Unlabelled rooted trees

Counting trees with applications to counting Feynman diagrams

Karen Yeats
Boston University; visiting IHES

March 14, 2006
CIRM Renormalization and Galois theories

Pólya's analysis of rooted trees

Pólya converted the recursive equation

$$
\mathbf{T}(x)=x \exp \left(\sum_{m \geq 1} \mathbf{T}\left(x^{m}\right) / m\right)
$$

to a bivariate function

$$
\mathbf{E}(x, y)=x e^{y} \exp \left(\sum_{m \geq 2} \mathbf{T}\left(x^{m}\right) / m\right)
$$

The recursive equation is then $\mathbf{T}(x)=\mathbf{E}(x, \mathbf{T}(x))$.
Weierstrass preparation on \mathbf{E} gives a square root singularity at ρ. Then the Cauchy integral theorem gives

$$
t(n) \sim C \rho^{-n} n^{-3 / 2}
$$

Let $t(n)$ be the number of unlabelled rooted trees with n vertices. Let $\mathbf{T}(x)=\sum_{n \geq 1} t(n) x^{n}$ be the corresponding generating function.

Decompose a rooted tree into its root and the forest of its subtrees; an arbitrary multiset of rooted trees.

$$
\mathbf{T}(x)=x+x \operatorname{MSet}(\mathbf{T})(x)
$$

That is

$$
\mathbf{T}(x)=x \exp \left(\sum_{m \geq 1} \mathbf{T}\left(x^{m}\right) / m\right)
$$

The radius of convergence, ρ, of $\mathbf{T}(x)$ is (the reciprocal of) Otter's tree constant. $\rho=$ $0.3383218568992076952 \ldots$

The universal law

Asymptotics of the form $C \rho^{-n} n^{-3 / 2}$ are ubiquitous for classes of rooted trees with recursive definitions, hence the term universal law.

- plane trees: $\mathbf{T}(x)=x+x \operatorname{Seq}(\mathbf{T})(x)$
- plane binary trees: $\mathbf{T}(x)=x+x \operatorname{Seq}_{\{2\}}(\mathbf{T})(x)$
- $(0,1,2,3)$-trees: $\mathbf{T}(x)=x+x \operatorname{MSet}_{\{1,2,3\}}(\mathbf{T})(x)$
- trees with cyclically ordered subtrees at each vertex: $\mathbf{T}=x+x$ DCycle $(\mathbf{T})(x)$
- identity trees: $\mathbf{T}(x)=x+x \operatorname{Set}(\mathbf{T})(x)$
- labelled trees: $\mathbf{T}(x)=x e^{\mathbf{T}(x)}$
and anything defined by a huge swath of other recursive equations built out of (most) iterations of the basic building blocks above and others.

Recursive systems

5 conditions on systems

The solutions of polynomial recursive systems also satisfy the universal law under reasonable conditions (independently: Drmota, Lalley, and Woods)

Suppose

$$
\begin{aligned}
y_{1} & =\Phi_{1}\left(x, y_{1}, \ldots, y_{m}\right) \\
& \vdots \\
y_{m} & =\Phi_{m}\left(x, y_{1}, \ldots, y_{m}\right)
\end{aligned}
$$

with the Φ_{i} polynomials with real coefficients.
Note that geometric series can be converted to polynomials at the expense of a new variable: replace $1 /(1-T)$ with a new variable F and add the equation

$$
F=1+F \cdot T
$$

This is enough for systems coming from quantum field theory.

Theorem for systems

Theorem 1. Suppose $\bar{y}=\Phi(\bar{y})$ is a polynomial system that is nonlinear, proper, nonnegative, and irreducible.

Then all component solutions y_{j} have the same radius of convergence $\rho<\infty$ and have a square root singularity at ρ.

If furthermore the system is aperiodic then all y_{j} satisfy the universal law.

1. The system is nonlinear if at least one of the Φ_{i} is nonlinear in y_{1}, \ldots, y_{m}.
2. The system is nonnegative if each Φ_{i} has nonnegative coefficients.
3. For $\bar{y}=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}[[x]]^{m}$ define the x-valuation by $\operatorname{val}(\bar{y})=\min _{i}\left(\operatorname{val}\left(y_{i}\right)\right)$ where $\operatorname{val}\left(\sum_{n=k}^{\infty} a_{n} x^{n}\right)=k$ with $a_{k} \neq 0$, and $\operatorname{val}(0)=\infty$. Define $d\left(\bar{y}, \bar{y}^{\prime}\right)=2^{-\operatorname{val}\left(\bar{y}-\bar{y}^{\prime}\right)}$. Then the system is proper if

$$
d\left(\Phi(\bar{y}), \Phi\left(\bar{y}^{\prime}\right)\right)<K d\left(\bar{y}, \bar{y}^{\prime}\right) \quad \text { for some } K<1
$$

4. The system is irreducible if its dependency graph is strongly connected.
5. A power series $\mathbf{T}(x)$ is aperiodic if it cannot be written $\mathbf{T}(x)=x^{a} \mathbf{U}\left(x^{d}\right)$. The system is aperiodic if each component solution is aperiodic.

QED with 1 primitive per loop order

system drawn with diagrams goes here

$$
\begin{aligned}
& T_{1}=1+\sum_{k \geq 1} x^{k} \frac{T_{1}^{2 k+1}}{\left(1-\left(T_{2}-1\right)\right)^{2 k}\left(1-\left(T_{3}-1\right)\right)^{k}} \\
& T_{2}=1+x \frac{T_{1}}{\left(1-\left(T_{2}-1\right)\right)\left(1-\left(T_{3}-1\right)\right)} \\
& T_{3}=1+x \frac{T_{1}}{\left(1-\left(T_{2}-1\right)\right)^{2}}
\end{aligned}
$$

A canonical subsystem; convergent, but captures renormalization.

QED universal law and radius

Make the system nonnegative

$$
\begin{aligned}
& T_{1}=1+T_{1} \sum_{k \geq 1}\left(x \frac{T_{1}^{2}}{\left(1-N_{2}\right)^{2}\left(1-N_{3}\right)}\right)^{k} \\
& N_{2}=x \frac{T_{1}}{\left(1-N_{2}\right)\left(1-N_{3}\right)} \\
& N_{3}=x \frac{T_{1}}{\left(1-N_{2}\right)^{2}}
\end{aligned}
$$

Convert the geometric series

$$
\Phi= \begin{cases}T_{1} & =1+T_{1} F \\ F & =x T_{1}^{2} F_{2}^{2} F_{3}+x T_{1}^{2} F_{2}^{2} F_{3} F \\ N_{2} & =x T_{1} F_{2} F_{3} \\ F_{2} & =1+F_{2} N_{2} \\ N_{3} & =x T_{1} F_{2}^{2} \\ F_{3} & =1+F_{3} N_{3}\end{cases}
$$

Φ is nonlinear, irreducible, and aperiodic. Φ^{2} is proper.

QED variants

Any polynomial number of primitives per loop order

$$
T_{1}=1+\sum_{k \geq 1} p(k) x^{k} \frac{T_{1}^{2 k+1}}{\left(1-\left(T_{2}-1\right)\right)^{2 k}\left(1-\left(T_{3}-1\right)\right)^{k}}
$$

with T_{2} and T_{3} as before. The linear case is Cvitanović's gauge invariant sectors. The radii gently decrease: only down to 0.046 by the polynomial k^{28}.

Use gauge invariance first (Johnson, Baker, Willey) to reduce to

$$
T=\sum_{k \geq 1}\left(\frac{x}{1-T}\right)^{k}=\frac{x}{1-T-x}
$$

This gives large Schröder numbers A006318. The radius is $3-2 \sqrt{2}=0.17157287525380990247 \ldots$ which is considerably larger than $2 / 27=0 . \overline{074}$ showing how powerful gauge invariance is.

So the QED system satisfies the universal law; the number $t_{1}(n)$ of objects (particular sums of graphs) with n loops (per summand) satisfies

$$
t_{1}(n) \sim C \rho^{-n} n^{-3 / 2}
$$

What is the radius? Manipulate the system to get

$$
-x+T_{1}+(6 x-5) T_{1}^{2}+8 T_{1}^{3}+(-12 x-4) T_{1}^{4}+8 x T_{1}^{6}=0
$$

As a polynomial in T_{1} this has discriminant

$$
4096 x^{2}\left(32 x^{2}-8 x+1\right)(-2+27 x)^{2}
$$

So the radius of the system is

$$
\frac{2}{27}
$$

This number belongs to QED; what is its physical meaning?

We can play the same game for other theories, ϕ^{3}, ϕ^{4}, mixed $\phi^{3} \phi^{4}, \ldots$

The universal law continues to hold for reasonable, convergent series of primitives. The radii don't end up being particularly nice.

Operators giving the universal law

Bonus slides:
Let \mathcal{O} be the set of operators on power series built out of

1. $\mathbf{E}(x, \cdot)$ such that
(a) $\mathbf{E}(x, y)$ has nonnegative coefficients and zero constant term,
(b) $\mathbf{E}(a, b)<\infty \Rightarrow \exists \epsilon>0, \mathbf{E}(a+\epsilon, b+\epsilon)<\infty$,
(c) $\exists R>0,\left[x^{i} y^{j}\right] \mathbf{E}(x, y) \leq R^{i+j}$.
2. MSet_{M} and Seq_{M} for all $M \subseteq \mathbb{Z}^{>0}$.
3. DCycle $_{M}$ and Cycle $_{M}$ for $\sum_{m \in M} 1 / m=\infty$ or M finite.
using scalar multiplication from $\mathbb{R} \geq 0$, addition, multiplication, and composition, and where if MSet_{M}, DCycle $_{M}$, or Cycle ${ }_{M}$ appear then scalars and coefficients of \mathbf{E} must be integers.

Theorem 2. Let $\Theta \in \mathcal{O}$ such that

- Θ is nonlinear
- $\left[x^{n}\right] \Theta(\mathbf{A}(x))$ depends only on $\left[x^{i}\right] \mathbf{A}(x)$ for $i<n$.

Let $\mathbf{A}(x)$ be a power series

- with nonnegative coefficients
- with zero constant term
- which diverges at its radius of convergence
- if $\mathrm{MSet}_{M}, \mathrm{DCycle}_{M}$, or Cycle_{M} appear in Θ then $\mathbf{A}(x)$ has integer coefficients.

Then there is a unique $\mathbf{T}(x)$ satisfying

$$
\mathbf{T}(x)=\mathbf{A}(x)+\Theta(\mathbf{T})(x)
$$

The coefficients of \mathbf{T} satisfy the universal law on their support.

