + T1

∑

k≥1

(

x
T 2

1

(1 − N2)2(1 − N3)

)k

N2 = x
T1

(1 − N2)(1 − N3)

N3 = x
T1

(1 − N2)2

Convert the geometric series

Φ =







































T1 = 1 + T1F

F = xT 2
1 F 2

2 F3 + xT 2
1 F 2

2 F3F

N2 = xT1F2F3

F2 = 1 + F2N2

N3 = xT1F
2
2

F3 = 1 + F3N3

Φ is nonlinear, irreducible, and aperiodic. Φ2 is proper.
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QED universal law and radius

So the QED system satisfies the universal law; the
number t1(n) of objects (particular sums of graphs)
with n loops (per summand) satisfies

t1(n) ∼ Cρ−nn−3/2

What is the radius? Manipulate the system to get

−x+T1+(6x−5)T 2
1 +8T 3

1 +(−12x−4)T 4
1 +8xT 6

1 = 0

As a polynomial in T1 this has discriminant

4096x2(32x2 − 8x + 1)(−2 + 27x)2

So the radius of the system is

2

27

This number belongs to QED; what is its physical
meaning?
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QED variants

Any polynomial number of primitives per loop order

T1 = 1 +
∑

k≥1

p(k)xk T 2k+1
1

(1 − (T2 − 1))2k(1 − (T3 − 1))k

with T2 and T3 as before. The linear case is
Cvitanović’s gauge invariant sectors. The radii gently
decrease: only down to 0.046 by the polynomial k28.

Use gauge invariance first (Johnson, Baker, Willey)
to reduce to

T =
∑

k≥1

(

x

1 − T

)k

=
x

1 − T − x

This gives large Schröder numbers A006318. The
radius is 3 − 2

√
2 = 0.17157287525380990247 . . .

which is considerably larger than 2/27 = 0.074 showing
how powerful gauge invariance is.
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Other theories

We can play the same game for other theories, φ3,
φ4, mixed φ3 φ4, . . . .

The universal law continues to hold for reasonable,
convergent series of primitives. The radii don’t end up
being particularly nice.
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Bonus slides:
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Operators giving the universal law

Let O be the set of operators on power series built
out of

1. E(x, ·) such that

(a) E(x, y) has nonnegative coefficients and zero
constant term,

(b) E(a, b) < ∞ ⇒ ∃ǫ > 0,E(a + ǫ, b + ǫ) < ∞,
(c) ∃R > 0, [xiyj]E(x, y) ≤ Ri+j.

2. MSetM and SeqM for all M ⊆ Z
>0.

3. DCycleM and CycleM for
∑

m∈M 1/m = ∞ or M
finite.

using scalar multiplication from R
≥0, addition,

multiplication, and composition, and where if MSetM ,
DCycleM , or CycleM appear then scalars and
coefficients of E must be integers.
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Theorem 2. Let Θ ∈ O such that

• Θ is nonlinear

• [xn]Θ(A(x)) depends only on [xi]A(x) for i < n.

Let A(x) be a power series

• with nonnegative coefficients

• with zero constant term

• which diverges at its radius of convergence

• if MSetM , DCycleM , or CycleM appear in Θ then

A(x) has integer coefficients.

Then there is a unique T(x) satisfying

T(x) = A(x) + Θ(T)(x).

The coefficients of T satisfy the universal law on their

support.
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